Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 615(7950): 134-142, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36470304

RESUMEN

Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2)1, could represent a new chemoprophylactic approach for COVID-19 that complements vaccination2,3. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Receptores Virales , Ácido Ursodesoxicólico , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/prevención & control , Receptores Virales/genética , Receptores Virales/metabolismo , Estudios Retrospectivos , SARS-CoV-2/metabolismo , Tratamiento Farmacológico de COVID-19 , Cricetinae , Transcripción Genética , Ácido Ursodesoxicólico/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Organoides/efectos de los fármacos , Organoides/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/metabolismo , Sistema de Registros , Reproducibilidad de los Resultados , Trasplante de Hígado
2.
Dis Esophagus ; 37(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37963417

RESUMEN

Gastroesophageal Reflux Disease (GERD) is a common chronic gastrointestinal disorder affecting both men and women. Nonerosive reflux disease generally affects more women, whereas GERD complications such as Barrett's esophagus (BE) or esophageal cancer affect more men. The aim of this study was to evaluate sex- and gender-specific symptoms and health-related quality of life (HRQoL) among men and women with GERD. Patients with clinical signs of reflux and completion of 24-hour pH-Impedance testing at the University Hospital Cologne were included into the study. Evaluation of symptoms and HRQoL included the following validated questionnaires: GERD-Health-Related Quality of Life (GERD HRQL), Gastrointestinal Quality of Life Index (GIQLI), and Hospital Anxiety and Depression Scale (HADS). In all, 509 women and 355 men with GERD were included. Men had a significantly higher DeMeester score (60.2 ± 62.6 vs. 43 ± 49.3, P < 0.001) and a higher incidence of BE (18.6 vs. 11.2%, P = 0.006). Women demonstrated significantly higher levels of anxiety (30.9 vs. 14.5%, P = 0.001), more severely impacting symptoms (45.3 ± 11.3 vs. 49.9 ± 12.3, P < 0.001), as well as physical (14.2 ± 5.7 vs. 16.7 ± 5.6, P < 0.001) and social dysfunction (13.3 ± 4.8 vs. 14.8 ± 4.3, P = 0.002). Women further reported a lower HRQoL (85.3 ± 22.7 vs. 92.9 ± 20.8, P < 0.001). Men and women differ on biological, psychological, and sociocultural levels.


Asunto(s)
Esófago de Barrett , Neoplasias Esofágicas , Reflujo Gastroesofágico , Masculino , Humanos , Femenino , Calidad de Vida , Ansiedad/epidemiología , Ansiedad/etiología
3.
Gut ; 72(4): 612-623, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35882562

RESUMEN

OBJECTIVE: Oesophageal cancer (EC) is the sixth leading cause of cancer-related deaths. Oesophageal adenocarcinoma (EA), with Barrett's oesophagus (BE) as a precursor lesion, is the most prevalent EC subtype in the Western world. This study aims to contribute to better understand the genetic causes of BE/EA by leveraging genome wide association studies (GWAS), genetic correlation analyses and polygenic risk modelling. DESIGN: We combined data from previous GWAS with new cohorts, increasing the sample size to 16 790 BE/EA cases and 32 476 controls. We also carried out a transcriptome wide association study (TWAS) using expression data from disease-relevant tissues to identify BE/EA candidate genes. To investigate the relationship with reported BE/EA risk factors, a linkage disequilibrium score regression (LDSR) analysis was performed. BE/EA risk models were developed combining clinical/lifestyle risk factors with polygenic risk scores (PRS) derived from the GWAS meta-analysis. RESULTS: The GWAS meta-analysis identified 27 BE and/or EA risk loci, 11 of which were novel. The TWAS identified promising BE/EA candidate genes at seven GWAS loci and at five additional risk loci. The LDSR analysis led to the identification of novel genetic correlations and pointed to differences in BE and EA aetiology. Gastro-oesophageal reflux disease appeared to contribute stronger to the metaplastic BE transformation than to EA development. Finally, combining PRS with BE/EA risk factors improved the performance of the risk models. CONCLUSION: Our findings provide further insights into BE/EA aetiology and its relationship to risk factors. The results lay the foundation for future follow-up studies to identify underlying disease mechanisms and improving risk prediction.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Neoplasias Esofágicas , Humanos , Esófago de Barrett/patología , Estudio de Asociación del Genoma Completo , Neoplasias Esofágicas/patología , Adenocarcinoma/patología
4.
Hepatology ; 75(5): 1095-1109, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34927748

RESUMEN

BACKGROUND AND AIMS: Lipopolysaccharide (LPS) clearance is delayed in cholestatic liver diseases. While compromised clearance by Kupffer cells (KCs) is involved, the role of LPS uptake into hepatocytes and canalicular excretion remains unclear. APPROACH AND RESULTS: Wild-type (WT) and bile salt export pump (Bsep) knockout (KO) mice were challenged i.p. with LPS. Liver injury was assessed by serum biochemistry, histology, molecular inflammation markers, and immune cell infiltration. LPS concentrations were determined in liver tissue and bile. Subcellular kinetics of fluorescently labeled LPS was visualized by intravital two-photon microscopy, and the findings in Bsep KO mice were compared to common bile duct-ligated (BDL) and multidrug resistance protein 2 (Mdr2) KO mice. Changes in gut microbiota composition were evaluated by 16S ribosomal RNA gene amplicon sequencing analysis. Bsep KO mice developed more pronounced LPS-induced liver injury and inflammatory signaling, with subsequently enhanced production of proinflammatory cytokines and aggravated hepatic immune cell infiltration. After LPS administration, its concentrations were higher in liver but lower in bile of Bsep KO compared to WT mice. Intravital imaging of LPS showed a delayed clearance from sinusoidal blood with a basolateral uptake block into hepatocytes and reduced canalicular secretion. Moreover, LPS uptake into KCs was reduced. Similar findings with respect to hepatic LPS clearance were obtained in BDL and Mdr2 KO mice. Pretreatment with the microtubule inhibitor colchicine inhibited biliary excretion of LPS in WT mice, indicating that LPS clearance is microtubule-dependent. Microbiota analysis showed no change of the gut microbiome between WT and Bsep KO mice at baseline but major changes upon LPS challenge in WT mice. CONCLUSIONS: Absence of Bsep and cholestasis in general impair LPS clearance by a basolateral uptake block into hepatocytes and consequently less secretion into canaliculi. Impaired LPS removal aggravates hepatic inflammation in cholestasis.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Colestasis , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Colestasis/patología , Endotoxinas , Inflamación/metabolismo , Cinética , Lipopolisacáridos/metabolismo , Hígado/patología , Ratones , Ratones Noqueados
5.
Hepatology ; 75(1): 125-139, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34387896

RESUMEN

BACKGROUND AND AIMS: Increased fatty acid (FA) flux from adipose tissue to the liver contributes to the development of NAFLD. Because free FAs are key lipotoxic triggers accelerating disease progression, inhibiting adipose triglyceride lipase (ATGL)/patatin-like phospholipase domain containing 2 (PNPLA2), the main enzyme driving lipolysis, may attenuate steatohepatitis. APPROACH AND RESULTS: Hepatocyte-specific ATGL knockout (ATGL LKO) mice were challenged with methionine-choline-deficient (MCD) or high-fat high-carbohydrate (HFHC) diet. Serum biochemistry, hepatic lipid content and liver histology were assessed. Mechanistically, hepatic gene and protein expression of lipid metabolism, inflammation, fibrosis, apoptosis, and endoplasmic reticulum (ER) stress markers were investigated. DNA binding activity for peroxisome proliferator-activated receptor (PPAR) α and PPARδ was measured. After short hairpin RNA-mediated ATGL knockdown, HepG2 cells were treated with lipopolysaccharide (LPS) or oleic acid:palmitic acid 2:1 (OP21) to explore the direct role of ATGL in inflammation in vitro. On MCD and HFHC challenge, ATGL LKO mice showed reduced PPARα and increased PPARδ DNA binding activity when compared with challenged wild-type (WT) mice. Despite histologically and biochemically pronounced hepatic steatosis, dietary-challenged ATGL LKO mice showed lower hepatic inflammation, reflected by the reduced number of Galectin3/MAC-2 and myeloperoxidase-positive cells and low mRNA expression levels of inflammatory markers (such as IL-1ß and F4/80) when compared with WT mice. In line with this, protein levels of the ER stress markers protein kinase R-like endoplasmic reticulum kinase and inositol-requiring enzyme 1α were reduced in ATGL LKO mice fed with MCD diet. Accordingly, pretreatment of LPS-treated HepG2 cells with the PPARδ agonist GW0742 suppressed mRNA expression of inflammatory markers. Additionally, ATGL knockdown in HepG2 cells attenuated LPS/OP21-induced expression of proinflammatory cytokines and chemokines such as chemokine (C-X-C motif) ligand 5, chemokine (C-C motif) ligand (Ccl) 2, and Ccl5. CONCLUSIONS: Low hepatic lipolysis and increased PPARδ activity in ATGL/PNPLA2 deficiency may counteract hepatic inflammation and ER stress despite increased steatosis. Therefore, lowering hepatocyte lipolysis through ATGL inhibition represents a promising therapeutic strategy for the treatment of steatohepatitis.


Asunto(s)
Lipasa/metabolismo , Lipólisis/inmunología , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Adulto , Animales , Dieta de Carga de Carbohidratos/efectos adversos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/metabolismo , Femenino , Células Hep G2 , Humanos , Lipasa/genética , Lipólisis/genética , Hígado/enzimología , Hígado/inmunología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología
6.
Liver Int ; 43(11): 2469-2478, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37641872

RESUMEN

BACKGROUND AND AIMS: Schistosoma mansoni infection is one of the worldwide leading causes of liver fibrosis and portal hypertension. The objective of this study was to evaluate whether polyhydroxylated bile acids (BAs), known to protect mice from the development of acquired cholestatic liver injury, counteract S. mansoni-induced inflammation and fibrosis. METHODS: Adult FVB/N wild type (WT) and Abcb11/Bsep-/- mice were infected with either 25 or 50 S. mansoni cercariae. Eight weeks post infection, effects on liver histology, serum biochemistry, gene expression profile of proinflammatory cytokines and fibrotic markers, hepatic hydroxyproline content and FACS analysis were performed. RESULTS: Bsep-/- mice infected with S. mansoni showed significantly less hepatic inflammation and tendentially less fibrosis compared to infected WT mice. Despite elevated alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase levels in infected Bsep-/- mice, inflammatory cells such as M2 macrophages and Mac-2/galectin-3+ cells were reduced in these animals. Accordingly, mRNA-expression levels of anti-inflammatory cytokines (IL-4 and IL-13) were increased in Bsep-/- mice upon infection. Furthermore, infected Bsep-/- mice exhibited decreased hepatic egg load and parasite fecundity, consequently affecting the worm reproduction rate. This outcome could arise from elevated serum BA levels and lower blood pH in Bsep-/- mice. CONCLUSIONS: The loss of Bsep and the resulting changes in bile acid composition and blood pH are associated with the reduction of parasite fecundity, thus attenuating the development of S. mansoni-induced hepatic inflammation and fibrosis.


Asunto(s)
Parásitos , Esquistosomiasis mansoni , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Citocinas/metabolismo , Fertilidad , Inflamación/patología , Hígado/patología , Cirrosis Hepática/prevención & control , Cirrosis Hepática/etiología , Schistosoma mansoni , Esquistosomiasis mansoni/complicaciones
7.
Gut ; 71(1): 194-209, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34615727

RESUMEN

Cholestatic and non-alcoholic fatty liver disease (NAFLD) share several key pathophysiological mechanisms which can be targeted by novel therapeutic concepts that are currently developed for both areas. Nuclear receptors (NRs) are ligand-activated transcriptional regulators of key metabolic processes including hepatic lipid and glucose metabolism, energy expenditure and bile acid (BA) homoeostasis, as well as inflammation, fibrosis and cellular proliferation. Dysregulation of these processes contributes to the pathogenesis and progression of cholestatic as well as fatty liver disease, placing NRs at the forefront of novel therapeutic approaches. This includes BA and fatty acid activated NRs such as farnesoid-X receptor (FXR) and peroxisome proliferator-activated receptors, respectively, for which high affinity therapeutic ligands targeting specific or multiple isoforms have been developed. Moreover, novel liver-specific ligands for thyroid hormone receptor beta 1 complete the spectrum of currently available NR-targeted drugs. Apart from FXR ligands, BA signalling can be targeted by mimetics of FXR-activated fibroblast growth factor 19, modulation of their enterohepatic circulation through uptake inhibitors in hepatocytes and enterocytes, as well as novel BA derivatives undergoing cholehepatic shunting (instead of enterohepatic circulation). Other therapeutic approaches more directly target inflammation and/or fibrosis as critical events of disease progression. Combination strategies synergistically targeting metabolic disturbances, inflammation and fibrosis may be ultimately necessary for successful treatment of these complex and multifactorial disorders.


Asunto(s)
Colestasis/tratamiento farmacológico , Fármacos Gastrointestinales/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Colestasis/metabolismo , Fármacos Gastrointestinales/farmacología , Humanos , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo
8.
Nature ; 533(7604): 521-6, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225125

RESUMEN

Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.


Asunto(s)
Aerosoles/química , Atmósfera/química , Cambio Climático , Iones/química , Oxígeno/química , Material Particulado/química , Contaminación del Aire/análisis , Monoterpenos Bicíclicos , Radiación Cósmica , Actividades Humanas , Monoterpenos/química , Oxidación-Reducción , Ozono/química , Tamaño de la Partícula , Teoría Cuántica , Ácidos Sulfúricos/análisis , Volatilización
9.
Nature ; 533(7604): 527-31, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225126

RESUMEN

About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.

10.
Neurobiol Dis ; 153: 105304, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33621640

RESUMEN

CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe neurodevelopmental encephalopathy characterized by early-onset epilepsy and intellectual disability. Studies in mouse models have linked CDKL5 deficiency to defects in neuronal maturation and synaptic plasticity, and disruption of the excitatory/inhibitory balance. Interestingly, increased density of both GABAergic synaptic terminals and parvalbumin inhibitory interneurons was recently observed in the primary visual cortex of Cdkl5 knockout (KO) mice, suggesting that excessive GABAergic transmission might contribute to the visual deficits characteristic of CDD. However, the functional relevance of cortical GABAergic circuits abnormalities in these mutant mice has not been investigated so far. Here we examined GABAergic circuits in the perirhinal cortex (PRC) of Cdkl5 KO mice, where we previously observed impaired long-term potentiation (LTP) associated with deficits in novel object recognition (NOR) memory. We found a higher number of GABAergic (VGAT)-immunopositive terminals in the PRC of Cdkl5 KO compared to wild-type mice, suggesting that increased inhibitory transmission might contribute to LTP impairment. Interestingly, while exposure of PRC slices to the GABAA receptor antagonist picrotoxin had no positive effects on LTP in Cdkl5 KO mice, the selective GABAB receptor antagonist CGP55845 restored LTP magnitude, suggesting that exaggerated GABAB receptor-mediated inhibition contributes to LTP impairment in mutants. Moreover, acute in vivo treatment with CGP55845 increased the number of PSD95 positive puncta as well as density and maturation of dendritic spines in PRC, and restored NOR memory in Cdkl5 KO mice. The present data show the efficacy of limiting excessive GABAB receptor-mediated signaling in improving synaptic plasticity and cognition in CDD mice.


Asunto(s)
Síndromes Epilépticos/metabolismo , Antagonistas de Receptores de GABA-B/farmacología , Neuronas GABAérgicas/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Corteza Perirrinal/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Receptores de GABA-B/metabolismo , Espasmos Infantiles/metabolismo , Animales , Modelos Animales de Enfermedad , Síndromes Epilépticos/genética , Antagonistas de Receptores de GABA-A/farmacología , Potenciación a Largo Plazo/genética , Ratones , Ratones Noqueados , Plasticidad Neuronal , Prueba de Campo Abierto , Corteza Perirrinal/metabolismo , Ácidos Fosfínicos/farmacología , Picrotoxina/farmacología , Propanolaminas/farmacología , Espasmos Infantiles/genética
11.
Hum Mol Genet ; 28(17): 2851-2861, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31108505

RESUMEN

CDKL5 deficiency disorder (CDD) is a neurodevelopmental disorder characterized by a severe global developmental delay and early-onset seizures. Notably, patients show distinctive visual abnormalities often clinically diagnosed as cortical visual impairment. However, the involvement of cerebral cortical dysfunctions in the origin of the symptoms is poorly understood. CDD mouse models also display visual deficits, and cortical visual responses can be used as a robust biomarker in CDKL5 mutant mice. A deeper understanding of the circuits underlying the described visual deficits is essential for directing preclinical research and translational approaches. Here, we addressed this question in two ways: first, we performed an in-depth morphological analysis of the visual pathway, from the retina to the primary visual cortex (V1), of CDKL5 null mice. We found that the lack of CDKL5 produced no alteration in the organization of retinal circuits. Conversely, CDKL5 mutants showed reduced density and altered morphology of spines and decreased excitatory synapse marker PSD95 in the dorsal lateral geniculate nucleus and in V1. An increase in the inhibitory marker VGAT was selectively present in V1. Second, using a conditional CDKL5 knockout model, we showed that selective cortical deletion of CDKL5 from excitatory cells is sufficient to produce abnormalities of visual cortical responses, demonstrating that the normal function of cortical circuits is dependent on CDKL5. Intriguingly, these deficits were associated with morphological alterations of V1 excitatory and inhibitory synaptic contacts. In summary, this work proposes cortical circuit structure and function as a critically important target for studying CDD.


Asunto(s)
Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Síndromes Epilépticos/diagnóstico , Síndromes Epilépticos/genética , Fenotipo , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/genética , Animales , Biomarcadores , Cuerpos Geniculados , Ratones , Ratones Noqueados , Neuronas/metabolismo , Sinapsis/metabolismo , Corteza Visual/metabolismo , Corteza Visual/fisiopatología
12.
J Hepatol ; 75(5): 1164-1176, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34242699

RESUMEN

BACKGROUND & AIMS: 24-Norursodeoxycholic acid (NorUDCA) is a novel therapeutic bile acid used to treat immune-mediated cholestatic liver diseases, such as primary sclerosing cholangitis (PSC), where dysregulated T cells including CD8+ T cells contribute to hepatobiliary immunopathology. We hypothesized that NorUDCA may directly modulate CD8+ T cell function thus contributing to its therapeutic efficacy. METHODS: NorUDCA's immunomodulatory effects were first studied in Mdr2-/- mice, as a cholestatic model of PSC. To differentiate NorUDCA's immunomodulatory effects on CD8+ T cell function from its anticholestatic actions, we also used a non-cholestatic model of hepatic injury induced by an excessive CD8+ T cell immune response upon acute non-cytolytic lymphocytic choriomeningitis virus (LCMV) infection. Studies included molecular and biochemical approaches, flow cytometry and metabolic assays in murine CD8+ T cells in vitro. Mass spectrometry was used to identify potential CD8+ T cell targets modulated by NorUDCA. The signaling effects of NorUDCA observed in murine cells were validated in circulating T cells from patients with PSC. RESULTS: NorUDCA demonstrated immunomodulatory effects by reducing hepatic innate and adaptive immune cells, including CD8+ T cells in the Mdr2-/- model. In the non-cholestatic model of CD8+ T cell-driven immunopathology induced by acute LCMV infection, NorUDCA ameliorated hepatic injury and systemic inflammation. Mechanistically, NorUDCA demonstrated strong immunomodulatory efficacy in CD8+ T cells affecting lymphoblastogenesis, expansion, glycolysis and mTORC1 signaling. Mass spectrometry identified that NorUDCA regulates CD8+ T cells by targeting mTORC1. NorUDCA's impact on mTORC1 signaling was further confirmed in circulating PSC CD8+ T cells. CONCLUSIONS: NorUDCA has a direct modulatory impact on CD8+ T cells and attenuates excessive CD8+ T cell-driven hepatic immunopathology. These findings are relevant for treatment of immune-mediated liver diseases such as PSC. LAY SUMMARY: Elucidating the mechanisms by which 24-norursodeoxycholic acid (NorUDCA) works for the treatment of immune-mediated liver diseases, such as primary sclerosing cholangitis, is of considerable clinical interest. Herein, we uncovered an unrecognized property of NorUDCA in the immunometabolic regulation of CD8+ T cells, which has therapeutic relevance for immune-mediated liver diseases, including PSC.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Inflamación/tratamiento farmacológico , Hígado/efectos de los fármacos , Ácido Ursodesoxicólico/análogos & derivados , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Modelos Animales de Enfermedad , Inflamación/fisiopatología , Hígado/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ácido Ursodesoxicólico/farmacología , Ácido Ursodesoxicólico/uso terapéutico
13.
J Hepatol ; 75(3): 634-646, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33872692

RESUMEN

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is characterized by chronic inflammation and progressive fibrosis of the biliary tree. The bile acid receptor TGR5 (GPBAR1) is found on biliary epithelial cells (BECs), where it promotes secretion, proliferation and tight junction integrity. Thus, we speculated that changes in TGR5-expression in BECs may contribute to PSC pathogenesis. METHODS: TGR5-expression and -localization were analyzed in PSC livers and liver tissue, isolated bile ducts and BECs from Abcb4-/-, Abcb4-/-/Tgr5Tg and ursodeoxycholic acid (UDCA)- or 24-norursodeoxycholic acid (norUDCA)-fed Abcb4-/- mice. The effects of IL8/IL8 homologues on TGR5 mRNA and protein levels were studied. BEC gene expression was analyzed by single-cell transcriptomics (scRNA-seq) from distinct mouse models. RESULTS: TGR5 mRNA expression and immunofluorescence staining intensity were reduced in BECs of PSC and Abcb4-/- livers, in Abcb4-/- extrahepatic bile ducts, but not in intrahepatic macrophages. No changes in TGR5 BEC fluorescence intensity were detected in liver tissue of other liver diseases, including primary biliary cholangitis. Incubation of BECs with IL8/IL8 homologues, but not with other cytokines, reduced TGR5 mRNA and protein levels. BECs from Abcb4-/- mice had lower levels of phosphorylated Erk and higher expression levels of Icam1, Vcam1 and Tgfß2. Overexpression of Tgr5 abolished the activated inflammatory phenotype characteristic of Abcb4-/- BECs. NorUDCA-feeding restored TGR5-expression levels in BECs in Abcb4-/- livers. CONCLUSIONS: Reduced TGR5 levels in BECs from patients with PSC and Abcb4-/- mice promote development of a reactive BEC phenotype, aggravate biliary injury and thus contribute to the pathogenesis of sclerosing cholangitis. Restoration of biliary TGR5-expression levels represents a previously unknown mechanism of action of norUDCA. LAY SUMMARY: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease-associated with progressive inflammation of the bile duct, leading to fibrosis and end-stage liver disease. Bile acid (BA) toxicity may contribute to the development and disease progression of PSC. TGR5 is a membrane-bound receptor for BAs, which is found on bile ducts and protects bile ducts from BA toxicity. In this study, we show that TGR5 levels were reduced in bile ducts from PSC livers and in bile ducts from a genetic mouse model of PSC. Our investigations indicate that lower levels of TGR5 in bile ducts may contribute to PSC development and progression. Furthermore, treatment with norUDCA, a drug currently being tested in a phase III trial for PSC, restored TGR5 levels in biliary epithelial cells.


Asunto(s)
Sistema Biliar/efectos de los fármacos , Colangitis Esclerosante/genética , Regulación hacia Abajo/efectos de los fármacos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Animales , Sistema Biliar/metabolismo , Colangitis Esclerosante/tratamiento farmacológico , Colangitis Esclerosante/fisiopatología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Regulación hacia Abajo/fisiología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Factores de Virulencia
14.
J Neuroinflammation ; 18(1): 155, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238328

RESUMEN

BACKGROUND: CDKL5 deficiency disorder (CDD), a severe neurodevelopmental disorder characterized by early onset epilepsy, intellectual disability, and autistic features, is caused by mutations in the CDKL5 gene. Evidence in animal models of CDD showed that absence of CDKL5 negatively affects neuronal survival, as well as neuronal maturation and dendritic outgrowth; however, knowledge of the substrates underlying these alterations is still limited. Neuroinflammatory processes are known to contribute to neuronal dysfunction and death. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD patients. However, to date, it is unknown whether a similar inflammatory status is present in the brain of CDD patients and, if so, whether this plays a causative or exacerbating role in the pathophysiology of CDD. METHODS: We evaluated microglia activation using AIF-1 immunofluorescence, proinflammatory cytokine expression, and signaling in the brain of a mouse model of CDD, the Cdkl5 KO mouse, which is characterized by an impaired survival of hippocampal neurons that worsens with age. Hippocampal neuron survival was determined by DCX, NeuN, and cleaved caspase-3 immunostaining in Cdkl5 KO mice treated with luteolin (10 mg/kg), a natural anti-inflammatory flavonoid. Since hippocampal neurons of Cdkl5 KO mice exhibit increased susceptibility to excitotoxic stress, we evaluated neuronal survival in Cdkl5 KO mice injected with NMDA (60 mg/kg) after a 7-day treatment with luteolin. RESULTS: We found increased microglial activation in the brain of the Cdkl5 KO mouse. We found alterations in microglial cell morphology and number, increased levels of AIF-1 and proinflammatory cytokines, and activation of STAT3 signaling. Remarkably, treatment with luteolin recovers microglia alterations as well as neuronal survival and maturation in Cdkl5 KO mice, and prevents the increase in NMDA-induced cell death in the hippocampus. CONCLUSIONS: Our results suggest that neuroinflammatory processes contribute to the pathogenesis of CDD and imply the potential usefulness of luteolin as a treatment option in CDD patients.


Asunto(s)
Encéfalo/metabolismo , Síndromes Epilépticos/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Espasmos Infantiles/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Supervivencia Celular/fisiología , Síndromes Epilépticos/genética , Luteolina/farmacología , Luteolina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microglía/patología , Neuronas/patología , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles/genética
15.
Hepatology ; 71(5): 1750-1765, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31505038

RESUMEN

BACKGROUND AND AIMS: Monoacylglycerol lipase (MGL) is the last enzymatic step in triglyceride degradation, hydrolyzing monoglycerides into glycerol and fatty acids (FAs) and converting 2-arachidonoylglycerol into arachidonic acid, thus providing ligands for nuclear receptors as key regulators of hepatic bile acid (BA)/lipid metabolism and inflammation. We aimed to explore the role of MGL in the development of cholestatic liver and bile duct injury in mouse models of sclerosing cholangitis, a disease so far lacking effective pharmacological therapy. APPROACH AND RESULTS: To this aim we analyzed the effects of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding to induce sclerosing cholangitis in wild-type (WT) and knockout (MGL-/- ) mice and tested pharmacological inhibition with JZL184 in the multidrug resistance protein 2 knockout (Mdr2-/- ) mouse model of sclerosing cholangitis. Cholestatic liver injury and fibrosis were assessed by serum biochemistry, liver histology, gene expression, and western blot characterization of BA and FA synthesis/transport. Moreover, intestinal FAs and fecal microbiome were analyzed. Transfection and silencing were performed in Caco2 cells. MGL-/- mice were protected from DDC-induced biliary fibrosis and inflammation with reduced serum liver enzymes and increased FA/BA metabolism and ß-oxidation. Notably, pharmacological (JZL184) inhibition of MGL ameliorated cholestatic injury in DDC-fed WT mice and protected Mdr2-/- mice from spontaneous liver injury, with improved liver enzymes, inflammation, and biliary fibrosis. In vitro experiments confirmed that silencing of MGL decreases prostaglandin E2 accumulation in the intestine and up-regulates peroxisome proliferator-activated receptors alpha and gamma activity, thus reducing inflammation. CONCLUSIONS: Collectively, our study unravels MGL as a metabolic target, demonstrating that MGL inhibition may be considered as potential therapy for sclerosing cholangitis.


Asunto(s)
Benzodioxoles/uso terapéutico , Colangitis Esclerosante/tratamiento farmacológico , Colestasis/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Cirrosis Hepática Biliar/prevención & control , Monoacilglicerol Lipasas/antagonistas & inhibidores , Piperidinas/uso terapéutico , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Ácidos y Sales Biliares/metabolismo , Células CACO-2 , Colangitis Esclerosante/complicaciones , Colestasis/complicaciones , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Humanos , Cirrosis Hepática Biliar/etiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Piridinas/toxicidad , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
16.
Proc Natl Acad Sci U S A ; 115(37): 9122-9127, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30154167

RESUMEN

Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from [Formula: see text]C to [Formula: see text]C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.

17.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073043

RESUMEN

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a rare neurodevelopmental disorder characterized by early-onset seizures and severe cognitive, motor, and visual impairments. To date there are no therapies for CDKL5 deficiency disorder (CDD). In view of the severity of the neurological phenotype of CDD patients it is widely assumed that CDKL5 may influence the activity of a variety of cellular pathways, suggesting that an approach aimed at targeting multiple cellular pathways simultaneously might be more effective for CDD. Previous findings showed that a single-target therapy aimed at normalizing impaired GSK-3ß or histone deacetylase (HDAC) activity improved neurodevelopmental and cognitive alterations in a mouse model of CDD. Here we tested the ability of a first-in-class GSK-3ß/HDAC dual inhibitor, Compound 11 (C11), to rescue CDD-related phenotypes. We found that C11, through inhibition of GSK-3ß and HDAC6 activity, not only restored maturation, but also significantly improved survival of both human CDKL5-deficient cells and hippocampal neurons from Cdkl5 KO mice. Importantly, in vivo treatment with C11 restored synapse development, neuronal survival, and microglia over-activation, and improved motor and cognitive abilities of Cdkl5 KO mice, suggesting that dual GSK-3ß/HDAC6 inhibitor therapy may have a wider therapeutic benefit in CDD patients.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Síndromes Epilépticos/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas , Neuronas/efectos de los fármacos , Espasmos Infantiles/tratamiento farmacológico , Animales , Línea Celular , Hipocampo/efectos de los fármacos , Hipocampo/patología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/patología
18.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672787

RESUMEN

Altered lipid metabolic pathways including hydrolysis of triglycerides are key players in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Whether adiponutrin (patatin-like phospholipase domain containing protein-3-PNPLA3) and monoacylglycerol lipase (MGL) synergistically contribute to disease progression remains unclear. We generated double knockout (DKO) mice lacking both Mgl and Pnpla3; DKO mice were compared to Mgl-/- after a challenge by high-fat diet (HFD) for 12 weeks to induce steatosis. Serum biochemistry, liver transaminases as well as histology were analyzed. Fatty acid (FA) profiling was assessed in liver and adipose tissue by gas chromatography. Markers of inflammation and lipid metabolism were analyzed. Bone marrow derived macrophages (BMDMs) were isolated and treated with oleic acid. Combined deficiency of Mgl and Pnpla3 resulted in weight gain on a chow diet; when challenged by HFD, DKO mice showed increased hepatic FA synthesis and diminished beta-oxidation compared to Mgl-/-.DKO mice exhibited more pronounced hepatic steatosis with inflammation and recruitment of immune cells to the liver associated with accumulation of saturated FAs. Primary BMDMs isolated from the DKO mice showed increased inflammatory activities, which could be reversed by oleic acid supplementation. Pnpla3 deficiency aggravates the effects of Mgl deletion on steatosis and inflammation in the liver under HFD challenge.


Asunto(s)
Proteínas de la Membrana/deficiencia , Monoacilglicerol Lipasas/deficiencia , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/patología , Aumento de Peso , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Células Cultivadas , Ácidos Grasos/metabolismo , Humanos , Inflamación/patología , Metabolismo de los Lípidos , Hígado/patología , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/metabolismo , Ácido Oléico , Fenotipo , Células U937
19.
Hum Mol Genet ; 27(9): 1572-1592, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29474534

RESUMEN

Cyclin-dependent kinase like-5 (CDKL5) disorder is a rare neurodevelopmental disease caused by mutations in the CDKL5 gene. The consequent misexpression of the CDKL5 protein in the nervous system leads to a severe phenotype characterized by intellectual disability, motor impairment, visual deficits and early-onset epilepsy. No therapy is available for CDKL5 disorder. It has been reported that a protein transduction domain (TAT) is able to deliver macromolecules into cells and even into the brain when fused to a given protein. We demonstrate that TAT-CDKL5 fusion protein is efficiently internalized by target cells and retains CDKL5 activity. Intracerebroventricular infusion of TAT-CDKL5 restored hippocampal development, hippocampus-dependent memory and breathing pattern in Cdkl5-null mice. Notably, systemically administered TAT-CDKL5 protein passed the blood-brain-barrier, reached the CNS, and rescued various neuroanatomical and behavioral defects, including breathing pattern and visual responses. Our results suggest that CDKL5 protein therapy may be an effective clinical tool for the treatment of CDKL5 disorder.


Asunto(s)
Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/terapia , Proteínas Serina-Treonina Quinasas/metabolismo , Espasmos Infantiles/metabolismo , Espasmos Infantiles/terapia , Animales , Encéfalo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Proteínas Serina-Treonina Quinasas/genética
20.
Hepatology ; 69(2): 699-716, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30229970

RESUMEN

Cholestasis comprises aetiologically heterogeneous conditions characterized by accumulation of bile acids in the liver that actively contribute to liver damage. Sirtuin 1 (SIRT1) regulates liver regeneration and bile acid metabolism by modulating farnesoid X receptor (FXR); we here investigate its role in cholestatic liver disease. We determined SIRT1 expression in livers from patients with cholestatic disease, in two experimental models of cholestasis, as well as in human and murine liver cells in response to bile acid loading. SIRT1-overexpressing (SIRToe ) and hepatocyte-specific SIRT1-KO (knockout) mice (SIRThep-/- ) were subjected to bile duct ligation (BDL) and were fed with a 0.1% DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) diet to determine the biological relevance of SIRT1 during cholestasis. The effect of NorUDCA (24-norursodeoxycholic acid) was tested in BDL/SIRToe mice. We found that SIRT1 was highly expressed in livers from cholestatic patients, mice after BDL, and Mdr2 knockout mice (Mdr2-/- ) animals. The detrimental effects of SIRT1 during cholestasis were validated in vivo and in vitro. SIRToe mice showed exacerbated parenchymal injury whereas SIRThep-/- mice evidenced a moderate improvement after BDL and 0.1% DDC feeding. Likewise, hepatocytes isolated from SIRToe mice showed increased apoptosis in response to bile acids, whereas a significant reduction was observed in SIRThep-/- hepatocytes. Importantly, the decrease, but not complete inhibition, of SIRT1 exerted by norUDCA treatment correlated with pronounced improvement in liver parenchyma in BDL/SIRToe mice. Interestingly, both SIRT1 overexpression and hepatocyte-specific SIRT1 depletion correlated with inhibition of FXR, whereas modulation of SIRT1 by NorUDCA associated with restored FXR signaling. Conclusion: SIRT1 expression is increased during human and murine cholestasis. Fine-tuning expression of SIRT1 is essential to protect the liver from cholestatic liver damage.


Asunto(s)
Colestasis/metabolismo , Sirtuina 1/metabolismo , Animales , Ácidos y Sales Biliares/biosíntesis , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA