Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8004): 656-663, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418883

RESUMEN

Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.


Asunto(s)
Adenocarcinoma del Pulmón , Diferenciación Celular , Células Epiteliales , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Aneuploidia , Carcinógenos/toxicidad , Células Epiteliales/clasificación , Células Epiteliales/metabolismo , Células Epiteliales/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Organoides/efectos de los fármacos , Organoides/metabolismo , Lesiones Precancerosas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tasa de Supervivencia , Productos de Tabaco/efectos adversos , Productos de Tabaco/toxicidad
3.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397007

RESUMEN

Early-stage lung adenocarcinoma (LUAD) patients remain at substantial risk for recurrence and disease-related death, highlighting the unmet need of biomarkers for the assessment and identification of those in an early stage who would likely benefit from adjuvant chemotherapy. To identify circulating miRNAs useful for predicting recurrence in early-stage LUAD, we performed miRNA microarray analysis with pools of pretreatment plasma samples from patients with stage I LUAD who developed recurrence or remained recurrence-free during the follow-up period. Subsequent validation in 85 patients with stage I LUAD resulted in the development of a circulating miRNA panel comprising miR-23a-3p, miR-320c, and miR-125b-5p and yielding an area under the curve (AUC) of 0.776 in predicting recurrence. Furthermore, the three-miRNA panel yielded an AUC of 0.804, with a sensitivity of 45.8% at 95% specificity in the independent test set of 57 stage I and II LUAD patients. The miRNA panel score was a significant and independent factor for predicting disease-free survival (p < 0.001, hazard ratio [HR] = 1.64, 95% confidence interval [CI] = 1.51-4.22) and overall survival (p = 0.001, HR = 1.51, 95% CI = 1.17-1.94). This circulating miRNA panel is a useful noninvasive tool to stratify early-stage LUAD patients and determine an appropriate treatment plan with maximal efficacy.


Asunto(s)
Adenocarcinoma del Pulmón , MicroARN Circulante , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARN Circulante/genética , Biomarcadores de Tumor/genética , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética
4.
Res Sq ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38826463

RESUMEN

Traditional feature dimension reduction methods have been widely used to uncover biological patterns or structures within individual spatial transcriptomics data. However, these methods are designed to yield feature representations that emphasize patterns or structures with dominant high variance, such as the normal tissue spatial pattern in a precancer setting. Consequently, they may inadvertently overlook patterns of interest that are potentially masked by these high-variance structures. Herein we present our graph contrastive feature representation method called CoCo-ST (Comparing and Contrasting Spatial Transcriptomics) to overcome this limitation. By incorporating a background data set representing normal tissue, this approach enhances the identification of interesting patterns in a target data set representing precancerous tissue. Simultaneously, it mitigates the influence of dominant common patterns shared by the background and target data sets. This enables discerning biologically relevant features crucial for capturing tissue-specific patterns, a capability we showcased through the analysis of serial mouse precancerous lung tissue samples.

5.
Cancer Innov ; 3(3): e112, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38947760

RESUMEN

Background: Pulmonary sarcomatoid carcinoma (PSC) is a rare and aggressive subtype of non-small cell lung cancer (NSCLC), characterized by the presence of epithelial and sarcoma-like components. The molecular and immune landscape of PSC has not been well defined. Methods: Multiomics profiling of 21 pairs of PSCs with matched normal lung tissues was performed through targeted high-depth DNA panel, whole-exome, and RNA sequencing. We describe molecular and immune features that define subgroups of PSC with disparate genomic and immunogenic features as well as distinct clinical outcomes. Results: In total, 27 canonical cancer gene mutations were identified, with TP53 the most frequently mutated gene, followed by KRAS. Interestingly, most TP53 and KRAS mutations were earlier genomic events mapped to the trunks of the tumors, suggesting branching evolution in most PSC tumors. We identified two distinct molecular subtypes of PSC, driven primarily by immune infiltration and signaling. The Immune High (IM-H) subtype was associated with superior survival, highlighting the impact of immune infiltration on the biological and clinical features of localized PSCs. Conclusions: We provided detailed insight into the mutational landscape of PSC and identified two molecular subtypes associated with prognosis. IM-H tumors were associated with favorable recurrence-free survival and overall survival, highlighting the importance of tumor immune infiltration in the biological and clinical features of PSCs.

6.
Res Sq ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798564

RESUMEN

Studying lung adenocarcinoma (LUAD) early carcinogenesis is challenging, primarily due to the lack of LUAD precursors specimens. We amassed multi-omics data from 213 LUAD and LUAD precursors to identify molecular features underlying LUAD precancer evolution. We observed progressively increasing mutations, chromosomal aberrations, whole genome doubling and genomic instability from precancer to invasive LUAD, indicating aggravating chromosomal instability (CIN). Telomere shortening, a crucial genomic alteration linked to CIN, emerged at precancer stage. Moreover, later-stage lesions demonstrated increasing cancer stemness and decreasing alveolar identity, suggesting epithelial de-differentiation during early LUAD carcinogenesis. The innate immune cells progressively diminished from precancer to invasive LUAD, concomitant with a gradual recruitment of adaptive immune cells (except CD8+ and gamma-delta T cells that decreased in later stages) and upregulation of numerous immune checkpoints, suggesting LUAD precancer evolution is associated with a shift from innate to adaptive immune response and immune evasion mediated by various mechanisms.

7.
Cancer Res ; 84(13): 2060-2072, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39082680

RESUMEN

Patient-derived xenografts (PDX) model human intra- and intertumoral heterogeneity in the context of the intact tissue of immunocompromised mice. Histologic imaging via hematoxylin and eosin (H&E) staining is routinely performed on PDX samples, which could be harnessed for computational analysis. Prior studies of large clinical H&E image repositories have shown that deep learning analysis can identify intercellular and morphologic signals correlated with disease phenotype and therapeutic response. In this study, we developed an extensive, pan-cancer repository of >1,000 PDX and paired parental tumor H&E images. These images, curated from the PDX Development and Trial Centers Research Network Consortium, had a range of associated genomic and transcriptomic data, clinical metadata, pathologic assessments of cell composition, and, in several cases, detailed pathologic annotations of neoplastic, stromal, and necrotic regions. The amenability of these images to deep learning was highlighted through three applications: (i) development of a classifier for neoplastic, stromal, and necrotic regions; (ii) development of a predictor of xenograft-transplant lymphoproliferative disorder; and (iii) application of a published predictor of microsatellite instability. Together, this PDX Development and Trial Centers Research Network image repository provides a valuable resource for controlled digital pathology analysis, both for the evaluation of technical issues and for the development of computational image-based methods that make clinical predictions based on PDX treatment studies. Significance: A pan-cancer repository of >1,000 patient-derived xenograft hematoxylin and eosin-stained images will facilitate cancer biology investigations through histopathologic analysis and contributes important model system data that expand existing human histology repositories.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Animales , Ratones , Neoplasias/genética , Neoplasias/patología , Neoplasias/diagnóstico por imagen , Genómica/métodos , Xenoinjertos , Ensayos Antitumor por Modelo de Xenoinjerto , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/patología , Procesamiento de Imagen Asistido por Computador/métodos
8.
JAMA Netw Open ; 6(12): e2347700, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100106

RESUMEN

Importance: Biomarker testing for driver mutations is essential for selecting appropriate non-small cell lung cancer (NSCLC) treatment but is insufficient. Objective: To investigate the status of biomarker testing and drug therapy for NSCLC in Japan for identifying problems in treatment. Design, Setting, and Participants: The REVEAL cohort study included retrospective data collection and prospective follow-up from 29 institutions across Japan. Of 1500 patients diagnosed with advanced or recurrent NSCLC between January 1 and March 18, 2021, 1479 were eligible. Cases recognized at the wrong clinical stage (n = 12), diagnosed outside the study period (n = 6), not treated according to eligibility criteria before recurrence (n = 2), and with deficient consent acquisition procedure (n = 1) were excluded. Main Outcomes and Measures: The primary end point was the biomarker testing status. Treatment-related factors were examined. Results: Among the 1479 patients included in the analysis, the median age was 72 (range, 30-95) years; 1013 (68.5%) were men; 1161 (78.5%) had an Eastern Cooperative Oncology Group performance status 0 or 1; 1097 (74.2%) were current or past smokers; and 947 (64.0%) had adenocarcinoma. Biomarker status was confirmed in 1273 patients (86.1%). Multigene testing was performed in 705 cases (47.7%); single-gene testing, in 847 (57.3%); and both, in 279 (18.9%). Biomarker testing was performed for EGFR in 1245 cases (84.2%); ALK, in 1165 (78.8%); ROS1, in 1077 (72.8%); BRAF, in 803 (54.3%); and MET, in 805 (54.4%). Positivity rates among 898 adenocarcinoma cases included 305 (34.0%) for EGFR, 29 (3.2%) for ALK, 19 (2.1%) for ROS1, 11 (1.2%) for BRAF, and 14 (1.6%) for MET. Positivity rates among 375 nonadenocarcinoma cases were 14 (3.7%) for EGFR, 6 (1.6%) for ALK, 1 (0.3%) for ROS1, 3 (0.8%) for BRAF, and 8 (2.1%) for MET. Poor physical status, squamous cell carcinoma, and other comorbidities were associated with hampered multigene testing. Targeted therapy was received as first-line treatment by 263 of 278 cases (94.6%) positive for EGFR, 25 of 32 (78.1%) positive for ALK, 15 of 24 (62.5%) positive for ROS1, 9 of 12 (75.0%) positive for BRAF, and 12 of 19 (63.2%) positive for MET. Median overall survival of patients with positive findings for driver gene alteration and who received targeted therapy was 24.3 (95% CI, not reported) months; with positive findings for driver gene alteration and who did not receive targeted therapy, 15.2 (95% CI, 7.7 to not reported) months; and with negative findings for driver gene alteration, 11.0 (95% CI, 10.0-12.5) months. Multigene testing for nonadenocarcinomas and adenocarcinomas accounted for 705 (47.7%) of all NSCLC cases. Conclusions and Relevance: These findings suggest that multigene testing has not been sufficiently implemented in Japan and should be considered prospectively, even in nonadenocarcinomas, to avoid missing rare driver gene alterations.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Anciano , Femenino , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Estudios de Cohortes , Estudios Prospectivos , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas B-raf , Estudios Retrospectivos , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas/genética , Biomarcadores , Receptores ErbB , Proteínas Tirosina Quinasas Receptoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA