Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 109(2): 342-358, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863007

RESUMEN

Plant response to drought stress includes systems for intracellular regulation of gene expression and signaling, as well as inter-tissue and inter-organ signaling, which helps entire plants acquire stress resistance. Plants sense water-deficit conditions both via the stomata of leaves and roots, and transfer water-deficit signals from roots to shoots via inter-organ signaling. Abscisic acid is an important phytohormone involved in the drought stress response and adaptation, and is synthesized mainly in vascular tissues and guard cells of leaves. In leaves, stress-induced abscisic acid is distributed to various tissues by transporters, which activates stomatal closure and expression of stress-related genes to acquire drought stress resistance. Moreover, the stepwise stress response at the whole-plant level is important for proper understanding of the physiological response to drought conditions. Drought stress is sensed by multiple types of sensors as molecular patterns of abiotic stress signals, which are transmitted via separate parallel signaling networks to induce downstream responses, including stomatal closure and synthesis of stress-related proteins and metabolites. Peptide molecules play important roles in the inter-organ signaling of dehydration from roots to shoots, as well as signaling of osmotic changes and reactive oxygen species/Ca2+ . In this review, we have summarized recent advances in research on complex plant drought stress responses, focusing on inter-tissue signaling in leaves and inter-organ signaling from roots to shoots. We have discussed the mechanisms via which drought stress adaptations and resistance are acquired at the whole-plant level, and have proposed the importance of quantitative phenotyping for measuring plant growth under drought conditions.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Plantas , Transducción de Señal , Estrés Fisiológico , Ácido Abscísico/metabolismo , Sequías , Fenotipo , Desarrollo de la Planta , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología
2.
Plant Cell Physiol ; 63(9): 1181-1192, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36003026

RESUMEN

Water scarcity is a serious agricultural problem causing significant losses to crop yield and product quality. The development of technologies to mitigate the damage caused by drought stress is essential for ensuring a sustainable food supply for the increasing global population. We herein report that the exogenous application of ethanol, an inexpensive and environmentally friendly chemical, significantly enhances drought tolerance in Arabidopsis thaliana, rice and wheat. The transcriptomic analyses of ethanol-treated plants revealed the upregulation of genes related to sucrose and starch metabolism, phenylpropanoids and glucosinolate biosynthesis, while metabolomic analysis showed an increased accumulation of sugars, glucosinolates and drought-tolerance-related amino acids. The phenotyping analysis indicated that drought-induced water loss was delayed in the ethanol-treated plants. Furthermore, ethanol treatment induced stomatal closure, resulting in decreased transpiration rate and increased leaf water contents under drought stress conditions. The ethanol treatment did not enhance drought tolerance in the mutant of ABI1, a negative regulator of abscisic acid (ABA) signaling in Arabidopsis, indicating that ABA signaling contributes to ethanol-mediated drought tolerance. The nuclear magnetic resonance analysis using 13C-labeled ethanol indicated that gluconeogenesis is involved in the accumulation of sugars. The ethanol treatment did not enhance the drought tolerance in the aldehyde dehydrogenase (aldh) triple mutant (aldh2b4/aldh2b7/aldh2c4). These results show that ABA signaling and acetic acid biosynthesis are involved in ethanol-mediated drought tolerance and that chemical priming through ethanol application regulates sugar accumulation and gluconeogenesis, leading to enhanced drought tolerance and sustained plant growth. These findings highlight a new survival strategy for increasing crop production under water-limited conditions.


Asunto(s)
Arabidopsis , Sequías , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Etanol/metabolismo , Regulación de la Expresión Génica de las Plantas , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Azúcares/metabolismo , Agua/metabolismo
3.
Development ; 146(10)2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31076488

RESUMEN

How organisms attain their specific shapes and modify their growth patterns in response to environmental and chemical signals has been the subject of many investigations. Plant cells are at high turgor pressure and are surrounded by a rigid yet flexible cell wall, which is the primary determinant of plant growth and morphogenesis. Cellulose microfibrils, synthesized by plasma membrane-localized cellulose synthase complexes, are major tension-bearing components of the cell wall that mediate directional growth. Despite advances in understanding the genetic and biophysical regulation of morphogenesis, direct studies of cellulose biosynthesis and its impact on morphogenesis of different cell and tissue types are largely lacking. In this study, we took advantage of mutants of three primary cellulose synthase (CESA) genes that are involved in primary wall cellulose synthesis. Using field emission scanning electron microscopy, live cell imaging and biophysical measurements, we aimed to understand how the primary wall CESA complex acts during shoot apical meristem development. Our results indicate that cellulose biosynthesis impacts the mechanics and growth of the shoot apical meristem.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/enzimología , Pared Celular/metabolismo , Glucosiltransferasas/metabolismo , Meristema/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/enzimología , Meristema/crecimiento & desarrollo
4.
J Exp Bot ; 72(7): 2769-2789, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33481007

RESUMEN

Malate efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1) and mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum resistance in Arabidopsis thaliana. Several studies showed that AtALMT1 expression in roots is rapidly observed in response to aluminum; this early induction is an important mechanism to immediately protect roots from aluminum toxicity. Identifying the molecular mechanisms that underlie rapid aluminum resistance responses should lead to a better understanding of plant aluminum sensing and signal transduction mechanisms. In this study, we observed that GFP-tagged STOP1 proteins accumulated in the nucleus soon after aluminum treatment. The rapid aluminum-induced STOP1-nuclear localization and AtALMT1 induction were detected in the presence of a protein synthesis inhibitor, suggesting that post-translational regulation is involved in these events. STOP1 also regulated rapid aluminum-induced expression for other genes that carry a functional/high-affinity STOP1-binding site in their promoter, including STOP2, GLUTAMATE-DEHYDROGENASE1 and 2 (GDH1 and 2). However STOP1 did not regulate Al resistance genes which have no functional STOP1-binding site such as ALUMINUM-SENSITIVE3, suggesting that the binding of STOP1 in the promoter is essential for early induction. Finally, we report that GDH1 and 2 which are targets of STOP1, are novel aluminum-resistance genes in Arabidopsis.


Asunto(s)
Aluminio/toxicidad , Proteínas de Arabidopsis , Arabidopsis , Aluminio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutamato Deshidrogenasa , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
5.
Planta ; 249(2): 615, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30446815

RESUMEN

The article Casein kinase 2 α and ß subunits inversely modulate ABA signal output in Arabidopsis protoplasts, written by Yukari Nagatoshi, Miki Fujita, and Yasunari Fujita, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 24 May 2018 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on 19 November 2018 to © The Author(s) 2018 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

6.
Planta ; 250(6): 1867-1879, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31482328

RESUMEN

MAIN CONCLUSION: Cellulosic secondary walls evolved convergently in coralline red macroalgae, reinforcing tissues against wave-induced breakage, despite differences in cellulose abundance, microfibril orientation, and wall structure. Cellulose-enriched secondary cell walls are the hallmark of woody vascular plants, which develop thickened walls to support upright growth and resist toppling in terrestrial environments. Here we investigate the striking presence and convergent evolution of cellulosic secondary walls in coralline red algae, which reinforce thalli against forces applied by crashing waves. Despite ostensible similarities to secondary wall synthesis in land plants, we note several structural and mechanical differences. In coralline red algae, secondary walls contain three-times more cellulose (~ 22% w/w) than primary walls (~ 8% w/w), and their presence nearly doubles the total thickness of cell walls (~ 1.2 µm thick). Field emission scanning electron microscopy revealed that cellulose bundles are cylindrical and lack any predominant orientation in both primary and secondary walls. His-tagged recombinant carbohydrate-binding module differentiated crystalline and amorphous cellulose in planta, noting elevated levels of crystalline cellulose in secondary walls. With the addition of secondary cell walls, Calliarthron genicular tissues become significantly stronger and tougher, yet remain remarkably extensible, more than doubling in length before breaking under tension. Thus, the development of secondary walls contributes to the strong-yet-flexible genicular tissues that enable coralline red algae to survive along wave-battered coastlines throughout the NE Pacific. This study provides an important evolutionary perspective on the development and biomechanical significance of secondary cell walls in a non-model, non-vascular plant.


Asunto(s)
Pared Celular/metabolismo , Celulosa/metabolismo , Algas Marinas/metabolismo , Fenómenos Biomecánicos , Pared Celular/ultraestructura , Microfibrillas/metabolismo , Microscopía Electrónica de Rastreo , Algas Marinas/ultraestructura
7.
Plant Cell Physiol ; 59(10): 2030-2038, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010970

RESUMEN

High-throughput and accurate measurements of plant traits facilitate identification of gene function. Along with recent advances in quantitative genomics, there is a growing need for precise quantification of multiple traits in plants. However, it is difficult continuously to quantify plant adaptive responses to environmental stress responses such as drought because multiple environmental factors are intricately involved in the phenotype. To solve this problem, we developed an automatic phenotyping system for evaluating the growth responses of individual Arabidopsis plants to a wide range of environmental conditions. The RIKEN Integrated Plant Phenotyping System (RIPPS) controls soil moisture for single plants by automatically weighing and watering 120 continuously rotating pots under controlled light, humidity and temperature growth conditions. RIPPS also records individual rosette size and expansion rate by photographing plants every 2 h. We used RIPPS to establish phenotype evaluation methods for Arabidopsis growth response and water use efficiency under various water conditions, and analyzed the involvement of ABA metabolism in determining water use efficiency. We also used RIPPS to analyze salinity tolerance in Arabidopsis plants.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Fenotipo , Proteínas de Plantas/genética
8.
Planta ; 248(3): 571-578, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29799081

RESUMEN

MAIN CONCLUSION: Our transient gene expression analyses in Arabidopsis protoplasts support the view that CK2αs and CK2ßs positively and negatively modulate ABRE-dependent gene expression, respectively. The phytohormone abscisic acid (ABA) regulates the expression of thousands of genes via ABA-responsive elements (ABREs), and has a crucial role in abiotic stress response. Casein kinase II (CK2), a conserved Ser/Thr protein kinase in eukaryotes, is essential for plant viability. Although the CK2 has been known as a tetrameric holoenzyme comprised of two catalytic α and two regulatory ß subunits, each of the two types of subunits has been proposed to have independent functions. The Arabidopsis genome encodes four α subunits (CK2α1, CK2α2, CK2α3, CK2α4) and four ß subunits (CK2ß1, CK2ß2, CK2ß3, CK2ß4). There is a growing body of evidence linking CK2 to ABA signaling and abiotic stress responses. However, the roles of each CK2 subunit in ABA signaling remain largely elusive. Using the transient expression system with the core ABA signaling components in Arabidopsis leaf mesophyll protoplasts, we show here that CK2α1 and CK2α2 (CK2α1/2) positively modulate ABRE-dependent gene expression as ABA signal output in ABA signaling, whereas all four CK2ßs negatively modulate the ABRE-dependent gene expression mediated by subclass III SnRK2-AREB/ABF pathway and by CK2α1/2. These data indicate that CK2α1/2 and CK2ßs positively and negatively modulate ABA signal output, respectively, suggesting that the quantitative balance of CK2 subunits determines the ABA signal output in plants. Given that CK2s act as pleiotropic enzymes involved in multiple developmental and stress-responsive processes, our findings suggest that CK2 subunits may be involved in integration and coordination of ABA-dependent and -independent signaling.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Quinasa de la Caseína II/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Quinasa de la Caseína II/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Hojas de la Planta/metabolismo , Protoplastos/metabolismo , Transducción de Señal
9.
Plant J ; 84(6): 1114-23, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26518251

RESUMEN

Leaf senescence is the terminal phenotype of plant leaf development, and ethylene is a major plant hormone inducing leaf senescence. Recent studies have shown that abscisic acid (ABA) also induces leaf senescence. However, the detailed mechanisms of ABA-induced leaf senescence remain unclear. We focused on the A subfamily of stress-responsive NAC (SNAC-A) transcription factors, the expression of which is induced by abiotic stresses, particularly ABA. Gene expression analysis revealed that seven SNAC-A genes including ANAC055, ANAC019, ANAC072/RD26, ANAC002/ATAF1, ANAC081/ATAF2, ANAC102 and ANAC032 were induced by long-term treatment with ABA and/or during age-dependent senescence. The SNAC-A septuple mutant clearly showed retardation of ABA-inducible leaf senescence. Microarray analysis indicated that SNAC-As induce ABA- and senescence-inducible genes. In addition, comparison of the expression profiles of the downstream genes of SNAC-As and ABA-responsive element (ABRE)-binding protein (AREB)/ABRE-binding factor (ABF) (AREB/ABFs) indicates that SNAC-As induce a different set of ABA-inducible genes from those mediated by AREB/ABFs. These results suggest that SNAC-As play crucial roles in ABA-induced leaf senescence signaling. We also discuss the function of SNAC-As in the transcriptional change of leaf senescence as well as in ABA response under abiotic stress conditions.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Hojas de la Planta/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hojas de la Planta/efectos de los fármacos , ARN de Planta/genética , ARN de Planta/metabolismo , Factores de Transcripción/genética
10.
Proc Natl Acad Sci U S A ; 109(16): 6343-7, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22492932

RESUMEN

Polyamines (PAs) are ubiquitous, polycationic compounds that are essential for the growth and survival of all organisms. Although the PA-uptake system plays a key role in mammalian cancer and in plant survival, the underlying molecular mechanisms are not well understood. Here, we identified an Arabidopsis L-type amino acid transporter (LAT) family transporter, named RMV1 (resistant to methyl viologen 1), responsible for uptake of PA and its analog paraquat (PQ). The natural variation in PQ tolerance was determined in 22 Arabidopsis thaliana accessions based on the polymorphic variation of RMV1. An RMV1-GFP fusion protein localized to the plasma membrane in transformed cells. The Arabidopsis rmv1 mutant was highly resistant to PQ because of the reduction of PQ uptake activity. Uptake studies indicated that RMV1 mediates proton gradient-driven PQ transport. RMV1 overexpressing plants were hypersensitive to PA and PQ and showed elevated PA/PQ uptake activity, supporting the notion that PQ enters plant cells via a carrier system that inherently functions in PA transport. Furthermore, we demonstrated that polymorphic variation in RMV1 controls PA/PQ uptake activity. Our identification of a molecular entity for PA/PQ uptake and sensitivity provides an important clue for our understanding of the mechanism and biological significance of PA uptake.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Membrana/genética , Paraquat/metabolismo , Poliaminas/metabolismo , Polimorfismo de Nucleótido Simple , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Paraquat/farmacología , Plantas Modificadas Genéticamente , Poliaminas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
11.
Plant Cell Physiol ; 55(5): 855-61, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24590488

RESUMEN

Polyamine (PA) transport as well as PA biosynthesis, degradation and conjugation plays a vital role in the regulation of intracellular PA levels, which are essential for cell growth. Generally, PA uptake activity is elevated in rapidly proliferating cells. Previous studies showed that PA uptake in plant cells occurred via energy-dependent, protein-mediated transport systems. Numerous lines of evidence suggest that paraquat (PQ), one of the most widely used herbicides, is transported by the PA transport system in diverse organisms including plants. The PA/PQ transport interactions are proposed to be due to specific structural similarities between PA and PQ. The understanding of PA transport mechanisms has progressed in parallel with that of PQ transport, but the molecular identity of the plant PA/PQ transporter has remained an enigma. Recently, independent studies identified the L-type amino acid transporter (LAT) family transmembrane proteins as transporters of both PA and PQ. Arabidopsis LAT family proteins showed different subcellular localization properties, which suggested that these transporters were involved in intracellular PA trafficking and PA uptake across the plasma membrane. The identification of plant PA transporters is an important step in understanding the mechanism of PA homeostasis in plant cells. In this review, we highlight recent advances in the study of PA transport systems that are linked to the understanding of PQ translocation.


Asunto(s)
Sistema de Transporte de Aminoácidos L/metabolismo , Paraquat/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Poliaminas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Modelos Biológicos
12.
Plant Physiol ; 162(1): 74-85, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23532584

RESUMEN

Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1's permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature.


Asunto(s)
Arabidopsis/genética , Glucosiltransferasas/genética , Alelos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico/genética , Pared Celular/genética , Pared Celular/metabolismo , Celulosa/genética , Celulosa/metabolismo , Mutación , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Semillas/genética , Semillas/metabolismo , Temperatura
13.
Surg Today ; 44(8): 1443-56, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23996132

RESUMEN

PURPOSE: This study was undertaken to establish a model to predict the post-operative mortality for emergency surgeries. METHODS: A regression model was constructed to predict in-hospital mortality using data from a cohort of 479 cases of emergency surgery performed in a Japanese referral hospital. The discrimination power of the current model termed the Calculation of post-Operative Risk in Emergency Surgery (CORES), and Portsmouth modification of the Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity (P-POSSUM) were validated using the area under the receiver operating characteristic curve (AUC) in another cohort of 494 cases in the same hospital (validation subset). We further evaluated the accuracy of the CORES in a cohort of 1,471 cases in six hospitals (multicenter subset). RESULTS: CORES requires only five preoperative variables, while the P-POSSUM requires 20 variables. In the validation subset, the CORES model had a similar discrimination power as the P-POSSUM for detecting in-hospital mortality (AUC, 95 % CI for CORES: 0.86, 0.80-0.93; for P-POSSUM: 0.88, 0.82-0.93). The predicted mortality rates of the CORES model significantly correlated with the severity of the post-operative complications. The subsequent multicenter study also demonstrated that the CORES model exhibited a high AUC value (0.85: 0.81-0.89) and a significant correlation with the post-operative morbidity. CONCLUSIONS: This model for emergency surgery, the CORES, demonstrated a similar discriminatory power to the P-POSSUM in predicting post-operative mortality. However, the CORES model has a substantial advantage over the P-POSSUM in that it utilizes far fewer variables.


Asunto(s)
Servicios Médicos de Urgencia/estadística & datos numéricos , Modelos Estadísticos , Complicaciones Posoperatorias/epidemiología , Medición de Riesgo/métodos , Riesgo , Procedimientos Quirúrgicos Operativos/estadística & datos numéricos , Adolescente , Adulto , Anciano , Femenino , Mortalidad Hospitalaria , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Adulto Joven
14.
Plant Direct ; 8(1): e557, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38161730

RESUMEN

Proton (H+) release is linked to aluminum (Al)-enhanced organic acids (OAs) excretion from the roots under Al rhizotoxicity in plants. It is well-reported that the Al-enhanced organic acid excretion mechanism is regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1), a zinc-finger TF that regulates major Al tolerance genes. However, the mechanism of H+ release linked to OAs excretion under Al stress has not been fully elucidated. Recent physiological and molecular-genetic studies have implicated the involvement of SMALL AUXIN UP RNAs (SAURs) in the activation of plasma membrane H+-ATPases for stress responses in plants. We hypothesized that STOP1 is involved in the regulation of Al-responsive SAURs, which may contribute to the co-secretion of protons and malate under Al stress conditions. In our transcriptome analysis of the roots of the stop1 (sensitive to proton rhizotoxicity1) mutant, we found that STOP1 regulates the transcription of one of the SAURs, namely SAUR55. Furthermore, we observed that the expression of SAUR55 was induced by Al and repressed in the STOP1 T-DNA insertion knockout (KO) mutant (STOP1-KO). Through in silico analysis, we identified a functional STOP1-binding site in the promoter of SAUR55. Subsequent in vitro and in vivo studies confirmed that STOP1 directly binds to the promoter of SAUR55. This suggests that STOP1 directly regulates the expression of SAUR55 under Al stress. We next examined proton release in the rhizosphere and malate excretion in the T-DNA insertion KO mutant of SAUR55 (saur55), in conjunction with STOP1-KO. Both saur55 and STOP1-KO suppressed rhizosphere acidification and malate release under Al stress. Additionally, the root growth of saur55 was sensitive to Al-containing media. In contrast, the overexpressed line of SAUR55 enhanced rhizosphere acidification and malate release, leading to increased Al tolerance. These associations with Al tolerance were also observed in natural variations of Arabidopsis. These findings demonstrate that transcriptional regulation of SAUR55 by STOP1 positively regulates H+ excretion via PM H+-ATPase 2 which enhances Al tolerance by malate secretion from the roots of Arabidopsis. The activation of PM H+-ATPase 2 by SAUR55 was suggested to be due to PP2C.D2/D5 inhibition by interaction on the plasma membrane with its phosphatase. Furthermore, RNAi-suppression of NtSTOP1 in tobacco shows suppression of rhizosphere acidification under Al stress, which was associated with the suppression of SAUR55 orthologs, which are inducible by Al in tobacco. It suggests that transcriptional regulation of Al-inducible SAURs by STOP1 plays a critical role in OAs excretion in several plant species as an Al tolerance mechanism.

15.
JA Clin Rep ; 9(1): 16, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36941456

RESUMEN

BACKGROUND: The left ventricular (LV) vent is commonly inserted via the right superior pulmonary vein (RSPV) and directed toward the LV cavity through the mitral valve. We report a rare case in which the tip of the LV vent was misplaced into the aortic root across the aortic valve. CASE PRESENTATION: An 88-year-old man was scheduled to undergo the Bentall procedure. After initiation of cardiopulmonary bypass, the LV vent was inserted via the RSPV. Anterograde cardioplegia was administered via the aortic root cannula after the ascending aorta was cross-clamped. The electrocardiogram did not result in complete cardiac arrest, even after delivery of two-thirds of the planned dose. A transesophageal echocardiographic examination showed that the tip of the LV vent was misplaced into the aortic root across the aortic valve. CONCLUSIONS: It is important to confirm the tip position by transesophageal echocardiography to prevent severe complications associated with the LV vent.

16.
Pathogens ; 12(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986280

RESUMEN

Many aphid-borne viruses are important pathogens that affect wheat crops worldwide. An aphid-transmitted closterovirus named wheat yellow leaf virus (WYLV) was found to have infected wheat plants in Japan in the 1970s; however, since then, its viral genome sequence and occurrence in the field have not been investigated. We observed yellowing leaves in the 2018/2019 winter wheat-growing season in an experimental field in Japan where WYLV was detected five decades ago. A virome analysis of those yellow leaf samples lead to the discovery of a closterovirus together with a luteovirus (barley yellow dwarf virus PAV variant IIIa). The complete genomic sequence of this closterovirus, named wheat closterovirus 1 isolate WL19a (WhCV1-WL19a), consisted of 15,452 nucleotides harboring nine open reading frames. Additionally, we identified another WhCV1 isolate, WL20, in a wheat sample from the winter wheat-growing season of 2019/2020. A transmission test indicated that WhCV1-WL20 was able to form typical filamentous particles and transmissible by oat bird-cherry aphid (Rhopalosiphum pad). Sequence and phylogenetic analyses showed that WhCV1 was distantly related to members of the genus Closterovirus (family Closteroviridae), suggesting that the virus represents a novel species in the genus. Furthermore, the characterization of WhCV1-WL19a-derived small RNAs using high-throughput sequencing revealed highly abundant 22-nt-class small RNAs potentially derived from the 3'-terminal end of the WhCV1 negative-strand genomic RNA, indicating that this terminal end of the WhCV1 genome is likely particularly targeted for the synthesis of viral small RNAs in wheat plants. Our results provide further knowledge on closterovirus diversity and pathogenicity and suggest that the impact of WhCV1 on wheat production warrants further investigations.

17.
Plant J ; 66(6): 915-28, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21535258

RESUMEN

The shape of plants depends on cellulose, a biopolymer that self-assembles into crystalline, inextensible microfibrils (CMFs) upon synthesis at the plasma membrane by multi-enzyme cellulose synthase complexes (CSCs). CSCs are displaced in directions predicted by underlying parallel arrays of cortical microtubules, but CMFs remain transverse in cells that have lost the ability to expand unidirectionally as a result of disrupted microtubules. These conflicting findings suggest that microtubules are important for some physico-chemical property of cellulose that maintains wall integrity. Using X-ray diffraction, we demonstrate that abundant microtubules enable a decrease in the degree of wall crystallinity during rapid growth at high temperatures. Reduced microtubule polymer mass in the mor1-1 mutant at high temperatures is associated with failure of crystallinity to decrease and a loss of unidirectional expansion. Promotion of microtubule bundling by over-expressing the RIC1 microtubule-associated protein reduced the degree of crystallinity. Using live-cell imaging, we detected an increase in the proportion of CSCs that track in microtubule-free domains in mor1-1, and an increase in the CSC velocity. These results suggest that microtubule domains affect glucan chain crystallization during unidirectional cell expansion. Microtubule disruption had no obvious effect on the orientation of CMFs in dark-grown hypocotyl cells. CMFs at the outer face of the hypocotyl epidermal cells had highly variable orientation, in contrast to the transverse CMFs on the radial and inner periclinal walls. This suggests that the outer epidermal mechanical properties are relatively isotropic, and that axial expansion is largely dependent on the inner tissue layers.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Pared Celular/química , Hipocótilo/crecimiento & desarrollo , Microtúbulos/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aumento de la Célula , Membrana Celular/química , Celulosa/metabolismo , Oscuridad , Genotipo , Hipocótilo/química , Inflorescencia/química , Inflorescencia/crecimiento & desarrollo , Microfibrillas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multienzimáticos/metabolismo , Mutación , Temperatura , Difracción de Rayos X
18.
J Plant Res ; 124(4): 509-25, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21416314

RESUMEN

The plant hormone abscisic acid (ABA) plays a pivotal role in a variety of developmental processes and adaptive stress responses to environmental stimuli in plants. Cellular dehydration during the seed maturation and vegetative growth stages induces an increase in endogenous ABA levels, which control many dehydration-responsive genes. In Arabidopsis plants, ABA regulates nearly 10% of the protein-coding genes, a much higher percentage than other plant hormones. Expression of the genes is mainly regulated by two different families of bZIP transcription factors (TFs), ABI5 in the seeds and AREB/ABFs in the vegetative stage, in an ABA-responsive-element (ABRE) dependent manner. The SnRK2-AREB/ABF pathway governs the majority of ABA-mediated ABRE-dependent gene expression in response to osmotic stress during the vegetative stage. In addition to osmotic stress, the circadian clock and light conditions also appear to participate in the regulation of ABA-mediated gene expression, likely conferring versatile tolerance and repressing growth under stress conditions. Moreover, various other TFs belonging to several classes, including AP2/ERF, MYB, NAC, and HD-ZF, have been reported to engage in ABA-mediated gene expression. This review mainly focuses on the transcriptional regulation of ABA-mediated gene expression in response to osmotic stress during the vegetative growth stage in Arabidopsis.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Aclimatación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Ensamble y Desensamble de Cromatina , Sequías , Genes de Plantas , Ósmosis , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Transducción de Señal , Agua/metabolismo
19.
Masui ; 60(6): 713-7, 2011 Jun.
Artículo en Japonés | MEDLINE | ID: mdl-21710770

RESUMEN

A 59-year-old man had undergone the esophagectomy for esophageal carcinoma. Subsequently, he was scheduled to undergo the operation for ileus. He had midazolam 1 mg intramuscular injection before the surgery. General anesthesia was induced with thiamylal 62.5 mg and vecuronium 6 mg and maintained with sevoflurane, fentanyl, air and oxygen. ST elevation up to 0.3 mV occurred 45 minutes after the start of the operation, but his hemodynamic status was stable. We administered a nitrovasodilator, but the ST elevation rose gradually without hemodynamic instability until the end of the operation. He was then admitted to the cardiac care unit. The evidence of acute coronary syndrome (ACS) was not found, althrough the ST elevation did not decline to the baseline. Suddenly, a physician watching the patient and his ECG compressed his chest and interrupted its motion. Surprisingly, the ST elevation was improved. In this case, the gastric tube after esophagectomy had been extended to the ileus and the movement of the heart was influenced in the crowded mediastinal space. When ST elevation was found with no evidence of ACS, we must consider other reason than ACS.


Asunto(s)
Electrocardiografía , Ileus/cirugía , Complicaciones Intraoperatorias/etiología , Síndrome Coronario Agudo , Anestesia General , Esofagectomía/efectos adversos , Humanos , Ileus/complicaciones , Intubación Gastrointestinal/efectos adversos , Masculino , Mediastino/fisiopatología , Persona de Mediana Edad
20.
Front Microbiol ; 12: 715545, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489904

RESUMEN

Yellow mosaic disease in winter wheat is usually attributed to the infection by bymoviruses or furoviruses; however, there is still limited information on whether other viral agents are also associated with this disease. To investigate the wheat viromes associated with yellow mosaic disease, we carried out de novo RNA sequencing (RNA-seq) analyses of symptomatic and asymptomatic wheat-leaf samples obtained from a field in Hokkaido, Japan, in 2018 and 2019. The analyses revealed the infection by a novel betaflexivirus, which tentatively named wheat virus Q (WVQ), together with wheat yellow mosaic virus (WYMV, a bymovirus) and northern cereal mosaic virus (a cytorhabdovirus). Basic local alignment search tool (BLAST) analyses showed that the WVQ strains (of which there are at least three) were related to the members of the genus Foveavirus in the subfamily Quinvirinae (family Betaflexiviridae). In the phylogenetic tree, they form a clade distant from that of the foveaviruses, suggesting that WVQ is a member of a novel genus in the Quinvirinae. Laboratory tests confirmed that WVQ, like WYMV, is potentially transmitted through the soil to wheat plants. WVQ was also found to infect rye plants grown in the same field. Moreover, WVQ-derived small interfering RNAs accumulated in the infected wheat plants, indicating that WVQ infection induces antiviral RNA silencing responses. Given its common coexistence with WYMV, the impact of WVQ infection on yellow mosaic disease in the field warrants detailed investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA