Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 115(2): 563-576, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37058128

RESUMEN

An Arabidopsis mutant displaying impaired stomatal responses to CO2 , cdi4, was isolated by a leaf thermal imaging screening. The mutated gene PECT1 encodes CTP:phosphorylethanolamine cytidylyltransferase. The cdi4 exhibited a decrease in phosphatidylethanolamine levels and a defect in light-induced stomatal opening as well as low-CO2 -induced stomatal opening. We created RNAi lines in which PECT1 was specifically repressed in guard cells. These lines are impaired in their stomatal responses to low-CO2 concentrations or light. Fungal toxin fusicoccin (FC) promotes stomatal opening by activating plasma membrane H+ -ATPases in guard cells via phosphorylation. Arabidopsis H+ -ATPase1 (AHA1) has been reported to be highly expressed in guard cells, and its activation by FC induces stomatal opening. The cdi4 and PECT1 RNAi lines displayed a reduced stomatal opening response to FC. However, similar to in the wild-type, cdi4 maintained normal levels of phosphorylation and activation of the stomatal H+ -ATPases after FC treatment. Furthermore, the cdi4 displayed normal localization of GFP-AHA1 fusion protein and normal levels of AHA1 transcripts. Based on these results, we discuss how PECT1 could regulate CO2 - and light-induced stomatal movements in guard cells in a manner that is independent and downstream of the activation of H+ -ATPases. [Correction added on 15 May 2023, after first online publication: The third sentence is revised in this version.].


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Fosfatidiletanolaminas/metabolismo , Estomas de Plantas/metabolismo , Adenosina Trifosfatasas/metabolismo , Luz , ATPasas de Translocación de Protón/metabolismo
2.
New Phytol ; 236(6): 2061-2074, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36089821

RESUMEN

Light induces stomatal opening, which is driven by plasma membrane (PM) H+ -ATPase in guard cells. The activation of guard-cell PM H+ -ATPase is mediated by phosphorylation of the penultimate C-terminal residue, threonine. The phosphorylation is induced by photosynthesis as well as blue light photoreceptor phototropin. Here, we investigated the effects of cessation of photosynthesis on the phosphorylation level of guard-cell PM H+ -ATPase in Arabidopsis thaliana. Immunodetection of guard-cell PM H+ -ATPase, time-resolved leaf gas-exchange analyses and stomatal aperture measurements were carried out. We found that light-dark transition of leaves induced dephosphorylation of the penultimate residue at 1 min post-transition. Gas-exchange analyses confirmed that the dephosphorylation is accompanied by an increase in the intercellular CO2 concentration, caused by the cessation of photosynthetic CO2 fixation. We discovered that CO2 induces guard-cell PM H+ -ATPase dephosphorylation as well as stomatal closure. Interestingly, reverse-genetic analyses using guard-cell CO2 signal transduction mutants suggested that the dephosphorylation is mediated by a mechanism distinct from the established CO2 signalling pathway. Moreover, type 2C protein phosphatases D6 and D9 were required for the dephosphorylation and promoted stomatal closure upon the light-dark transition. Our results indicate that CO2 -mediated dephosphorylation of guard-cell PM H+ -ATPase underlies stomatal closure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estomas de Plantas/fisiología , Dióxido de Carbono/farmacología , Dióxido de Carbono/metabolismo , ATPasas de Translocación de Protón/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Luz
3.
Plant Cell Physiol ; 59(8): 1568-1580, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635388

RESUMEN

Regulation of stomatal aperture is essential for plant growth and survival in response to environmental stimuli. Opening of stomata induces uptake of CO2 for photosynthesis and transpiration, which enhances uptake of nutrients from roots. Light is the most important stimulus for stomatal opening. Under drought stress, the plant hormone ABA induces stomatal closure to prevent water loss. However, the molecular mechanisms of stomatal movements are not fully understood. In this study, we screened chemical libraries to identify compounds that affect stomatal movements in Commelina benghalensis and characterize the underlying molecular mechanisms. We identified nine stomatal closing compounds (SCL1-SCL9) that suppress light-induced stomatal opening by >50%, and two compounds (temsirolimus and CP-100356) that induce stomatal opening in the dark. Further investigations revealed that SCL1 and SCL2 had no effect on autophosphorylation of phototropin or the activity of the inward-rectifying plasma membrane (PM) K+ channel, KAT1, but suppressed blue light-induced phosphorylation of the penultimate residue, threonine, in PM H+-ATPase, which is a key enzyme for stomatal opening. SCL1 and SCL2 had no effect on ABA-dependent responses, including seed germination and expression of ABA-induced genes. These results suggest that SCL1 and SCL2 suppress light-induced stomatal opening at least in part by inhibiting blue light-induced activation of PM H+-ATPase, but not by the ABA signaling pathway. Interestingly, spraying leaves onto dicot and monocot plants with SCL1 suppressed wilting of leaves, indicating that inhibition of stomatal opening by these compounds confers tolerance to drought stress in plants.


Asunto(s)
Commelina/metabolismo , Luz , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/efectos de los fármacos , Ácido Abscísico/farmacología , Commelina/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , ATPasas de Translocación de Protón/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Nat Commun ; 15(1): 1194, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378616

RESUMEN

Plasma membrane (PM) H+-ATPase is crucial for light-induced stomatal opening and phosphorylation of a penultimate residue, Thr948 (pen-Thr, numbering according to Arabidopsis AHA1) is required for enzyme activation. In this study, a comprehensive phosphoproteomic analysis using guard cell protoplasts from Vicia faba shows that both red and blue light increase the phosphorylation of Thr881, of PM H+-ATPase. Light-induced stomatal opening and the blue light-induced increase in stomatal conductance are reduced in transgenic Arabidopsis plants expressing mutant AHA1-T881A in aha1-9, whereas the blue light-induced phosphorylation of pen-Thr is unaffected. Auxin and photosynthetically active radiation induce the phosphorylation of both Thr881 and pen-Thr in etiolated seedlings and leaves, respectively. The dephosphorylation of phosphorylated Thr881 and pen-Thr are mediated by type 2 C protein phosphatase clade D isoforms. Taken together, Thr881 phosphorylation, in addition of the pen-Thr phosphorylation, are important for PM H+-ATPase function during physiological responses, such as light-induced stomatal opening in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fosforilación , Luz , Estomas de Plantas/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo
5.
Front Plant Sci ; 12: 744991, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691123

RESUMEN

Stomatal guard cells (GCs) are highly specialized cells that respond to various stimuli, such as blue light (BL) and abscisic acid, for the regulation of stomatal aperture. Many signaling components that are involved in the stomatal movement are preferentially expressed in GCs. In this study, we identified four new such genes in addition to an aluminum-activated malate transporter, ALMT6, and GDSL lipase, Occlusion of Stomatal Pore 1 (OSP1), based on the expression analysis using public resources, reverse transcription PCR, and promoter-driven ß-glucuronidase assays. Some null mutants of GC-specific genes evidenced altered stomatal movement. We further investigated the role played by ALMT6, a vacuolar malate channel, in stomatal opening. Epidermal strips from an ALMT6-null mutant exhibited defective stomatal opening induced by BL and fusicoccin, a strong plasma membrane H+-ATPase activator. The deficiency was enhanced when the assay buffer [Cl-] was low, suggesting that malate and/or Cl- facilitate efficient opening. The results indicate that the GC-specific genes are frequently involved in stomatal movement. Further detailed analyses of the hitherto uncharacterized GC-specific genes will provide new insights into stomatal regulation.

6.
Front Plant Sci ; 12: 735271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987530

RESUMEN

An unknown 61 kDa protein is phosphorylated by abscisic acid (ABA)-activated protein kinase in response to ABA and binds to 14-3-3 protein in a phosphorylation-dependent manner in guard-cell protoplasts (GCPs) from Vicia faba. Subsequently, ABA-dependent phosphorylated proteins were identified as basic helix-loop-helix transcription factors, named ABA-responsive kinase substrates (AKSs) in GCPs from Arabidopsis thaliana. However, whether the 61 kDa protein in Vicia GCPs is an AKS is unclear. We performed immunoprecipitation of ABA-treated Vicia GCPs using anti-14-3-3 protein antibodies and identified several AKS isoforms in V. faba (VfAKSs) by mass spectrometry. The 61 kDa protein was identified as VfAKS1. Phosphoproteomic analysis revealed that VfAKSs are phosphorylated at Ser residues, which are important for 14-3-3 protein binding and monomerisation, in response to ABA in GCPs. Orthologs of AtABCG40, an ABA importer in guard cells, and CHC1, a clathrin heavy chain and a regulator of stomatal movement, also co-immunoprecipitated with 14-3-3 protein from guard cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA