Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 187(15): 4078-4094.e21, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38897196

RESUMEN

Reversing CD8+ T cell dysfunction is crucial in treating chronic hepatitis B virus (HBV) infection, yet specific molecular targets remain unclear. Our study analyzed co-signaling receptors during hepatocellular priming and traced the trajectory and fate of dysfunctional HBV-specific CD8+ T cells. Early on, these cells upregulate PD-1, CTLA-4, LAG-3, OX40, 4-1BB, and ICOS. While blocking co-inhibitory receptors had minimal effect, activating 4-1BB and OX40 converted them into antiviral effectors. Prolonged stimulation led to a self-renewing, long-lived, heterogeneous population with a unique transcriptional profile. This includes dysfunctional progenitor/stem-like (TSL) cells and two distinct dysfunctional tissue-resident memory (TRM) populations. While 4-1BB expression is ubiquitously maintained, OX40 expression is limited to TSL. In chronic settings, only 4-1BB stimulation conferred antiviral activity. In HBeAg+ chronic patients, 4-1BB activation showed the highest potential to rejuvenate dysfunctional CD8+ T cells. Targeting all dysfunctional T cells, rather than only stem-like precursors, holds promise for treating chronic HBV infection.


Asunto(s)
Linfocitos T CD8-positivos , Virus de la Hepatitis B , Hepatitis B Crónica , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Hepatitis B Crónica/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Animales , Receptores OX40/metabolismo , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Antígenos CD/metabolismo
2.
Nat Immunol ; 25(4): 633-643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38486021

RESUMEN

Vaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent. Here we show, through studies in mouse models lacking antibodies but maintaining functional B cells and lymphoid organs, that immunity conferred by prior infection or mRNA vaccination can protect against SARS-CoV-2 challenge independently of antibodies. Our findings, using three distinct models inclusive of a novel human/mouse ACE2 hybrid, highlight that CD8+ T cells are essential for combating severe infections, whereas CD4+ T cells contribute to managing milder cases, with interferon-γ having an important function in this antibody-independent defense. These findings highlight the importance of T cell responses in vaccine development, urging a broader perspective on protective immunity beyond just antibodies.


Asunto(s)
COVID-19 , Vacunas , Humanos , Animales , Ratones , SARS-CoV-2 , Linfocitos T CD8-positivos , COVID-19/prevención & control , Anticuerpos , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
3.
Nat Immunol ; 24(3): 501-515, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797499

RESUMEN

Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.


Asunto(s)
Pirimidinas , Ciclo Celular , Diferenciación Celular
4.
Immunity ; 57(9): 2140-2156.e10, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226900

RESUMEN

Venous thromboembolism (VTE) is a common, deadly disease with an increasing incidence despite preventive efforts. Clinical observations have associated elevated antibody concentrations or antibody-based therapies with thrombotic events. However, how antibodies contribute to thrombosis is unknown. Here, we show that reduced blood flow enabled immunoglobulin M (IgM) to bind to FcµR and the polymeric immunoglobulin receptor (pIgR), initiating endothelial activation and platelet recruitment. Subsequently, the procoagulant surface of activated platelets accommodated antigen- and FcγR-independent IgG deposition. This leads to classical complement activation, setting in motion a prothrombotic vicious circle. Key elements of this mechanism were present in humans in the setting of venous stasis as well as in the dysregulated immunothrombosis of COVID-19. This antibody-driven thrombosis can be prevented by pharmacologically targeting complement. Hence, our results uncover antibodies as previously unrecognized central regulators of thrombosis. These findings carry relevance for therapeutic application of antibodies and open innovative avenues to target thrombosis without compromising hemostasis.


Asunto(s)
Plaquetas , COVID-19 , Activación de Complemento , Inmunoglobulina M , Trombosis , Humanos , Trombosis/inmunología , Animales , Inmunoglobulina M/inmunología , Activación de Complemento/inmunología , Ratones , Plaquetas/inmunología , Plaquetas/metabolismo , COVID-19/inmunología , COVID-19/complicaciones , SARS-CoV-2/inmunología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Activación Plaquetaria/inmunología , Inmunoglobulina G/inmunología , Masculino
5.
Immunity ; 54(9): 2089-2100.e8, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34469774

RESUMEN

Kupffer cells (KCs) are highly abundant, intravascular, liver-resident macrophages known for their scavenger and phagocytic functions. KCs can also present antigens to CD8+ T cells and promote either tolerance or effector differentiation, but the mechanisms underlying these discrepant outcomes are poorly understood. Here, we used a mouse model of hepatitis B virus (HBV) infection, in which HBV-specific naive CD8+ T cells recognizing hepatocellular antigens are driven into a state of immune dysfunction, to identify a subset of KCs (referred to as KC2) that cross-presents hepatocellular antigens upon interleukin-2 (IL-2) administration, thus improving the antiviral function of T cells. Removing MHC-I from all KCs, including KC2, or selectively depleting KC2 impaired the capacity of IL-2 to revert the T cell dysfunction induced by intrahepatic priming. In summary, by sensing IL-2 and cross-presenting hepatocellular antigens, KC2 overcome the tolerogenic potential of the hepatic microenvironment, suggesting new strategies for boosting hepatic T cell immunity.


Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/inmunología , Interleucina-2/inmunología , Macrófagos del Hígado/inmunología , Animales , Hepatitis B/inmunología , Tolerancia Inmunológica/inmunología , Ratones , Ratones Transgénicos
6.
Immunity ; 54(9): 2101-2116.e6, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34469775

RESUMEN

Tissue macrophages are immune cells whose phenotypes and functions are dictated by origin and niches. However, tissues are complex environments, and macrophage heterogeneity within the same organ has been overlooked so far. Here, we used high-dimensional approaches to characterize macrophage populations in the murine liver. We identified two distinct populations among embryonically derived Kupffer cells (KCs) sharing a core signature while differentially expressing numerous genes and proteins: a major CD206loESAM- population (KC1) and a minor CD206hiESAM+ population (KC2). KC2 expressed genes involved in metabolic processes, including fatty acid metabolism both in steady-state and in diet-induced obesity and hepatic steatosis. Functional characterization by depletion of KC2 or targeted silencing of the fatty acid transporter Cd36 highlighted a crucial contribution of KC2 in the liver oxidative stress associated with obesity. In summary, our study reveals that KCs are more heterogeneous than anticipated, notably describing a subpopulation wired with metabolic functions.


Asunto(s)
Antígenos CD36/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Estrés Oxidativo/fisiología , Animales , Ratones
7.
Nature ; 631(8021): 645-653, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987596

RESUMEN

Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.


Asunto(s)
Células Dendríticas , Homeostasis , Megacariocitos , Trombopoyesis , Animales , Femenino , Humanos , Masculino , Ratones , Apoptosis , Plaquetas/citología , Médula Ósea , Linaje de la Célula , Proliferación Celular , Células Dendríticas/inmunología , Células Dendríticas/citología , Retroalimentación Fisiológica , Inmunidad Innata , Microscopía Intravital , Megacariocitos/citología , Megacariocitos/inmunología , Ratones Endogámicos C57BL , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/fisiopatología , COVID-19/virología
8.
Nature ; 574(7777): 200-205, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31582858

RESUMEN

The responses of CD8+ T cells to hepatotropic viruses such as hepatitis B range from dysfunction to differentiation into effector cells, but the mechanisms that underlie these distinct outcomes remain poorly understood. Here we show that priming by Kupffer cells, which are not natural targets of hepatitis B, leads to differentiation of CD8+ T cells into effector cells that form dense, extravascular clusters of immotile cells scattered throughout the liver. By contrast, priming by hepatocytes, which are natural targets of hepatitis B, leads to local activation and proliferation of CD8+ T cells but not to differentiation into effector cells; these cells form loose, intravascular clusters of motile cells that coalesce around portal tracts. Transcriptomic and chromatin accessibility analyses reveal unique features of these dysfunctional CD8+ T cells, with limited overlap with those of exhausted or tolerant T cells; accordingly, CD8+ T cells primed by hepatocytes cannot be rescued by treatment with anti-PD-L1, but instead respond to IL-2. These findings suggest immunotherapeutic strategies against chronic hepatitis B infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/inmunología , Virus de la Hepatitis B/inmunología , Hepatocitos/inmunología , Hepatocitos/virología , Animales , Antígeno B7-H1/antagonistas & inhibidores , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Femenino , Hepatitis B/tratamiento farmacológico , Hepatitis B/inmunología , Hepatitis B/virología , Humanos , Tolerancia Inmunológica , Interleucina-2/inmunología , Interleucina-2/uso terapéutico , Macrófagos del Hígado/inmunología , Activación de Linfocitos , Masculino , Ratones , Transcriptoma/genética
9.
J Gen Virol ; 105(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38757942

RESUMEN

Since its discovery in 1965, our understanding of the hepatitis B virus (HBV) replication cycle and host immune responses has increased markedly. In contrast, our knowledge of the molecular biology of hepatitis delta virus (HDV), which is associated with more severe liver disease, is less well understood. Despite the progress made, critical gaps remain in our knowledge of HBV and HDV replication and the mechanisms underlying viral persistence and evasion of host immunity. The International HBV Meeting is the leading annual scientific meeting for presenting the latest advances in HBV and HDV molecular virology, immunology, and epidemiology. In 2023, the annual scientific meeting was held in Kobe, Japan and this review summarises some of the advances presented at the Meeting and lists gaps in our knowledge that may facilitate the development of new therapies.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Virus de la Hepatitis Delta , Replicación Viral , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/inmunología , Humanos , Virus de la Hepatitis Delta/genética , Virus de la Hepatitis Delta/fisiología , Hepatitis B/virología , Hepatitis B/inmunología , Biología Molecular , Japón , Hepatitis D/virología , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/genética
10.
Eur J Immunol ; 53(12): e2350529, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37741290

RESUMEN

TDC are hematopoietic cells that combine dendritic cell (DC) and conventional T-cell markers and functional properties. They were identified in secondary lymphoid organs (SLOs) of naïve mice as cells expressing CD11c, major histocompatibility molecules (MHC)-II, and the T-cell receptor (TCR). Despite thorough characterization, a physiological role for TDC remains to be determined. Unfortunately, using CD11c as a marker for TDC has the caveat of its upregulation on different cells, including T cells, upon activation. Here, we took advantage of Zbtb46-GFP reporter mice to explore the frequency and localization of TDC in different tissues at steady state and upon viral infection. RNA sequencing analysis confirmed that TDC sorted from Zbtb46-GFP mice have a gene signature that is distinct from conventional T cells and DC. In addition, this reporter model allowed for identification of TDC in situ not only in SLOs but also in the liver and lung of naïve mice. Interestingly, we found that TDC numbers in the SLOs increased upon viral infection, suggesting that TDC might play a role during viral infections. In conclusion, we propose a visualization strategy that might shed light on the physiological role of TDC in several pathological contexts, including infection and cancer.


Asunto(s)
Linfocitos T , Virosis , Ratones , Animales , Células Dendríticas/patología , Antígeno CD11c , Ratones Endogámicos C57BL
11.
Mol Ther ; 30(1): 311-326, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34547465

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax-a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)-induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Inmunización/métodos , Modelos Animales , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de ADN/administración & dosificación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/genética , COVID-19/virología , Femenino , Hurones , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Dominios Proteicos , Ratas Sprague-Dawley
13.
J Hepatol ; 67(3): 543-548, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28483675

RESUMEN

BACKGROUND & AIMS: Besides secreting pro-inflammatory cytokines, chemokines and effector molecules, effector CD8+ T cells that arise upon acute infection with certain viruses have been shown to produce the regulatory cytokine interleukin (IL)-10 and, therefore, contain immunopathology. Whether the same occurs during acute hepatitis B virus (HBV) infection and role that IL-10 might play in liver disease is currently unknown. METHODS: Mouse models of acute HBV pathogenesis, as well as chimpanzees and patients acutely infected with HBV, were used to analyse the role of CD8+ T cell-derived IL-10 in liver immunopathology. RESULTS: Mouse HBV-specific effector CD8+ T cells produce significant amounts of IL-10 upon in vivo antigen encounter. This is corroborated by longitudinal data in a chimpanzee acutely infected with HBV, where serum IL-10 was readily detectable and correlated with intrahepatic CD8+ T cell infiltration and liver disease severity. Unexpectedly, mouse and human CD8+ T cell-derived IL-10 was found to act in an autocrine/paracrine fashion to enhance IL-2 responsiveness, thus preventing antigen-induced HBV-specific effector CD8+ T cell apoptosis. Accordingly, the use of mouse models of HBV pathogenesis revealed that the IL-10 produced by effector CD8+ T cells promoted their own intrahepatic survival and, thus supported, rather than suppressed liver immunopathology. CONCLUSION: Effector CD8+ T cell-derived IL-10 enhances acute liver immunopathology. Altogether, these results extend our understanding of the cell- and tissue-specific role that IL-10 exerts in immune regulation. Lay summary: Interleukin-10 is mostly regarded as an immunosuppressive cytokine. We show here that HBV-specific CD8+ T cells produce IL-10 upon antigen recognition and that this cytokine enhances CD8+ T cell survival. As such, IL-10 paradoxically promotes rather than suppresses liver disease.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Interleucina-10/fisiología , Hígado/inmunología , Enfermedad Aguda , Animales , Apoptosis , Virus de la Hepatitis B/inmunología , Humanos , Interleucina-2/farmacología , Hígado/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pan troglodytes
14.
Cell Mol Immunol ; 21(2): 197-200, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37964122

RESUMEN

The SARS-CoV-2 pandemic has necessitated rapid therapeutic and preventative responses. While vaccines form the frontline of defense, antiviral treatments such as nirmatrelvir have emerged as vital adjunctive measures, particularly for those unable or unwilling to be vaccinated. This review delves into the potential influence of nirmatrelvir on enduring immunity. In parallel, the potential of drug repurposing is explored, with bisphosphonates being examined for their possible effects against COVID-19 due to their immunomodulatory properties. The importance of rigorous clinical trials and careful interpretation of preliminary data is emphasized.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/uso terapéutico , Inmunidad
15.
Sci Transl Med ; 16(729): eadi1572, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198572

RESUMEN

CD8+ T cells are key antiviral effectors against hepatitis B virus (HBV), yet their number and function can be compromised in chronic infections. Preclinical HBV models displaying CD8+ T cell dysfunction showed that interleukin-2 (IL-2)-based treatment, unlike programmed cell death ligand 1 (PD-L1) checkpoint blockade, could reverse this defect, suggesting its therapeutic potential against HBV. However, IL-2's effectiveness is hindered by its pleiotropic nature, because its receptor is found on various immune cells, including regulatory T (Treg) cells and natural killer (NK) cells, which can counteract antiviral responses or contribute to toxicity, respectively. To address this, we developed a cis-targeted CD8-IL2 fusion protein, aiming to selectively stimulate dysfunctional CD8+ T cells in chronic HBV. In a mouse model, CD8-IL2 boosted the number of HBV-reactive CD8+ T cells in the liver without substantially altering Treg or NK cell counts. These expanded CD8+ T cells exhibited increased interferon-γ and granzyme B production, demonstrating enhanced functionality. CD8-IL2 treatment resulted in substantial antiviral effects, evidenced by marked reductions in viremia and antigenemia and HBV core antigen-positive hepatocytes. In contrast, an untargeted CTRL-IL2 led to predominant NK cell expansion, minimal CD8+ T cell expansion, negligible changes in effector molecules, and minimal antiviral activity. Human CD8-IL2 trials in cynomolgus monkeys mirrored these results, achieving a roughly 20-fold increase in peripheral blood CD8+ T cells without affecting NK or Treg cell numbers. These data support the development of CD8-IL2 as a therapy for chronic HBV infection.


Asunto(s)
Hepatitis B Crónica , Interleucina-2 , Humanos , Animales , Ratones , Virus de la Hepatitis B , Linfocitos T CD8-positivos , Hepatitis B Crónica/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico
16.
JHEP Rep ; 6(5): 101038, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694959

RESUMEN

Background & Aims: Liver diseases resulting from chronic HBV infection are a significant cause of morbidity and mortality. Vaccines that elicit T-cell responses capable of controlling the virus represent a treatment strategy with potential for long-term effects. Here, we evaluated vaccines that induce the activity of type I natural killer T (NKT) cells to limit viral replication and license stimulation of conventional antiviral T-cells. Methods: Vaccines were prepared by conjugating peptide epitopes to an NKT-cell agonist to promote co-delivery to antigen-presenting cells, encouraging NKT-cell licensing and stimulation of T cells. Activity of the conjugate vaccines was assessed in transgenic mice expressing the complete HBV genome, administered intravenously to maximise access to NKT cell-rich tissues. Results: The vaccines induced only limited antiviral activity in unmanipulated transgenic hosts, likely attributable to NKT-cell activation as T-cell tolerance to viral antigens is strong. However, in a model of chronic hepatitis B involving transfer of naive HBcAg-specific CD8+ T cells into the transgenic mice, which typically results in specific T-cell dysfunction without virus control, vaccines containing the targeted HBcAg epitope induced prolonged antiviral activity because of qualitatively improved T-cell stimulation. In a step towards a clinical product, vaccines were prepared using synthetic long peptides covering clusters of known HLA-binding epitopes and shown to be immunogenic in HLA transgenic mice. Predictions based on HLA distribution suggest a product containing three selected SLP-based vaccines could give >90 % worldwide coverage, with an average of 3.38 epitopes targeted per individual. Conclusions: The novel vaccines described show promise for further clinical development as a treatment for chronic hepatitis B. Impact and Implications: Although there are effective prophylactic vaccines for HBV infection, it is estimated that 350-400 million people worldwide have chronic hepatitis B, putting these individuals at significant risk of life-threatening liver diseases. Therapeutic vaccination aimed at activating or boosting HBV-specific T-cell responses holds potential as a strategy for treating chronic infection, but has so far met with limited success. Here, we show that a glycolipid-peptide conjugate vaccine designed to coordinate activity of type I NKT cells alongside conventional antiviral T cells has antiviral activity in a mouse model of chronic infection. It is anticipated that a product based on a combination of three such conjugates, each prepared using long peptides covering clusters of known HLA-binding epitopes, could be developed further as a treatment for chronic hepatitis B with broad global HLA coverage.

17.
EMBO Mol Med ; 15(5): e17580, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36946379

RESUMEN

Alongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir-an orally available inhibitor of the 3-chymotrypsin-like cysteine protease-has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown. Here, by using mouse models of SARS-CoV-2 infection, we show that nirmatrelvir administration blunts the development of SARS-CoV-2-specific antibody and T cell responses. Accordingly, upon secondary challenge, nirmatrelvir-treated mice recruited significantly fewer memory T and B cells to the infected lungs and mediastinal lymph nodes, respectively. Together, the data highlight a potential negative impact of nirmatrelvir treatment with important implications for clinical management and might help explain the virological and/or symptomatic relapse after treatment completion reported in some individuals.


Asunto(s)
Inmunidad Adaptativa , Antivirales , Tratamiento Farmacológico de COVID-19 , Lactamas , Animales , Ratones , COVID-19/inmunología , SARS-CoV-2 , Antivirales/administración & dosificación , Inmunidad Adaptativa/efectos de los fármacos , Lactamas/administración & dosificación , Células T de Memoria/inmunología , Linfocitos B/inmunología , Ratones Endogámicos C57BL
18.
Vaccines (Basel) ; 11(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37896949

RESUMEN

The vaccination campaign against SARS-CoV-2 relies on the world-wide availability of effective vaccines, with a potential need of 20 billion vaccine doses to fully vaccinate the world population. To reach this goal, the manufacturing and logistic processes should be affordable to all countries, irrespective of economical and climatic conditions. Outer membrane vesicles (OMVs) are bacterial-derived vesicles that can be engineered to incorporate heterologous antigens. Given the inherent adjuvanticity, such modified OMVs can be used as vaccines to induce potent immune responses against the associated proteins. Here, we show that OMVs engineered to incorporate peptides derived from the receptor binding motif (RBM) of the spike protein from SARS-CoV-2 elicit an effective immune response in vaccinated mice, resulting in the production of neutralizing antibodies (nAbs) with a titre higher than 1:300. The immunity induced by the vaccine is sufficient to protect the animals from intranasal challenge with SARS-CoV-2, preventing both virus replication in the lungs and the pathology associated with virus infection. Furthermore, we show that OMVs can be effectively decorated with the RBM of the Omicron BA.1 variant and that such engineered OMVs induce nAbs against Omicron BA.1 and BA.5, as measured using the pseudovirus neutralization infectivity assay. Importantly, we show that the RBM438-509 ancestral-OMVs elicited antibodies which efficiently neutralize in vitro both the homologous ancestral strain, the Omicron BA.1 and BA.5 variants with a neutralization titre ranging from 1:100 to 1:1500, suggesting its potential use as a vaccine targeting diverse SARS-CoV-2 variants. Altogether, given the convenience associated with the ease of engineering, production and distribution, our results demonstrate that OMV-based SARS-CoV-2 vaccines can be a crucial addition to the vaccines currently available.

19.
Nat Cell Biol ; 25(4): 550-564, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894671

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 was reported to alter several cellular pathways, its impact on DNA integrity and the mechanisms involved remain unknown. Here we show that SARS-CoV-2 causes DNA damage and elicits an altered DNA damage response. Mechanistically, SARS-CoV-2 proteins ORF6 and NSP13 cause degradation of the DNA damage response kinase CHK1 through proteasome and autophagy, respectively. CHK1 loss leads to deoxynucleoside triphosphate (dNTP) shortage, causing impaired S-phase progression, DNA damage, pro-inflammatory pathways activation and cellular senescence. Supplementation of deoxynucleosides reduces that. Furthermore, SARS-CoV-2 N-protein impairs 53BP1 focal recruitment by interfering with damage-induced long non-coding RNAs, thus reducing DNA repair. Key observations are recapitulated in SARS-CoV-2-infected mice and patients with COVID-19. We propose that SARS-CoV-2, by boosting ribonucleoside triphosphate levels to promote its replication at the expense of dNTPs and by hijacking damage-induced long non-coding RNAs' biology, threatens genome integrity and causes altered DNA damage response activation, induction of inflammation and cellular senescence.


Asunto(s)
COVID-19 , Animales , Ratones , SARS-CoV-2 , Senescencia Celular , Daño del ADN
20.
Res Sq ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37292970

RESUMEN

The vaccination campaign against SARS-CoV-2 relies on the world-wide availability of effective vaccines, with a potential need of 20 billion vaccine doses to fully vaccinate the world population. To reach this goal, the manufacturing and logistic processes should be affordable to all countries, irrespectively of economical and climatic conditions. Outer membrane vesicles (OMV) are bacterial-derived vesicles that can be engineered to incorporate heterologous antigens. Given the inherent adjuvanticity, such modified OMV can be used as vaccine to induce potent immune responses against the associated protein. Here we show that OMVs engineered to incorporate peptides derived from the receptor binding motif (RBM) of the spike protein from SARS-CoV-2 elicit an effective immune response in vaccinated mice, resulting in the production of neutralizing antibodies (nAbs). The immunity induced by the vaccine is sufficient to protect the animals from intranasal challenge with SARS-CoV-2, preventing both virus replication in the lungs and the pathology associated with virus infection. Furthermore, we show that OMVs can be effectively decorated with the RBM of the Omicron BA.1 variant and that such engineered OMVs induced nAbs against Omicron BA.1 and BA.5, as judged by pseudovirus infectivity assay. Importantly, we show that the RBM438-509 ancestral-OMVs elicited antibodies which efficiently neutralized in vitro both the homologous ancestral strain, the Omicron BA.1 and BA.5 variants, suggesting its potential use as a pan SARS-CoV-2 vaccine. Altogether, given the convenience associated with ease of engineering, production and distribution, our results demonstrate that OMV-based SARS-CoV-2 vaccines can be a crucial addition to the vaccines currently available.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA