Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542444

RESUMEN

The degradation of cellulose generates cellooligomers, which function as damage-associated molecular patterns and activate immune and cell wall repair responses via the CELLOOLIGOMER RECEPTOR KINASE1 (CORK1). The most active cellooligomer for the induction of downstream responses is cellotriose, while cellobiose is around 100 times less effective. These short-chain cellooligomers are also metabolized after uptake into the cells. In this study, we demonstrate that CORK1 is mainly expressed in the vascular tissue of the upper, fully developed part of the roots. Cellooligomer/CORK1-induced responses interfere with chitin-triggered immune responses and are influenced by BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE1 and the receptor kinase FERONIA. The pathway also controls sugar transporter and metabolism genes and the phosphorylation state of these proteins. Furthermore, cellotriose-induced ROS production and WRKY30/40 expression are controlled by the sugar transporters SUCROSE-PROTON SYMPORTER1, SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER11 (SWEET11), and SWEET12. Our data demonstrate that cellooligomer/CORK1 signaling is integrated into the pattern recognition receptor network and coupled to the primary sugar metabolism in Arabidopsis roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Inmunidad de la Planta/genética , Azúcares/metabolismo , Proteínas de Transporte de Membrana/metabolismo
2.
PLoS Pathog ; 17(3): e1009459, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33765095

RESUMEN

The host-pathogen combinations-Malus domestica (apple)/`Candidatus Phytoplasma mali´, Prunus persica (peach)/`Ca. P. prunorum´ and Pyrus communis (pear)/`Ca. P. pyri´ show different courses of diseases although the phytoplasma strains belong to the same 16SrX group. While infected apple trees can survive for decades, peach and pear trees die within weeks to few years. To this date, neither morphological nor physiological differences caused by phytoplasmas have been studied in these host plants. In this study, phytoplasma-induced morphological changes of the vascular system as well as physiological changes of the phloem sap and leaf phytohormones were analysed and compared with non-infected plants. Unlike peach and pear, infected apple trees showed substantial reductions in leaf and vascular area, affecting phloem mass flow. In contrast, in infected pear mass flow and physicochemical characteristics of phloem sap increased. Additionally, an increased callose deposition was detected in pear and peach leaves but not in apple trees in response to phytoplasma infection. The phytohormone levels in pear were not affected by an infection, while in apple and peach trees concentrations of defence- and stress-related phytohormones were increased. Compared with peach and pear trees, data from apple suggest that the long-lasting morphological adaptations in the vascular system, which likely cause reduced sap flow, triggers the ability of apple trees to survive phytoplasma infection. Some phytohormone-mediated defences might support the tolerance.


Asunto(s)
Productos Agrícolas/microbiología , Malus/inmunología , Enfermedad por Fitoplasma/inmunología , Inmunidad de la Planta/fisiología , Prunus persica/inmunología , Productos Agrícolas/inmunología , Malus/microbiología , Phytoplasma/inmunología , Hojas de la Planta/microbiología , Haz Vascular de Plantas/microbiología , Prunus persica/microbiología , ARN Ribosómico 16S
3.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37958588

RESUMEN

Host jumps are a major factor for the emergence of new fungal pathogens. In the evolution of smut fungi, a putative host jump occurred in Sporisorium reilianum that today exists in two host-adapted formae speciales, the sorghum-pathogenic S. reilianum f. sp. reilianum and maize-pathogenic S. reilianum f. sp. zeae. To understand the molecular host-specific adaptation to maize, we compared the transcriptomes of maize leaves colonized by both formae speciales. We found that both varieties induce many common defense response-associated genes, indicating that both are recognized by the plant as pathogens. S. reilianum f. sp. reilianum additionally induced genes involved in systemic acquired resistance. In contrast, only S. reilianum f. sp. zeae induced expression of chorismate mutases that function in reducing the level of precursors for generation of the defense compound salicylic acid (SA), as well as oxylipin biosynthesis enzymes necessary for generation of the SA antagonist jasmonic acid (JA). In accordance, we found reduced SA levels as well as elevated JA and JA-Ile levels in maize leaves inoculated with the maize-adapted variety. These findings support a model of the emergence of the maize-pathogenic variety from a sorghum-specific ancestor following a recent host jump.


Asunto(s)
Basidiomycota , Ustilaginales , Zea mays/genética , Ustilaginales/fisiología , Plantas , Enfermedades de las Plantas/microbiología
4.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298462

RESUMEN

Kenya is the seventh most prominent producer of common beans globally and the second leading producer in East Africa. However, the annual national productivity is low due to insufficient quantities of vital nutrients and nitrogen in the soils. Rhizobia are symbiotic bacteria that fix nitrogen through their interaction with leguminous plants. Nevertheless, inoculating beans with commercial rhizobia inoculants results in sparse nodulation and low nitrogen supply to the host plants because these strains are poorly adapted to the local soils. Several studies describe native rhizobia with much better symbiotic capabilities than commercial strains, but only a few have conducted field studies. This study aimed to test the competence of new rhizobia strains that we isolated from Western Kenya soils and for which the symbiotic efficiency was successfully determined in greenhouse experiments. Furthermore, we present and analyze the whole-genome sequence for a promising candidate for agricultural application, which has high nitrogen fixation features and promotes common bean yields in field studies. Plants inoculated with the rhizobial isolate S3 or with a consortium of local isolates (COMB), including S3, produced a significantly higher number of seeds and seed dry weight when compared to uninoculated control plants at two study sites. The performance of plants inoculated with commercial isolate CIAT899 was not significantly different from uninoculated plants (p > 0.05), indicating tight competition from native rhizobia for nodule occupancy. Pangenome analysis and the overall genome-related indices showed that S3 is a member of R. phaseoli. However, synteny analysis revealed significant differences in the gene order, orientation, and copy numbers between S3 and the reference R. phaseoli. Isolate S3 is phylogenomically similar to R. phaseoli. However, it has undergone significant genome rearrangements (global mutagenesis) to adapt to harsh conditions in Kenyan soils. Its high nitrogen fixation ability shows optimal adaptation to Kenyan soils, and the strain can potentially replace nitrogenous fertilizer application. We recommend that extensive fieldwork in other parts of the country over a period of five years be performed on S3 to check on how the yield changes with varying whether conditions.


Asunto(s)
Phaseolus , Rhizobium , Rhizobium/genética , Kenia , Phaseolus/microbiología , Suelo , Simbiosis/genética , Nitrógeno
5.
New Phytol ; 236(4): 1245-1260, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36089886

RESUMEN

The phloem is a highly specialized vascular tissue that forms a fundamentally important transport and signaling pathway in plants. It is therefore a system worth protecting. The main function of the phloem is to transport the products of photosynthesis throughout the whole plant, but it also transports soluble signaling molecules and propagates electrophysiological signals. The phloem is constantly threatened by mechanical injuries, phloem-sucking pests and parasites, and the spread of pathogens, which has led to the evolution of efficient defense mechanisms. One such mechanism involves structural phloem proteins, which are thought to facilitate sieve element occlusion following injury and to defend the plant against pathogens. In leguminous plants, specialized structural phloem proteins known as forisomes form unique mechanoproteins via sophisticated molecular interaction and assembly mechanisms, thus enabling reversible sieve element occlusion. By understanding the structure and function of forisomes and other structural phloem proteins, we can develop a toolbox for biotechnological applications in material science and medicine. Furthermore, understanding the involvement of structural phloem proteins in plant defense mechanisms will allow phloem engineering as a new strategy for the development of crop varieties that are resistant to pests, pathogens and parasites.


Asunto(s)
Fabaceae , Floema , Floema/metabolismo , Fabaceae/fisiología , Plantas/metabolismo , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35743041

RESUMEN

Grain legumes play a significant role in smallholder farming systems in Africa because of their contribution to nutrition and income security and their role in fixing nitrogen. Biological Nitrogen Fixation (BNF) serves a critical role in improving soil fertility for legumes. Although much research has been conducted on rhizobia in nitrogen fixation and their contribution to soil fertility, much less is known about the distribution and diversity of the bacteria strains in different areas of the world and which of the strains achieve optimal benefits for the host plants under specific soil and environmental conditions. This paper reviews the distribution, characterization, and commercialization of elite rhizobia strains in Africa.


Asunto(s)
Fabaceae , Rhizobium , Fabaceae/microbiología , Fijación del Nitrógeno , Suelo , Simbiosis
7.
Phytopathology ; 111(4): 703-712, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32997606

RESUMEN

Napier grass stunt (NGS) phytoplasma, a phloem-limited bacterium, infects Napier grass leading to severe yield losses in East Africa. The infected plants are strongly inhibited in growth and biomass production. In this study, phytoplasma-induced morphological changes of the vascular system and physiological changes were analyzed and compared with uninfected plants. The study showed that the phytoplasmas are more abundant in source leaves and range from 103 bacteria/µg total DNA in infected roots to 106 in mature Napier grass leaves. Using microscopical, biochemical, and physiological tools, we demonstrated that the ultrastructure of the phloem and sieve elements is severely altered in the infected plants, which results in the reduction of both the mass flow and the translocation of photoassimilates in the infected leaves. The reduced transport rate inhibits the photochemistry of photosystem II in the infected plants, which is accompanied by loss of chloroplastic pigments in response to the phytoplasma infection stress eventually resulting in yellowing of diseased plants. The phytoplasma infection stress also causes imbalances in the levels of defense-related antioxidants, glutathione, ascorbic acid, reactive oxygen species (ROS), and-in particular-hydrogen peroxide. This study shows that the infection of NGS phytoplasma in the phloem of Napier grass has an impact on the primary metabolism and activates a ROS-dependent defense response.


Asunto(s)
Phytoplasma , Floema , Enfermedad por Fitoplasma , Enfermedades de las Plantas , Hojas de la Planta
8.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948378

RESUMEN

Phytoplasmas are bacterial pathogens that live mainly in the phloem of their plant hosts. They dramatically manipulate plant development by secreting effector proteins that target developmental proteins of their hosts. Traditionally, the effects of individual effector proteins have been studied by ectopic overexpression using strong, ubiquitously active promoters in transgenic model plants. However, the impact of phytoplasma infection on the host plants depends on the intensity and timing of infection with respect to the developmental stage of the host. To facilitate investigations addressing the timing of effector protein activity, we have established chemical-inducible expression systems for the three most well-characterized phytoplasma effector proteins, SECRETED ASTER YELLOWS WITCHES' BROOM PROTEIN 11 (SAP11), SAP54 and TENGU in transgenic Arabidopsis thaliana. We induced gene expression either continuously, or at germination stage, seedling stage, or flowering stage. mRNA expression was determined by quantitative reverse transcription PCR, protein accumulation by confocal laser scanning microscopy of GFP fusion proteins. Our data reveal tight regulation of effector gene expression and strong upregulation after induction. Phenotypic analyses showed differences in disease phenotypes depending on the timing of induction. Comparative phenotype analysis revealed so far unreported similarities in disease phenotypes, with all three effector proteins interfering with flower development and shoot branching, indicating a surprising functional redundancy of SAP54, SAP11 and TENGU. However, subtle but mechanistically important differences were also observed, especially affecting the branching pattern of the plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Bacterianas/genética , Phytoplasma/genética , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Phytoplasma/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/crecimiento & desarrollo
9.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419062

RESUMEN

Forisomes are giant fusiform protein complexes composed of sieve element occlusion (SEO) protein monomers, exclusively found in sieve elements (SEs) of legumes. Forisomes block the phloem mass flow by a Ca2+-induced conformational change (swelling and rounding). We studied the forisome reactivity in four different legume species-Medicago sativa, Pisum sativum, Trifolium pratense and Vicia faba. Depending on the species, we found direct relationships between SE diameter, forisome surface area and distance from the leaf tip, all indicative of a developmentally tuned regulation of SE diameter and forisome size. Heat-induced forisome dispersion occurred later with increasing distance from the stimulus site. T. pratense and V. faba dispersion occurred faster for forisomes with a smaller surface area. Near the stimulus site, electro potential waves (EPWs)-overlapping action (APs), and variation potentials (VPs)-were linked with high full-dispersion rates of forisomes. Distance-associated reduction of forisome reactivity was assigned to the disintegration of EPWs into APs, VPs and system potentials (SPs). Overall, APs and SPs alone were unable to induce forisome dispersion and only VPs above a critical threshold were capable of inducing forisome reactions.


Asunto(s)
Fabaceae/fisiología , Proteínas de Plantas/metabolismo , Calcio/metabolismo , Fenómenos Electrofisiológicos , Fabaceae/crecimiento & desarrollo , Fabaceae/metabolismo , Medicago sativa/crecimiento & desarrollo , Medicago sativa/metabolismo , Pisum sativum/crecimiento & desarrollo , Pisum sativum/metabolismo , Floema/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Especificidad de la Especie , Temperatura , Vicia faba/crecimiento & desarrollo , Vicia faba/metabolismo
10.
Mol Plant Microbe Interact ; 32(3): 351-363, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30252617

RESUMEN

The endophytic fungus Mortierella hyalina colonizes the roots of Arabidopsis thaliana and stimulates growth and biomass production of the aerial parts but not of roots. An exudate fraction from the fungus induces rapid and transient cytoplasmic Ca2+elevation in the roots. The Ca2+ response does not require the well-characterized (co)receptors BAK1, CERK1, and FLS2 for pathogen-associated molecular patterns, and the Ca2+ channels GLR-2.4, GLR-2.5, and GLR-3.3 or the vacuolar TWO PORE CHANNEL1, which might be involved in cytoplasmic Ca2+ elevation. We isolated an ethyl-methane-sulfonate-induced Arabidopsis mutant that is impaired in this Ca2+ response. The roots of the mutant are impaired in M. hyalina-mediated suppression of immune responses after Alternaria brassicae infection, i.e., jasmonate accumulation, generation of reactive oxygen species, as well as the activation of jasmonate-related defense genes. Furthermore, they are more colonized by M. hyalina than wild-type roots. We propose that the mutant gene product is involved in a Ca2+-dependent signaling pathway activated by M. hyalina to suppress immune responses in Arabidopsis roots.


Asunto(s)
Alternaria , Antibiosis , Proteínas de Arabidopsis , Arabidopsis , Mortierella , Raíces de Plantas , Alternaria/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Calcio/metabolismo , Mortierella/fisiología , Raíces de Plantas/microbiología
11.
Plant Physiol ; 176(3): 2496-2514, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29371249

RESUMEN

Piriformospora indica, an endophytic root-colonizing fungus, efficiently promotes plant growth and induces resistance to abiotic stress and biotic diseases. P. indica fungal cell wall extract induces cytoplasmic calcium elevation in host plant roots. Here, we show that cellotriose (CT) is an elicitor-active cell wall moiety released by P. indica into the medium. CT induces a mild defense-like response, including the production of reactive oxygen species, changes in membrane potential, and the expression of genes involved in growth regulation and root development. CT-based cytoplasmic calcium elevation in Arabidopsis (Arabidopsis thaliana) roots does not require the BAK1 coreceptor or the putative Ca2+ channels TPC1, GLR3.3, GLR2.4, and GLR2.5 and operates synergistically with the elicitor chitin. We identified an ethyl methanesulfonate-induced mutant (cytoplasmiccalcium elevation mutant) impaired in the response to CT and various other cellooligomers (n = 2-7), but not to chitooligomers (n = 4-8), in roots. The mutant contains a single nucleotide exchange in the gene encoding a poly(A) ribonuclease (AtPARN; At1g55870) that degrades the poly(A) tails of specific mRNAs. The wild-type PARN cDNA, expressed under the control of a 35S promoter, complements the mutant phenotype. Our identification of cellotriose as a novel chemical mediator casts light on the complex P. indica-plant mutualistic relationship.


Asunto(s)
Arabidopsis/microbiología , Basidiomycota/fisiología , Celulosa/metabolismo , Exorribonucleasas/metabolismo , Simbiosis/fisiología , Triosas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Exorribonucleasas/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Plantones/metabolismo , Plantones/microbiología , Transducción de Señal
12.
PLoS Pathog ; 12(10): e1005901, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27737019

RESUMEN

Meeting the increasing food and energy demands of a growing population will require the development of ground-breaking strategies that promote sustainable plant production. Host-induced gene silencing has shown great potential for controlling pest and diseases in crop plants. However, while delivery of inhibitory noncoding double-stranded (ds)RNA by transgenic expression is a promising concept, it requires the generation of transgenic crop plants which may cause substantial delay for application strategies depending on the transformability and genetic stability of the crop plant species. Using the agronomically important barley-Fusarium graminearum pathosystem, we alternatively demonstrate that a spray application of a long noncoding dsRNA (791 nt CYP3-dsRNA), which targets the three fungal cytochrome P450 lanosterol C-14α-demethylases, required for biosynthesis of fungal ergosterol, inhibits fungal growth in the directly sprayed (local) as well as the non-sprayed (distal) parts of detached leaves. Unexpectedly, efficient spray-induced control of fungal infections in the distal tissue involved passage of CYP3-dsRNA via the plant vascular system and processing into small interfering (si)RNAs by fungal DICER-LIKE 1 (FgDCL-1) after uptake by the pathogen. We discuss important consequences of this new finding on future RNA-based disease control strategies. Given the ease of design, high specificity, and applicability to diverse pathogens, the use of target-specific dsRNA as an anti-fungal agent offers unprecedented potential as a new plant protection strategy.


Asunto(s)
Agentes de Control Biológico/administración & dosificación , Fusariosis/prevención & control , Enfermedades de las Plantas/prevención & control , Plantas Modificadas Genéticamente , ARN Bicatenario/administración & dosificación , Northern Blotting , Hordeum/genética , Hordeum/parasitología , Microscopía Confocal , Control Biológico de Vectores/métodos , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación
13.
Plant Physiol ; 170(4): 2407-19, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26872949

RESUMEN

In stressed plants, electrophysiological reactions (elRs) are presumed to contribute to long-distance intercellular communication between distant plant parts. Because of the focus on abiotic stress-induced elRs in recent decades, biotic stress-triggered elRs have been widely ignored. It is likely that the challenge to identify the particular elR types (action potential [AP], variation potential, and system potential [SP]) was responsible for this course of action. Thus, this survey focused on insect larva feeding (Spodoptera littoralis and Manduca sexta) that triggers distant APs, variation potentials, and SPs in monocotyledonous and dicotyledonous plant species (Hordeum vulgare, Vicia faba, and Nicotiana tabacum). APs were detected only after feeding on the stem/culm, whereas SPs were observed systemically following damage to both stem/culm and leaves. This was attributed to the unequal vascular innervation of the plant and a selective electrophysiological connectivity of the plant tissue. However, striking variations in voltage patterns were detected for each elR type. Further analyses (also in Brassica napus and Cucurbita maxima) employing complementary electrophysiological approaches in response to different stimuli revealed various reasons for these voltage pattern variations: an intrinsic plasticity of elRs, a plant-specific signature of elRs, a specific influence of the applied (a)biotic trigger, the impact of the technical approach, and/or the experimental setup. As a consequence, voltage pattern variations, which are not irregular but rather common, need to be included in electrophysiological signaling analysis. Due to their widespread occurrence, systemic propagation, and respective triggers, elRs should be considered as candidates for long-distance communication in higher plants.


Asunto(s)
Fenómenos Electrofisiológicos , Herbivoria/fisiología , Hordeum/fisiología , Nicotiana/fisiología , Vicia faba/fisiología , Potenciales de Acción/fisiología , Animales , Hordeum/parasitología , Manduca/fisiología , Modelos Biológicos , Hojas de la Planta/fisiología , Haz Vascular de Plantas/fisiología , Spodoptera/fisiología , Nicotiana/parasitología , Vicia faba/parasitología
14.
J Exp Bot ; 68(13): 3673-3688, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28859375

RESUMEN

In Fabaceae, dispersion of forisomes-highly ordered aggregates of sieve element proteins-in response to phytoplasma infection was proposed to limit phloem mass flow and, hence, prevent pathogen spread. In this study, the involvement of filamentous sieve element proteins in the containment of phytoplasmas was investigated in non-Fabaceae plants. Healthy and infected Arabidopsis plants lacking one or two genes related to sieve element filament formation-AtSEOR1 (At3g01680), AtSEOR2 (At3g01670), and AtPP2-A1 (At4g19840)-were analysed. TEM images revealed that phytoplasma infection induces phloem protein filament formation in both the wild-type and mutant lines. This result suggests that, in contrast to previous hypotheses, sieve element filaments can be produced independently of AtSEOR1 and AtSEOR2 genes. Filament presence was accompanied by a compensatory overexpression of sieve element protein genes in infected mutant lines in comparison with wild-type lines. No correlation was found between phloem mass flow limitation and phytoplasma titre, which suggests that sieve element proteins are involved in defence mechanisms other than mechanical limitation of the pathogen.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/inmunología , Floema/metabolismo , Phytoplasma/fisiología , Enfermedades de las Plantas/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología
15.
Mol Plant Microbe Interact ; 28(12): 1288-303, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26325125

RESUMEN

Fusarium graminearum is one of the most common and potent fungal pathogens of wheat (Triticum aestivum), known for causing devastating spike infections and grain yield damage. F. graminearum is a typical soil-borne pathogen that builds up during consecutive cereal cropping. Speculation on systemic colonization of cereals by F. graminearum root infection have long existed but have not been proven. We have assessed the Fusarium root rot disease macroscopically in a diverse set of 12 wheat genotypes and microscopically in a comparative study of two genotypes with diverging responses. Here, we show a 'new' aspect of the F. graminearum life cycle, i.e., the head blight fungus uses a unique root-infection strategy with an initial stage typical for root pathogens and a later stage typical for spike infection. Root colonization negatively affects seedling development and leads to systemic plant invasion by tissue-adapted fungal strategies. Another major outcome is the identification of partial resistance to root rot. Disease severity assessments and histological examinations both demonstrated three distinct disease phases that, however, proceeded differently in resistant and susceptible genotypes. Soil-borne inoculum and root infection are considered significant components of the F. graminearum life cycle with important implications for the development of new strategies of resistance breeding and disease control.


Asunto(s)
Fusarium/patogenicidad , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Triticum/crecimiento & desarrollo , Triticum/microbiología
16.
J Exp Bot ; 66(2): 533-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25540441

RESUMEN

Sieve tubes serve as transport conduits for photo-assimilates and other resources in angiosperms and are profitable targets for piercing-sucking insects such as aphids. Sieve-tube sap also contains significant amounts of proteins with diverse functions, for example in signalling, metabolism, and defence. The identification of salivary proteases in Acyrthosiphon pisum led to the hypothesis that aphids might be able to digest these proteins and by doing so suppress plant defence and access additional nitrogen sources. Here, the scarce knowledge of proteases in aphid saliva is briefly reviewed. In order to provide a better platform for discussion, we conducted a few tests on in vitro protease activity and degradation of sieve-tube sap proteins of Cucurbita maxima by watery saliva. Inhibition of protein degradation by EDTA indicates the presence of different types of proteases (e.g. metalloproteses) in saliva of A. pisum. Proteases in the watery saliva from Macrosiphum euphorbiae and A. pisum were able to degrade the most abundant phloem protein, which is phloem protein 1. Our results provide support for the breakdown of sieve-element proteins by aphid saliva in order to suppress/neutralize the defence responses of the plant and to make proteins of sieve-tube sap accessible as a nitrogen source, as is discussed in detail. Finally, we discuss whether glycosylation of sieve-element proteins and the presence of protease inhibitors may confer partial protection against the proteolytic activity of aphid saliva.


Asunto(s)
Áfidos/enzimología , Péptido Hidrolasas/metabolismo , Floema/metabolismo , Proteínas de Plantas/metabolismo , Proteolisis , Saliva/enzimología , Animales
17.
New Phytol ; 201(4): 1176-1182, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24387138

RESUMEN

• The stress-related phytohormones, salicylic acid (SA) and abscisic acid (ABA), and the three jasmonates, jasmonic acid (JA), cis-12-oxo-phytodienoic acid (cis-OPDA), and (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), were investigated in phloem and xylem exudates of Cucurbita maxima. • Phloem and xylem exudates were separately collected and analysed via liquid chromatography-mass spectrometry. • We show direct evidence for all three jasmonates, ABA, and SA in both phloem and xylem exudates of C. maxima. JA and JA-Ile concentrations are higher in xylem (JA: c(xylem) ≈ 199.5 nM, c(phloem) ≈ 43.9 nM; JA-Ile: c(xylem) ≈ 7.9 nM, c(phloem) ≈ 1.6 nM), whereas ABA and SA concentrations are higher in phloem exudates (ABA: c(xylem) ≈ 37.1 nM, c(phloem) ≈ 142.6 nM; SA: c(xylem) ≈ 61.6 nM, c(phloem) ≈ 1319 nM). During bacteria-derived flagellin 22 (flg22)-triggered remote root-to-shoot signalling, phytohormone concentration changed rapidly both in phloem and xylem. • The unequal distribution of phytohormones suggests that phloem and xylem have distinct roles in defence responses. Our data shed light on systemic phytohormone signalling and help explain how plants cope with environmental challenges by lateral exchange between phloem and xylem. Our analysis is a starting point for further investigations of how phytohormones contribute to phloem- and xylem-based defence signalling.


Asunto(s)
Cucurbita/fisiología , Flagelina/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Haz Vascular de Plantas/fisiología , Estrés Fisiológico/efectos de los fármacos , Cucurbita/efectos de los fármacos , Floema/efectos de los fármacos , Floema/fisiología , Exudados de Plantas/metabolismo , Haz Vascular de Plantas/efectos de los fármacos , Xilema/efectos de los fármacos , Xilema/fisiología
18.
J Exp Bot ; 65(7): 1761-87, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24482370

RESUMEN

We explored the idea of whether electropotential waves (EPWs) primarily act as vehicles for systemic spread of Ca(2+) signals. EPW-associated Ca(2+) influx may trigger generation and amplification of countless long-distance signals along the phloem pathway given the fact that gating of Ca(2+)-permeable channels is a universal response to biotic and abiotic challenges. Despite fundamental differences, both action and variation potentials are associated with a sudden Ca(2+) influx. Both EPWs probably disperse in the lateral direction, which could be of essential functional significance. A vast set of Ca(2+)-permeable channels, some of which have been localized, is required for Ca(2+)-modulated events in sieve elements. There, Ca(2+)-permeable channels are clustered and create so-called Ca(2+) hotspots, which play a pivotal role in sieve element occlusion. Occlusion mechanisms play a central part in the interaction between plants and phytopathogens (e.g. aphids or phytoplasmas) and in transient re-organization of the vascular symplasm. It is argued that Ca(2+)-triggered systemic signalling occurs in partly overlapping waves. The forefront of EPWs may be accompanied by a burst of free Ca(2+) ions and Ca(2+)-binding proteins in the sieve tube sap, with a far-reaching impact on target cells. Lateral dispersion of EPWs may induce diverse Ca(2+) influx and handling patterns (Ca(2+) signatures) in various cell types lining the sieve tubes. As a result, a variety of cascades may trigger the fabrication of signals such as phytohormones, proteins, or RNA species released into the sap stream after product-related lag times. Moreover, transient reorganization of the vascular symplasm could modify cascades in disjunct vascular cells.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Floema/metabolismo , Células Vegetales/fisiología , Transducción de Señal , Fenómenos Electrofisiológicos , Proteínas de Plantas/metabolismo
19.
Plant Cell Environ ; 36(1): 237-47, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22765252

RESUMEN

Collection of cucurbit exudates from cut petioles has been a powerful tool for gaining knowledge on phloem sap composition without full notion of the complex exudation mechanism. Only few publications explicitly mentioned that exudates were collected from the basal side of the cut, which exudes more copiously than the apical side. This is surprising since only exudation from the apical side is supposedly driven by phloem pressure gradients. Composition of carbohydrates and pH values at both wounding sides are equal, whereas protein concentration is higher at the basal side. Apparently, exudation is far more complex than just the delivery of phloem sap. Xylem involvement is indicated by lower protein concentrations after elimination of root pressure. Moreover, dye was sucked into xylem vessels owing to relaxation of negative pressure after cutting. The lateral water efflux from the vessels increases turgor of surrounding cells including sieve elements. Simultaneously, detached parietal proteins (PP1/PP2) induce occlusion of sieve plates and cover wound surface. If root pressure is strong enough, pure xylem sap can be collected after removal of the occlusion plug at the wound surface. The present findings provide a mechanism of sap exudation in Cucurbita maxima, in which the contribution of xylem water is integrated.


Asunto(s)
Cucurbita/fisiología , Floema/fisiología , Exudados de Plantas/metabolismo , Xilema/fisiología , Cucurbita/química , Fenómenos Electrofisiológicos , Concentración de Iones de Hidrógeno , Exudados de Plantas/química , Proteínas de Plantas/análisis , Raíces de Plantas/fisiología , Agua/fisiología
20.
Plants (Basel) ; 12(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176952

RESUMEN

Although phloem-feeding insects such as aphids can cause significant damage to plants, relatively little is known about early plant defenses against these insects. As a first line of defense, legumes can stop the phloem mass flow through a conformational change in phloem proteins known as forisomes in response to Ca2+ influx. However, specialized phloem-feeding insects might be able to suppress the conformational change of forisomes and thereby prevent sieve element occlusion. To investigate this possibility, we triggered forisome dispersion through application of a local heat stimulus to the leaf tips of pea (Pisum sativum), clover (Trifolium pratense) and broad bean (Vicia faba) plants infested with different pea aphid (Acyrthosiphon pisum) host races and monitored forisome responses. Pea aphids were able to suppress forisome dispersion, but this depended on the infesting aphid host race, the plant species, and the age of the plant. Differences in the ability of aphids to suppress forisome dispersion may be explained by differences in the composition and quantity of the aphid saliva injected into the plant. Various mechanisms of how pea aphids might suppress forisome dispersion are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA