Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Thromb Haemost ; 22(3): 851-859, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38007062

RESUMEN

BACKGROUND: Genetic diagnosis of inherited platelet disorders (IPDs) is mainly performed by high-throughput sequencing (HTS). These short-read-based sequencing methods sometimes fail to characterize the genetics of the disease. OBJECTIVES: To evaluate nanopore long-read DNA sequencing for characterization of structural variants (SVs) in patients with IPDs. METHODS: Four patients with a clinical and laboratory diagnosis of Glanzmann thrombasthenia (GT) (P1 and P2) and Hermansky-Pudlak syndrome (HPS) (P3 and P4) in whom HTS missed the underlying molecular cause were included. DNA was analyzed by both standard HTS and nanopore sequencing on a MinION device (Oxford Nanopore Technologies) after enrichment of DNA spanning regions covering GT and HPS genes. RESULTS: In patients with GT, HTS identified only 1 heterozygous ITGB3 splice variant c.2301+1G>C in P2. In patients with HPS, a homozygous deletion in HPS5 was suspected in P3, and 2 heterozygous HPS3 variants, c.2464C>T (p.Arg822∗) and a deletion affecting 2 exons, were reported in P4. Nanopore sequencing revealed a complex SV affecting exons 2 to 6 in ITGB3 (deletion-inversion-duplication) in homozygosity in P1 and compound heterozygosity with the splice variant in P2. In the 2 patients with HPS, nanopore defined the length of the SVs, which were characterized at nucleotide resolution. This allowed the identification of repetitive Alu elements at the breakpoints and the design of specific polymerase chain reactions for family screening. CONCLUSION: The nanopore technology overcomes the limitations of standard short-read sequencing techniques in SV characterization. Using nanopore, we characterized novel defects in ITGB3, HPS5, and HPS3, highlighting the utility of long-read sequencing as an additional diagnostic tool in IPDs.


Asunto(s)
Síndrome de Hermanski-Pudlak , Trombastenia , Humanos , Homocigoto , Eliminación de Secuencia , Síndrome de Hermanski-Pudlak/genética , Análisis de Secuencia de ADN , Trombastenia/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ADN
2.
Glob Pediatr Health ; 3: 2333794X16679587, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28229091

RESUMEN

This randomized, open-label study evaluated the additional benefits of the synbiotic Prodefen® in the clinical management of acute diarrhea of suspected viral origin in children between 6 months and 12 years of age. Study outcomes included the duration of diarrhea, the recovery from diarrhea, and the tolerability and acceptance of the treatment. The proportion of patients without diarrhea over the study period was greater in the synbiotic group than in the control group at all study time points, showing a statistically significant difference on the fifth day (95% vs 79%, p < 0.001). The duration of diarrhea (median and interquartile range) was reduced by 1 day in the synbiotic-treated patients (3 [2-5] vs 4 [3-5], p = 0.377). The tolerability of the treatment regimen, as evaluated by the parents, was significantly better in those receiving the synbiotic than in the control group. Overall, 96% of the parents of children receiving the synbiotic reported being satisfied to very satisfied with the treatment regimen. The results of this study indicate that the addition of the synbiotic Prodefen® is a well-tolerated and well-accepted approach that provides an additional benefit to the standard supportive therapy in the management of acute viral diarrhea in children.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA