Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(13)2019 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-31284602

RESUMEN

The DUF642 protein family is found exclusively in spermatophytes and is represented by 10 genes in Arabidopsis and in most of the 24 plant species analyzed to date. Even though the primary structure of DUF642 proteins is highly conserved in different spermatophyte species, studies of their expression patterns in Arabidopsis have shown that the spatial-temporal expression pattern for each gene is specific and consistent with the phenotypes of the mutant plants studied so far. Additionally, the regulation of DUF642 gene expression by hormones and environmental stimuli was specific for each gene, showing both up- and down-regulation depending of the analyzed tissue and the intensity or duration of the stimuli. These expression patterns suggest that the DUF642 genes are involved throughout the development and growth of plants. In general, changes in the expression patterns of DUF642 genes can be related to changes in pectin methyl esterase activity and/or to changes in the degree of methyl-esterified homogalacturonans during plant development in different cell types. Thus, the regulation of pectin methyl esterases mediated by DUF642 genes could contribute to the regulation of the cell wall properties during plant growth.


Asunto(s)
Pared Celular/metabolismo , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Desarrollo de la Planta/genética , Proteínas de Plantas/genética
2.
Plants (Basel) ; 11(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35214854

RESUMEN

The species of the genus Ceiba produces fruits with fibers with a high content of cellulose. The fiber is used for textiles, cushion filling and for industrial purposes and its characteristics have been studied in some species including Ceiba pentandra (kapok), C. speciosa and C. aesculifolia. The use of the trunk and seeds of Ceiba has also been described for different species. This article presents a review on the biological diversity of the genus Ceiba (Malvaceae). The genus Ceiba has 18 recognized species that are distributed naturally in America and Africa. However, some Ceiba trees have been introduced to various countries, especially in Asia, due to their ornamental interest and potential uses for their fiber. Ecophysiological studies of different Ceiba species have shown that resistance to adverse environmental conditions varies from species to species. Therefore, Ceiba species are considered potentially useful in restoring ecosystems impacted by human activity. The information related to the classification, morphological characteristics, phenology, ecophysiology and distribution of the different species will be extremely relevant for the sustainable production of kapok fiber. Finally, the recent genomic and transcriptomic studies also provide a valuable resource for further genetic improvement and effective use of Ceiba trees.

3.
Plants (Basel) ; 11(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36432778

RESUMEN

Plant cell wall remodeling is an important process during plant responses to heat stress. Pectins, a group of cell wall polysaccharides with a great diversity of complex chemical structures, are also involved in heat stress responses. Enzymatic activity of the pectin methyl esterases, which remove methyl groups from pectins in the cell wall, is regulated by DUF642 proteins, as described in different plants, including Arabidopsis thaliana and Oryza sativa. Our results demonstrated that heat stress altered the expression of the DUF642 gene, BIIDXI. There was an important decrease in BIIDXI expression during the first hour of HS, followed by an increase at 24 h. bdx-1 seedlings had less tolerance to heat stress but presented a normal heat stress response; HSFA2 and HSP22 expressions were highly increased, as they were in WT seedlings. Thermopriming triggered changes in pectin methyl esterase activity in WT seedlings, while no increases in PME activity were detected in bdx-1 seedlings at the same conditions. Taken together, our results suggest that BIIDXI is involved in thermotolerance via PME activation.

4.
Plants (Basel) ; 10(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071163

RESUMEN

Germination represents the culmination of the seed developmental program and is affected by the conditions prevailing during seed maturation in the mother plant. During maturation, the dormancy condition and tolerance to dehydration are established. These characteristics are modulated by the environment to which they are subjected, having an important impact on wild species. In this work, a review was made of the molecular bases of the maturation, the processes of dormancy imposition and loss, as well as the germination process in different wild species with different life histories, and from diverse habitats. It is also specified which of these species present a certain type of management. The impact that the domestication process has had on certain characteristics of the seed is discussed, as well as the importance of determining physiological stages based on morphological characteristics, to face the complexities of the study of these species and preserve their genetic diversity and physiological responses.

5.
Sci Rep ; 10(1): 10429, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591557

RESUMEN

Seeds constitute a key physiological stage in plants life cycle. During seed germination, there is a spatial-temporal imbibition pattern that correlates with described physiological processes. However, only the moment of testa rupture has been described as a critical, discrete stage. Could a specific relative water content (RWC) value reflect a physiological stage useful for comparisons between seed batches? We tracked seed-by-seed imbibition during germination to homogenize sampling and selected a transcriptomic approach to analyse the physiological transitions that occur in seed batches collected in different years and with contrasting phenotypic responses to a priming treatment. The seed RWC reflected the transcriptional transitions that occur during germination, regardless of imbibition time or collection year, and revealed a set of biological processes that occur in the dry seed and during early germination are associated with the phenotypic response to priming. As climate shifts, so do the timing of developmental events important for determining organismal fitness, and poses another challenge to the comprehension of molecular and physiological processes driving the interaction between organisms and environment. In this study, we demonstrate that the use of physiological traits, specific to a particular developmental stage, is a reliable time-independent approach.


Asunto(s)
Ceiba/fisiología , Germinación/fisiología , Semillas/química , Agua/análisis , Regulación de la Expresión Génica de las Plantas , Transcriptoma
6.
J Plant Physiol ; 231: 105-109, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30253266

RESUMEN

Auxin is involved in hypocotyl elongation in response to different environmental factors. BIIDXI is a cell wall DUF642 protein that participates in the regulation of the degree of pectin-methylesterification of the cell wall in different tissues, including hypocotyls. Under continuous light, bdx-1 seedlings presented longer hypocotyls than those of WT, while BIIDXI-overexpressed hypocotyls were auxin resistant. Auxin accumulation was observed in epidermal cells from bdx-1 hypocotyls, and the distribution pattern of PIN1 proteins differed. Moreover, the gravitropic response of bdx-1, a process that is highly dependent on auxin flux, was increased. In this study, we determined that BIIDXI is involved in hypocotyl elongation through the regulation of auxin flux.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas Portadoras/fisiología , Pared Celular/metabolismo , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/metabolismo , Hipocótilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA