Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(5): 1224-1237, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27114036

RESUMEN

The unicellular ancestor of animals had a complex repertoire of genes linked to multicellular processes. This suggests that changes in the regulatory genome, rather than in gene innovation, were key to the origin of animals. Here, we carry out multiple functional genomic assays in Capsaspora owczarzaki, the unicellular relative of animals with the largest known gene repertoire for transcriptional regulation. We show that changing chromatin states, differential lincRNA expression, and dynamic cis-regulatory sites are associated with life cycle transitions in Capsaspora. Moreover, we demonstrate conservation of animal developmental transcription-factor networks and extensive network interconnection in this premetazoan organism. In contrast, however, Capsaspora lacks animal promoter types, and its regulatory sites are small, proximal, and lack signatures of animal enhancers. Overall, our results indicate that the emergence of animal multicellularity was linked to a major shift in genome cis-regulatory complexity, most notably the appearance of distal enhancer regulation.


Asunto(s)
Evolución Biológica , Eucariontes/genética , Elementos Reguladores de la Transcripción , Animales , Eucariontes/clasificación , Eucariontes/citología , Redes Reguladoras de Genes , Genoma , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , ARN no Traducido
2.
Nature ; 616(7957): 495-503, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046085

RESUMEN

Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.


Asunto(s)
Aletas de Animales , Evolución Biológica , Genoma , Genómica , Rajidae , Animales , Aletas de Animales/anatomía & histología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Rajidae/anatomía & histología , Rajidae/genética , Pez Cebra/genética , Genes Reporteros/genética
3.
PLoS Biol ; 22(6): e3002661, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829909

RESUMEN

Deuterostomes are a monophyletic group of animals that includes Hemichordata, Echinodermata (together called Ambulacraria), and Chordata. The diversity of deuterostome body plans has made it challenging to reconstruct their ancestral condition and to decipher the genetic changes that drove the diversification of deuterostome lineages. Here, we generate chromosome-level genome assemblies of 2 hemichordate species, Ptychodera flava and Schizocardium californicum, and use comparative genomic approaches to infer the chromosomal architecture of the deuterostome common ancestor and delineate lineage-specific chromosomal modifications. We show that hemichordate chromosomes (1N = 23) exhibit remarkable chromosome-scale macrosynteny when compared to other deuterostomes and can be derived from 24 deuterostome ancestral linkage groups (ALGs). These deuterostome ALGs in turn match previously inferred bilaterian ALGs, consistent with a relatively short transition from the last common bilaterian ancestor to the origin of deuterostomes. Based on this deuterostome ALG complement, we deduced chromosomal rearrangement events that occurred in different lineages. For example, a fusion-with-mixing event produced an Ambulacraria-specific ALG that subsequently split into 2 chromosomes in extant hemichordates, while this homologous ALG further fused with another chromosome in sea urchins. Orthologous genes distributed in these rearranged chromosomes are enriched for functions in various developmental processes. We found that the deeply conserved Hox clusters are located in highly rearranged chromosomes and that maintenance of the clusters are likely due to lower densities of transposable elements within the clusters. We also provide evidence that the deuterostome-specific pharyngeal gene cluster was established via the combination of 3 pre-assembled microsyntenic blocks. We suggest that since chromosomal rearrangement events and formation of new gene clusters may change the regulatory controls of developmental genes, these events may have contributed to the evolution of diverse body plans among deuterostomes.


Asunto(s)
Cromosomas , Evolución Molecular , Genoma , Filogenia , Animales , Cromosomas/genética , Genoma/genética , Sintenía , Ligamiento Genético , Cordados/genética
4.
Am J Hum Genet ; 109(11): 2029-2048, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36243009

RESUMEN

North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.


Asunto(s)
Distrofias Hereditarias de la Córnea , Tomografía de Coherencia Óptica , Adulto , Animales , Humanos , Linaje , Retina/metabolismo , Xenopus laevis/genética
5.
Proc Natl Acad Sci U S A ; 119(11): e2114802119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35263228

RESUMEN

SignificanceIn this manuscript, we address an essential question in developmental and evolutionary biology: How have changes in gene regulatory networks contributed to the invertebrate-to-vertebrate transition? To address this issue, we perturbed four signaling pathways critical for body plan formation in the cephalochordate amphioxus and in zebrafish and compared the effects of such perturbations on gene expression and gene regulation in both species. Our data reveal that many developmental genes have gained response to these signaling pathways in the vertebrate lineage. Moreover, we show that the interconnectivity between these pathways is much higher in zebrafish than in amphioxus. We conclude that this increased signaling pathway complexity likely contributed to vertebrate morphological novelties during evolution.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Anfioxos , Pez Cebra , Animales , Evolución Biológica , Gastrulación/genética , Anfioxos/embriología , Anfioxos/genética , Pez Cebra/embriología , Pez Cebra/genética
6.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34750251

RESUMEN

One of the central problems of vertebrate evolution is understanding the relationship among the distal portions of fins and limbs. Lacking comparable morphological markers of these regions in fish and tetrapods, these relationships have remained uncertain for the past century and a half. Here we show that Gli3 functions in controlling the proliferative expansion of distal progenitors are shared among dorsal and paired fins as well as tetrapod limbs. Mutant knockout gli3 fins in medaka (Oryzias latipes) form multiple radials and rays, in a pattern reminiscent of the polydactyly observed in Gli3-null mutant mice. In limbs, Gli3 controls both anterior-posterior patterning and cell proliferation, two processes that can be genetically uncoupled. In situ hybridization, quantification of proliferation markers, and analysis of regulatory regions reveal that in paired and dorsal fins, gli3 plays a main role in controlling proliferation but not in patterning. Moreover, gli3 down-regulation in shh mutant fins rescues fin loss in a manner similar to how Gli3 deficiency restores digits in the limbs of Shh mutant mouse embryos. We hypothesize that the Gli3/Shh gene pathway preceded the origin of paired appendages and was originally involved in modulating cell proliferation. Accordingly, the distal regions of dorsal fins, paired fins, and limbs retain a deep regulatory and functional homology that predates the origin of paired appendages.


Asunto(s)
Aletas de Animales/crecimiento & desarrollo , Redes Reguladoras de Genes/genética , Proteínas del Tejido Nervioso/genética , Oryzias/genética , Proteína Gli3 con Dedos de Zinc/genética , Animales , Evolución Biológica , Tipificación del Cuerpo/genética , Proliferación Celular/genética , Extremidades/crecimiento & desarrollo , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones
7.
Mol Biol Evol ; 39(4)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35276009

RESUMEN

Neurons are a highly specialized cell type only found in metazoans. They can be scattered throughout the body or grouped together, forming ganglia or nerve cords. During embryogenesis, centralized nervous systems develop from the ectoderm, which also forms the epidermis. How pluripotent ectodermal cells are directed toward neural or epidermal fates, and to which extent this process is shared among different animal lineages, are still open questions. Here, by using micromere explants, we were able to define in silico the putative gene regulatory networks (GRNs) underlying the first steps of the epidermis and the central nervous system formation in the cephalochordate amphioxus. We propose that although the signal triggering neural induction in amphioxus (i.e., Nodal) is different from vertebrates, the main transcription factors implicated in this process are conserved. Moreover, our data reveal that transcription factors of the neural program seem to not only activate neural genes but also to potentially have direct inputs into the epidermal GRN, suggesting that the Nodal signal might also contribute to neural fate commitment by repressing the epidermal program. Our functional data on whole embryos support this result and highlight the complex interactions among the transcription factors activated by the signaling pathways that drive ectodermal cell fate choice in chordates.


Asunto(s)
Redes Reguladoras de Genes , Anfioxos , Animales , Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistema Nervioso/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Development ; 146(13)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31142542

RESUMEN

Yap1/Taz are well-known Hippo effectors triggering complex transcriptional programs controlling growth, survival and cancer progression. Here, we describe yap1b, a new Yap1/Taz family member with a unique transcriptional activation domain that cannot be phosphorylated by Src/Yes kinases. We show that yap1b evolved specifically in euteleosts (i.e. including medaka but not zebrafish) by duplication and adaptation of yap1. Using DamID-seq, we generated maps of chromatin occupancy for Yap1, Taz (Wwtr1) and Yap1b in gastrulating zebrafish and medaka embryos. Our comparative analyses uncover the genetic programs controlled by Yap family proteins during early embryogenesis, and show largely overlapping targets for Yap1 and Yap1b. CRISPR/Cas9-induced mutation of yap1b in medaka does not result in an overt phenotype during embryogenesis or adulthood. However, yap1b mutation strongly enhances the embryonic malformations observed in yap1 mutants. Thus yap1-/-; yap1b-/- double mutants display more severe body flattening, eye misshaping and increased apoptosis than yap1-/- single mutants, thus revealing overlapping gene functions. Our results indicate that, despite its divergent transactivation domain, Yap1b cooperates with Yap1 to regulate cell survival and tissue morphogenesis during early development.


Asunto(s)
Pérdida del Embrión/genética , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Transactivadores/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Pérdida del Embrión/veterinaria , Embrión no Mamífero , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Mutación , Oryzias/embriología , Oryzias/genética , Dominios Proteicos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Transactivadores/química , Transactivadores/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
Mol Biol Evol ; 37(10): 2857-2864, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421818

RESUMEN

We investigated how the two rounds of whole-genome duplication that occurred at the base of the vertebrate lineage have impacted ancient microsyntenic associations involving developmental regulators (known as genomic regulatory blocks, GRBs). We showed that the majority of GRBs identified in the last common ancestor of chordates have been maintained as a single copy in humans. We found evidence that dismantling of the duplicated GRB copies occurred early in vertebrate evolution often through the differential retention of the regulatory gene but loss of the bystander gene's exonic sequences. Despite the large evolutionary scale, the presence of duplicated highly conserved noncoding regions provided unambiguous proof for this scenario for multiple ancient GRBs. Remarkably, the dismantling of ancient GRB duplicates has contributed to the creation of large gene deserts associated with regulatory genes in vertebrates, providing a potentially widespread mechanism for the origin of these enigmatic genomic traits.


Asunto(s)
Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Genes Reguladores , Poliploidía , Vertebrados/genética , Animales , Duplicación Cromosómica , Genoma Humano , Humanos , Elementos Reguladores de la Transcripción
10.
Proc Natl Acad Sci U S A ; 115(16): E3731-E3740, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610331

RESUMEN

Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell intermingling between adjacent compartments. Here, we identify the fundamental role of the small-GTPase Rac3b in actomyosin cable assembly at hindbrain boundaries. We show that the novel rac3b/rfng/sgca regulatory cluster, which is specifically expressed at the boundaries, emerged in the Ostariophysi superorder by chromosomal rearrangement that generated new cis-regulatory interactions. By combining 4C-seq, ATAC-seq, transgenesis, and CRISPR-induced deletions, we characterized this regulatory domain, identifying hindbrain boundary-specific cis-regulatory elements. Our results suggest that the capacity of boundaries to act as an elastic mesh for segregating rhombomeric cells evolved by cooption of critical genes to a novel regulatory block, refining the mechanisms for hindbrain segmentation.


Asunto(s)
Actomiosina/fisiología , Regulación del Desarrollo de la Expresión Génica , Rombencéfalo/embriología , Sarcoglicanos/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Proteínas de Unión al GTP rac/fisiología , Animales , Tipificación del Cuerpo/genética , Sistemas CRISPR-Cas , Movimiento Celular , Characidae/genética , Characidae/fisiología , Cromatina/genética , Cromatina/ultraestructura , Evolución Molecular , Peces/clasificación , Peces/genética , Morfogénesis , Mutagénesis Sitio-Dirigida , Neurogénesis , Filogenia , Sarcoglicanos/genética , Especificidad de la Especie , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Unión al GTP rac/genética
11.
PLoS Genet ; 14(5): e1007375, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29723190

RESUMEN

Convergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary 'hotspots' are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the 'naked valley' on T2 femurs in Drosophila melanogaster is caused by reduced microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution.


Asunto(s)
Estructuras Animales/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Estructuras Animales/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Drosophila melanogaster/clasificación , Evolución Molecular , Larva/genética , Larva/crecimiento & desarrollo , MicroARNs/genética , Mutación , Factores de Transcripción/genética
12.
Dev Biol ; 448(2): 71-87, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30661644

RESUMEN

Ascidian species of the Phallusia and Ciona genera are distantly related, their last common ancestor dating several hundred million years ago. Although their genome sequences have extensively diverged since this radiation, Phallusia and Ciona species share almost identical early morphogenesis and stereotyped cell lineages. Here, we explored the evolution of transcriptional control between P. mammillata and C. robusta. We combined genome-wide mapping of open chromatin regions in both species with a comparative analysis of the regulatory sequences of a test set of 10 pairs of orthologous early regulatory genes with conserved expression patterns. We find that ascidian chromatin accessibility landscapes obey similar rules as in other metazoa. Open-chromatin regions are short, highly conserved within each genus and cluster around regulatory genes. The dynamics of chromatin accessibility and closest-gene expression are strongly correlated during early embryogenesis. Open-chromatin regions are highly enriched in cis-regulatory elements: 73% of 49 open chromatin regions around our test genes behaved as either distal enhancers or proximal enhancer/promoters following electroporation in Phallusia eggs. Analysis of this datasets suggests a pervasive use in ascidians of "shadow" enhancers with partially overlapping activities. Cross-species electroporations point to a deep conservation of both the trans-regulatory logic between these distantly-related ascidians and the cis-regulatory activities of individual enhancers. Finally, we found that the relative order and approximate distance to the transcription start site of open chromatin regions can be conserved between Ciona and Phallusia species despite extensive sequence divergence, a property that can be used to identify orthologous enhancers, whose regulatory activity can partially diverge.


Asunto(s)
Ciona/embriología , Ciona/genética , Embrión no Mamífero/metabolismo , Evolución Molecular , Variación Genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Urocordados/embriología , Urocordados/genética , Animales , Secuencia de Bases , Tipificación del Cuerpo/genética , Cromatina/genética , Secuencia Conservada/genética , Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos , Gástrula/embriología , Regulación del Desarrollo de la Expresión Génica , Especificidad de la Especie , Factores de Tiempo
13.
Nature ; 507(7492): 371-5, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24646999

RESUMEN

Genome-wide association studies (GWAS) have reproducibly associated variants within introns of FTO with increased risk for obesity and type 2 diabetes (T2D). Although the molecular mechanisms linking these noncoding variants with obesity are not immediately obvious, subsequent studies in mice demonstrated that FTO expression levels influence body mass and composition phenotypes. However, no direct connection between the obesity-associated variants and FTO expression or function has been made. Here we show that the obesity-associated noncoding sequences within FTO are functionally connected, at megabase distances, with the homeobox gene IRX3. The obesity-associated FTO region directly interacts with the promoters of IRX3 as well as FTO in the human, mouse and zebrafish genomes. Furthermore, long-range enhancers within this region recapitulate aspects of IRX3 expression, suggesting that the obesity-associated interval belongs to the regulatory landscape of IRX3. Consistent with this, obesity-associated single nucleotide polymorphisms are associated with expression of IRX3, but not FTO, in human brains. A direct link between IRX3 expression and regulation of body mass and composition is demonstrated by a reduction in body weight of 25 to 30% in Irx3-deficient mice, primarily through the loss of fat mass and increase in basal metabolic rate with browning of white adipose tissue. Finally, hypothalamic expression of a dominant-negative form of Irx3 reproduces the metabolic phenotypes of Irx3-deficient mice. Our data suggest that IRX3 is a functional long-range target of obesity-associated variants within FTO and represents a novel determinant of body mass and composition.


Asunto(s)
Proteínas de Homeodominio/genética , Intrones/genética , Oxigenasas de Función Mixta/genética , Obesidad/genética , Oxo-Ácido-Liasas/genética , Proteínas/genética , Factores de Transcripción/genética , Tejido Adiposo/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Animales , Metabolismo Basal/genética , Índice de Masa Corporal , Peso Corporal/genética , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta , Genes Dominantes/genética , Proteínas de Homeodominio/metabolismo , Humanos , Hipotálamo/metabolismo , Masculino , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Delgadez/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
14.
Nucleic Acids Res ; 46(18): 9414-9431, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30016465

RESUMEN

Human malaria is a devastating disease and a major cause of poverty in resource-limited countries. To develop and adapt within hosts Plasmodium falciparum undergoes drastic switches in gene expression. To identify regulatory regions in the parasite genome, we performed genome-wide profiling of chromatin accessibility in two culture-adapted isogenic subclones at four developmental stages during the intraerythrocytic cycle by using the Assay for Transposase-Accessible Chromatin by sequencing (ATAC-seq). Tn5 transposase hypersensitivity sites (THSSs) localize preferentially at transcriptional start sites (TSSs). Chromatin accessibility by ATAC-seq is predictive of active transcription and of the levels of histone marks H3K9ac and H3K4me3. Our assay allows the identification of novel regulatory regions including TSS and enhancer-like elements. We show that the dynamics in the accessible chromatin profile matches temporal transcription during development. Motif analysis of stage-specific ATAC-seq sites predicts the in vivo binding sites and function of multiple ApiAP2 transcription factors. At last, the alternative expression states of some clonally variant genes (CVGs), including eba, phist, var and clag genes, associate with a differential ATAC-seq signal at their promoters. Altogether, this study identifies genome-wide regulatory regions likely to play an essential function in the developmental transitions and in CVG expression in P. falciparum.


Asunto(s)
Genoma de Protozoos/genética , Sistemas de Lectura Abierta/genética , Plasmodium falciparum/genética , Análisis de Secuencia de ADN , Sitios de Unión , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico , Epigénesis Genética/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estadios del Ciclo de Vida/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
15.
PLoS Genet ; 13(8): e1006985, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28846746

RESUMEN

Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.


Asunto(s)
Cromatina/genética , Desarrollo Embrionario/genética , Ventrículos Cardíacos/crecimiento & desarrollo , Corazón/crecimiento & desarrollo , Proteínas Represoras/genética , Animales , Factor de Unión a CCCTC , Diferenciación Celular/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Ventrículos Cardíacos/embriología , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Organogénesis/genética , Regiones Promotoras Genéticas , Unión Proteica , Activación Transcripcional/genética
16.
PLoS Comput Biol ; 14(3): e1006030, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29522512

RESUMEN

The use of 3C-based methods has revealed the importance of the 3D organization of the chromatin for key aspects of genome biology. However, the different caveats of the variants of 3C techniques have limited their scope and the range of scientific fields that could benefit from these approaches. To address these limitations, we present 4Cin, a method to generate 3D models and derive virtual Hi-C (vHi-C) heat maps of genomic loci based on 4C-seq or any kind of 4C-seq-like data, such as those derived from NG Capture-C. 3D genome organization is determined by integrative consideration of the spatial distances derived from as few as four 4C-seq experiments. The 3D models obtained from 4C-seq data, together with their associated vHi-C maps, allow the inference of all chromosomal contacts within a given genomic region, facilitating the identification of Topological Associating Domains (TAD) boundaries. Thus, 4Cin offers a much cheaper, accessible and versatile alternative to other available techniques while providing a comprehensive 3D topological profiling. By studying TAD modifications in genomic structural variants associated to disease phenotypes and performing cross-species evolutionary comparisons of 3D chromatin structures in a quantitative manner, we demonstrate the broad potential and novel range of applications of our method.


Asunto(s)
Mapeo Cromosómico/métodos , Biología Computacional/métodos , Imagenología Tridimensional/métodos , Cromatina/fisiología , Cromosomas , Simulación por Computador , Genoma , Genómica/métodos , Conformación de Ácido Nucleico , Análisis de Secuencia de ADN/métodos , Programas Informáticos
17.
Development ; 142(17): 3009-20, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26253404

RESUMEN

Microphthalmos is a rare congenital anomaly characterized by reduced eye size and visual deficits of variable degree. Sporadic and hereditary microphthalmos have been associated with heterozygous mutations in genes fundamental for eye development. Yet, many cases are idiopathic or await the identification of molecular causes. Here we show that haploinsufficiency of Meis1, which encodes a transcription factor with evolutionarily conserved expression in the embryonic trunk, brain and sensory organs, including the eye, causes microphthalmic traits and visual impairment in adult mice. By combining analysis of Meis1 loss-of-function and conditional Meis1 functional rescue with ChIP-seq and RNA-seq approaches we show that, in contrast to its preferential association with Hox-Pbx BSs in the trunk, Meis1 binds to Hox/Pbx-independent sites during optic cup development. In the eye primordium, Meis1 coordinates, in a dose-dependent manner, retinal proliferation and differentiation by regulating genes responsible for human microphthalmia and components of the Notch signaling pathway. In addition, Meis1 is required for eye patterning by controlling a set of eye territory-specific transcription factors, so that in Meis1(-/-) embryos boundaries among the different eye territories are shifted or blurred. We propose that Meis1 is at the core of a genetic network implicated in eye patterning/microphthalmia, and represents an additional candidate for syndromic cases of these ocular malformations.


Asunto(s)
Ojo/embriología , Ojo/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodominio/metabolismo , Microftalmía/embriología , Microftalmía/genética , Proteínas de Neoplasias/metabolismo , Envejecimiento/patología , Animales , Apoptosis/genética , Secuencia de Bases , Sitios de Unión , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Inmunoprecipitación de Cromatina , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Elementos de Facilitación Genéticos/genética , Haploinsuficiencia/genética , Hematopoyesis/genética , Proteínas de Homeodominio/genética , Humanos , Ratones , Datos de Secuencia Molecular , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Neurogénesis/genética , Unión Proteica , Receptores Notch/metabolismo , Transducción de Señal/genética
18.
Proc Natl Acad Sci U S A ; 112(32): E4428-37, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26216945

RESUMEN

Insulators are regulatory elements that help to organize eukaryotic chromatin via enhancer-blocking and chromatin barrier activity. Although there are several examples of transposable element (TE)-derived insulators, the contribution of TEs to human insulators has not been systematically explored. Mammalian-wide interspersed repeats (MIRs) are a conserved family of TEs that have substantial regulatory capacity and share sequence characteristics with tRNA-related insulators. We sought to evaluate whether MIRs can serve as insulators in the human genome. We applied a bioinformatic screen using genome sequence and functional genomic data from CD4(+) T cells to identify a set of 1,178 predicted MIR insulators genome-wide. These predicted MIR insulators were computationally tested to serve as chromatin barriers and regulators of gene expression in CD4(+) T cells. The activity of predicted MIR insulators was experimentally validated using in vitro and in vivo enhancer-blocking assays. MIR insulators are enriched around genes of the T-cell receptor pathway and reside at T-cell-specific boundaries of repressive and active chromatin. A total of 58% of the MIR insulators predicted here show evidence of T-cell-specific chromatin barrier and gene regulatory activity. MIR insulators appear to be CCCTC-binding factor (CTCF) independent and show a distinct local chromatin environment with marked peaks for RNA Pol III and a number of histone modifications, suggesting that MIR insulators recruit transcriptional complexes and chromatin modifying enzymes in situ to help establish chromatin and regulatory domains in the human genome. The provisioning of insulators by MIRs across the human genome suggests a specific mechanism by which TE sequences can be used to modulate gene regulatory networks.


Asunto(s)
Genoma Humano , Elementos Aisladores/genética , Mamíferos/genética , Retroelementos/genética , Animales , Secuencia de Bases , Cromatina/metabolismo , Biología Computacional , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Humanos , Especificidad de Órganos/genética , Reproducibilidad de los Resultados , Linfocitos T/metabolismo
19.
Proc Natl Acad Sci U S A ; 112(24): 7542-7, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26034287

RESUMEN

Increasing evidence in the last years indicates that the vast amount of regulatory information contained in mammalian genomes is organized in precise 3D chromatin structures. However, the impact of this spatial chromatin organization on gene expression and its degree of evolutionary conservation is still poorly understood. The Six homeobox genes are essential developmental regulators organized in gene clusters conserved during evolution. Here, we reveal that the Six clusters share a deeply evolutionarily conserved 3D chromatin organization that predates the Cambrian explosion. This chromatin architecture generates two largely independent regulatory landscapes (RLs) contained in two adjacent topological associating domains (TADs). By disrupting the conserved TAD border in one of the zebrafish Six clusters, we demonstrate that this border is critical for preventing competition between promoters and enhancers located in separated RLs, thereby generating different expression patterns in genes located in close genomic proximity. Moreover, evolutionary comparison of Six-associated TAD borders reveals the presence of CCCTC-binding factor (CTCF) sites with diverging orientations in all studied deuterostomes. Genome-wide examination of mammalian HiC data reveals that this conserved CTCF configuration is a general signature of TAD borders, underscoring that common organizational principles underlie TAD compartmentalization in deuterostome evolution.


Asunto(s)
Evolución Molecular , Proteínas Represoras/química , Proteínas Represoras/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Sitios de Unión/genética , Factor de Unión a CCCTC , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Secuencia Conservada , ADN/genética , Elementos de Facilitación Genéticos , Genes Homeobox , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Modelos Genéticos , Familia de Multigenes , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/metabolismo , Strongylocentrotus purpuratus/genética , Pez Cebra/genética
20.
Proc Natl Acad Sci U S A ; 112(3): 803-8, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25535365

RESUMEN

There is no obvious morphological counterpart of the autopod (wrist/ankle and digits) in living fishes. Comparative molecular data may provide insight into understanding both the homology of elements and the evolutionary developmental mechanisms behind the fin to limb transition. In mouse limbs the autopod is built by a "late" phase of Hoxd and Hoxa gene expression, orchestrated by a set of enhancers located at the 5' end of each cluster. Despite a detailed mechanistic understanding of mouse limb development, interpretation of Hox expression patterns and their regulation in fish has spawned multiple hypotheses as to the origin and function of "autopod" enhancers throughout evolution. Using phylogenetic footprinting, epigenetic profiling, and transgenic reporters, we have identified and functionally characterized hoxD and hoxA enhancers in the genomes of zebrafish and the spotted gar, Lepisosteus oculatus, a fish lacking the whole genome duplication of teleosts. Gar and zebrafish "autopod" enhancers drive expression in the distal portion of developing zebrafish pectoral fins, and respond to the same functional cues as their murine orthologs. Moreover, gar enhancers drive reporter gene expression in both the wrist and digits of mouse embryos in patterns that are nearly indistinguishable from their murine counterparts. These functional genomic data support the hypothesis that the distal radials of bony fish are homologous to the wrist and/or digits of tetrapods.


Asunto(s)
Peces/anatomía & histología , Animales , Elementos de Facilitación Genéticos , Peces/genética , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA