Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Phys Condens Matter ; 33(43)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34405822

RESUMEN

The Ni self-diffusion in glass forming Pd40Ni40S20, Pd37Ni37S26and Pd31Ni42S27melts was probed by incoherent, quasielastic neutron scattering over a temperature range between 773 and 1023 K. The Ni self-diffusion coefficients are on a 10-10 m2 s-1-10-9 m2 s-1scale and barely change with composition. Each composition exhibits an Arrhenius-type temperature dependence of the Ni self-diffusion coefficients, which results in activation energies ranging fromEA= 348 ± 16 meV for Pd40Ni40S20toEA= 387 ± 6 meV for Pd37Ni37S26. The structural relaxation shows a stretched exponential behavior even far above the liquidus temperatures. In addition, the viscosity of the Pd37Ni37S26melt was measured under reduced gravity conditions. The diffusion calculated from the viscosity reveals a significant deviation from the measured Ni self-diffusion by a factor between 4 and 8. This may indicate a dynamic decoupling between the atoms within the Pd-Ni-S equilibrium melts.

2.
Nat Commun ; 12(1): 5559, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548484

RESUMEN

Spin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4d/5d-based honeycomb magnets. Recent theoretical studies predicted that 3d-based honeycomb magnets, including Na2Co2TeO6 (NCTO), could also be a potential Kitaev system. Here, we have used a combination of heat capacity, magnetization, electron spin resonance measurements alongside inelastic neutron scattering (INS) to study NCTO's quantum magnetism, and we have found a field-induced spin disordered state in an applied magnetic field range of 7.5 T < B (⊥ b-axis) < 10.5 T. The INS spectra were also simulated to tentatively extract the exchange interactions. As a 3d-magnet with a field-induced disordered state on an effective spin-1/2 honeycomb lattice, NCTO expands the Kitaev model to 3d compounds, promoting further interests on the spin-orbital effect in quantum magnets.

3.
Phys Chem Chem Phys ; 12(37): 11267-79, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20668767

RESUMEN

The sorption of fluids in mesoporous silica is an important physical phenomenon with a wide range of applications. Traditionally, mesoporous materials have been considered as inert scaffolds for the sorption and condensation reaction of the fluid. Here we present in situ small angle X-ray diffraction experiments providing evidence for a sorption strain induced in the solid that manifests itself as a change in the lattice parameter of the ordered mesopore array as the pores gradually adsorb fluid material. The experimental data are analyzed by means of Monte Carlo simulations carried out in a grand canonical ensemble describing a fluid confined by deformable substrates. We show that-in agreement with experimental data-sorption of a nonpolar fluid causes the pores to expand initially, to shrink abruptly when capillary condensation sets in, and to expand again as more liquid-like fluid is adsorbed subsequently. We show that the pore pressure can be extracted from a thermodynamic analysis of sorption isotherms in the liquid-like regime and that this information can be used for an estimation of the Young's modulus of the porous silica material. In addition, our Monte Carlo simulations indicate that the phase behavior of confined fluids is considerably changed by the deformability of the confining solid. This is reflected by a change of the location of phase boundaries at sufficiently subcritical temperatures.

4.
Science ; 367(6483): 1218-1223, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32165582

RESUMEN

Spin ices are exotic phases of matter characterized by frustrated spins obeying local "ice rules," in analogy with the electric dipoles in water ice. In two dimensions, one can similarly define ice rules for in-plane Ising-like spins arranged on a kagome lattice. These ice rules require each triangle plaquette to have a single monopole and can lead to different types of orders and excitations. Using experimental and theoretical approaches including magnetometry, thermodynamic measurements, neutron scattering, and Monte Carlo simulations, we establish HoAgGe as a crystalline (i.e., nonartificial) system that realizes the kagome spin ice state. The system features a variety of partially and fully ordered states and a sequence of field-induced phases at low temperatures, all consistent with the kagome ice rule.

5.
Phys Chem Chem Phys ; 11(40): 9082-92, 2009 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19812828

RESUMEN

We employ Monte Carlo simulations in a semi-grand canonical ensemble to analyze the relation between sorption strains and the thermodynamic state of a confined fluid composed of "simple" fluid molecules that possess only translational degrees of freedom. Fluid molecules are confined to a slit-pore whose walls are composed of individual atoms distributed across the plane of each substrate according to the (100) structure of the face-centered cubic lattice. The substrates can be deformed to a certain extent on account of their own thermal energy and due to the interaction with the fluid molecules. We determine the phase diagram in both the bulk and in confinement for both rigid and deformable solid substrates. By using finite-size scaling concepts the location of the critical point is determined accurately. Our results indicate for the first time that the previously observed variation of sorption strains with the amount of adsorbed fluid material [G. Günther et al., Phys. Rev. Lett., 2008, 101, 086104] is caused by packing effects (i.e. stratification of the confined fluid) but is largely independent of the precise nature of the thermodynamic state considered.

6.
J Phys Chem Lett ; 10(20): 6339-6344, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31577146

RESUMEN

Highly ordered and highly cooperative water with properties of both solid and liquid states has been observed by means of neutron scattering in hydrophobic one-dimensional channels with van der Waals diameter of 0.78 nm. We have found that in the initial stages of adsorption water molecules occupy niches close to pore walls, followed later by the filling of the central pore area. Intensified by confinement, intermolecular water interactions lead to the formation of well-ordered hydrogen-bonded water chains and to the onset of cooperative vibrations. On the other hand, the same intermolecular interactions lead to two relaxation processes, the faster of which is the spontaneous position exchange between two water molecules placed 3.2-4 Å from each other. Self-diffusion in an axial pore direction is the result of those spontaneous random exchanges and is substantially slower than the self-diffusion in bulk water.

7.
Phys Rev Lett ; 101(8): 086104, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18764642

RESUMEN

By means of in situ small-angle x-ray diffraction experiments and semi-grand-canonical ensemble Monte Carlo simulations we demonstrate that sorption and condensation of a fluid confined within nanopores is capable of deforming the pore walls. At low pressures the pore is widened due to a repulsive interaction caused by collisions of the fluid molecules with the walls. At capillary condensation the pores contract abruptly on account of attractive fluid-wall interactions whereas for larger pressures they expand again. These features cannot solely be accounted for by effects related to pore-wall curvature but have to be attributed to fluid-wall dispersion forces instead.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA