Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.122
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(1): 47-62.e16, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608657

RESUMEN

Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus. Tycheposons share distinctive mobile-lifecycle-linked hallmark genes, including a deep-branching site-specific tyrosine recombinase. Their excision and integration at tRNA genes appear to drive the remodeling of genomic islands-key reservoirs for flexible genes in bacteria. In a selection experiment, tycheposons harboring a nitrate assimilation cassette were dynamically gained and lost, thereby promoting chromosomal rearrangements and host adaptation. Vesicles and phage particles harvested from seawater are enriched in tycheposons, providing a means for their dispersal in the wild. Similar elements are found in microbes co-occurring with Prochlorococcus, suggesting a common mechanism for microbial diversification in the vast oligotrophic oceans.


Asunto(s)
Ecosistema , Genoma Bacteriano , Genoma Bacteriano/genética , Filogenia , Océanos y Mares , Genómica
2.
Cell ; 176(5): 1083-1097.e18, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30739799

RESUMEN

Cell size varies greatly between cell types, yet within a specific cell type and growth condition, cell size is narrowly distributed. Why maintenance of a cell-type specific cell size is important remains poorly understood. Here we show that growing budding yeast and primary mammalian cells beyond a certain size impairs gene induction, cell-cycle progression, and cell signaling. These defects are due to the inability of large cells to scale nucleic acid and protein biosynthesis in accordance with cell volume increase, which effectively leads to cytoplasm dilution. We further show that loss of scaling beyond a certain critical size is due to DNA becoming limiting. Based on the observation that senescent cells are large and exhibit many of the phenotypes of large cells, we propose that the range of DNA:cytoplasm ratio that supports optimal cell function is limited and that ratios outside these bounds contribute to aging.


Asunto(s)
Aumento de la Célula , Senescencia Celular/fisiología , Citoplasma/metabolismo , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Ciclo Celular , Proliferación Celular , Tamaño de la Célula , Senescencia Celular/genética , Fibroblastos/metabolismo , Células HEK293 , Humanos , Cultivo Primario de Células , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomycetales/genética , Saccharomycetales/crecimiento & desarrollo , Saccharomycetales/metabolismo , Transducción de Señal
3.
Mol Cell ; 83(22): 4032-4046.e6, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37977116

RESUMEN

Cellular senescence refers to an irreversible state of cell-cycle arrest and plays important roles in aging and cancer biology. Because senescence is associated with increased cell size, we used reversible cell-cycle arrests combined with growth rate modulation to study how excessive growth affects proliferation. We find that enlarged cells upregulate p21, which limits cell-cycle progression. Cells that re-enter the cell cycle encounter replication stress that is well tolerated in physiologically sized cells but causes severe DNA damage in enlarged cells, ultimately resulting in mitotic failure and permanent cell-cycle withdrawal. We demonstrate that enlarged cells fail to recruit 53BP1 and other non-homologous end joining (NHEJ) machinery to DNA damage sites and fail to robustly initiate DNA damage-dependent p53 signaling, rendering them highly sensitive to genotoxic stress. We propose that an impaired DNA damage response primes enlarged cells for persistent replication-acquired damage, ultimately leading to cell division failure and permanent cell-cycle exit.


Asunto(s)
Senescencia Celular , Daño del ADN , Ciclo Celular/genética , División Celular , Senescencia Celular/genética , Homeostasis , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Annu Rev Neurosci ; 44: 87-108, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236893

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.


Asunto(s)
Enfermedad de Parkinson , Humanos , Lisosomas , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética
5.
Nature ; 624(7991): 403-414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092914

RESUMEN

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Vías Nerviosas , Neuronas , Médula Espinal , Animales , Ratones , Hipotálamo , Neuronas/metabolismo , Neuropéptidos , Médula Espinal/citología , Médula Espinal/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Neurotransmisores , Mesencéfalo/citología , Formación Reticular/citología , Electrofisiología , Cerebelo/citología , Corteza Cerebral/citología
6.
Nature ; 622(7982): 393-401, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821590

RESUMEN

Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.


Asunto(s)
Rechazo de Injerto , Trasplante de Riñón , Macaca fascicularis , Porcinos , Trasplante Heterólogo , Animales , Humanos , Animales Modificados Genéticamente , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Trasplante de Riñón/métodos , Polisacáridos/deficiencia , Porcinos/genética , Trasplante Heterólogo/métodos , Transgenes/genética
7.
Mol Cell ; 81(22): 4574-4576, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34798043

RESUMEN

Gopalan et al. (2021) present multi-CUT&Tag, a modification of cleavage under targets and tagmentation (CUT&Tag) that enables simultaneous genome-wide mapping of multiple chromatin-associated targets in a single sample.


Asunto(s)
Cromatina , Cromatina/genética , Inmunoprecipitación de Cromatina , Mapeo Cromosómico
8.
EMBO J ; 42(10): e114141, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37021792

RESUMEN

The mitochondrial F1 Fo -ATP synthase uses a rotary mechanism to synthesise ATP. This mechanism can, however, also operate in reverse, pumping protons at the expense of ATP, with significant potential implications for mitochondrial and age-related diseases. In a recent study, Acin-Perez et al (2023) use an elegant assay to screen compounds for the capacity to selectively inhibit ATP hydrolysis without affecting ATP synthesis. They show that (+)-epicatechin is one such compound and has significant benefits for cell and tissue function in disease models. These findings signpost a novel therapeutic approach for mitochondrial disease.


Asunto(s)
Adenosina Trifosfato , ATPasas de Translocación de Protón Mitocondriales , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Protones , Mitocondrias/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(9): e2316469121, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38354254

RESUMEN

Diversity-generating retroelements (DGRs) are used by bacteria, archaea, and viruses as a targeted mutagenesis tool. Through error-prone reverse transcription, DGRs introduce random mutations at specific genomic loci, enabling rapid evolution of these targeted genes. However, the function and benefits of DGR-diversified proteins in cellular hosts remain elusive. We find that 82% of DGRs from one of the major monophyletic lineages of DGR reverse transcriptases are encoded by multicellular bacteria, which often have two or more DGR loci in their genomes. Using the multicellular purple sulfur bacterium Thiohalocapsa sp. PB-PSB1 as an example, we characterized nine distinct DGR loci capable of generating 10282 different combinations of target proteins. With environmental metagenomes from individual Thiohalocapsa aggregates, we show that most of PB-PSB1's DGR target genes are diversified across its biogeographic range, with spatial heterogeneity in the diversity of each locus. In Thiohalocapsa PB-PSB1 and other bacteria hosting this lineage of cellular DGRs, the diversified target genes are associated with NACHT-domain anti-phage defenses and putative ternary conflict systems previously shown to be enriched in multicellular bacteria. We propose that these DGR-diversified targets act as antigen sensors that confer a form of adaptive immunity to their multicellular consortia, though this remains to be experimentally tested. These findings could have implications for understanding the evolution of multicellularity, as the NACHT-domain anti-phage systems and ternary systems share both domain homology and conceptual similarities with the innate immune and programmed cell death pathways of plants and metazoans.


Asunto(s)
Bacterias , Bacteriófagos , Bacterias/genética , Archaea/genética , Metagenoma , Retroelementos , Bacteriófagos/genética
10.
Genes Dev ; 32(17-18): 1252-1265, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108132

RESUMEN

The transcriptional coactivators Mediator and two histone acetyltransferase (HAT) complexes, NuA4 and SAGA, play global roles in transcriptional activation. Here we explore the relative contributions of these factors to RNA polymerase II association at specific genes and gene classes by rapid nuclear depletion of key complex subunits. We show that the NuA4 HAT Esa1 differentially affects certain groups of genes, whereas the SAGA HAT Gcn5 has a weaker but more uniform effect. Relative dependence on Esa1 and Tra1, a shared component of NuA4 and SAGA, distinguishes two large groups of coregulated growth-promoting genes. In contrast, we show that the activity of Mediator is particularly important at a separate, small set of highly transcribed TATA-box-containing genes. Our analysis indicates that at least three distinct combinations of coactivator deployment are used to generate moderate or high transcription levels and suggests that each may be associated with distinct forms of regulation.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/fisiología , Complejo Mediador/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Activación Transcripcional , Acetilación , Histonas/metabolismo , Complejo Mediador/metabolismo , Estrés Oxidativo/genética , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Transcripción Genética
11.
Genes Dev ; 32(15-16): 1075-1084, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30042134

RESUMEN

Budding yeast cells produce a finite number of daughter cells before they die. Why old yeast cells stop dividing and die is unclear. We found that age-induced accumulation of the G1/S-phase inhibitor Whi5 and defects in G1/S cyclin transcription cause cell cycle delays and genomic instability that result in cell death. We further identified extrachromosomal rDNA (ribosomal DNA) circles (ERCs) to cause the G1/S cyclin expression defect in old cells. Spontaneous segregation of Whi5 and ERCs into daughter cells rejuvenates old mothers, but daughters that inherit these aging factors die rapidly. Our results identify deregulation of the G1/S-phase transition as the proximal cause of age-induced proliferation decline and cell death in budding yeast.


Asunto(s)
Puntos de Control de la Fase G1 del Ciclo Celular , Aneuploidia , División Celular , Ciclina G1/genética , Ciclina G1/metabolismo , Daño del ADN , ADN Ribosómico/química , Proteínas Fúngicas/metabolismo , Expresión Génica , Saccharomycetales/citología , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transcripción Genética
12.
Mol Microbiol ; 121(5): 850-864, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38323722

RESUMEN

The diarrheal disease cholera is caused by the versatile and responsive bacterium Vibrio cholerae, which is capable of adapting to environmental changes. Among others, the alternative sigma factor RpoS activates response pathways, including regulation of motility- and chemotaxis-related genes under nutrient-poor conditions in V. cholerae. Although RpoS has been well characterised, links between RpoS and other regulatory networks remain unclear. In this study, we identified the ArcAB two-component system to control rpoS transcription and RpoS protein stability in V. cholerae. In a manner similar to that seen in Escherichia coli, the ArcB kinase not only activates the response regulator ArcA but also RssB, the anti-sigma factor of RpoS. Our results demonstrated that, in V. cholerae, RssB is phosphorylated by ArcB, which subsequently activates RpoS proteolysis. Furthermore, ArcA acts as a repressor of rpoS transcription. Additionally, we determined that the cysteine residue at position 180 of ArcB is crucial for signal recognition and activity. Thus, our findings provide evidence linking RpoS response to the anoxic redox control system ArcAB in V. cholerae.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Factor sigma , Vibrio cholerae , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Quimiotaxis/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Redes Reguladoras de Genes , Fosforilación , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factor sigma/metabolismo , Factor sigma/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
13.
Mol Psychiatry ; 29(3): 782-792, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145985

RESUMEN

Enhancers play an essential role in the etiology of schizophrenia; however, the dysregulation of enhancer activity and its impact on the regulome in schizophrenia remains understudied. To address this gap in our knowledge, we assessed enhancer and gene expression in 1,382 brain samples comprising cases with schizophrenia and unaffected controls. Dysregulation of enhancer expression was concordant with changes in gene expression, and was more closely associated with schizophrenia polygenic risk, suggesting that enhancer dysregulation is proximal to the genetic etiology of the disease. Modeling the shared variance of cis-coordinated genes and enhancers revealed a gene regulatory program that was highly associated with genetic vulnerability to schizophrenia. By integrating coordinated factors with evolutionary constraints, we found that enhancers acquired during human evolution are more likely to regulate genes that are implicated in neuropsychiatric disorders and, thus, hold potential as therapeutic targets. Our analysis provides a systematic view of regulome dysregulation in schizophrenia and highlights its convergence with schizophrenia polygenic risk and human-gained enhancers.


Asunto(s)
Elementos de Facilitación Genéticos , Predisposición Genética a la Enfermedad , Herencia Multifactorial , Esquizofrenia , Humanos , Esquizofrenia/genética , Herencia Multifactorial/genética , Predisposición Genética a la Enfermedad/genética , Elementos de Facilitación Genéticos/genética , Masculino , Femenino , Estudio de Asociación del Genoma Completo/métodos , Encéfalo/metabolismo , Regulación de la Expresión Génica/genética , Factores de Riesgo , Polimorfismo de Nucleótido Simple/genética , Adulto
14.
PLoS Comput Biol ; 20(9): e1012489, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39348412

RESUMEN

Deep learning methods, trained on the increasing set of available protein 3D structures and sequences, have substantially impacted the protein modeling and design field. These advancements have facilitated the creation of novel proteins, or the optimization of existing ones designed for specific functions, such as binding a target protein. Despite the demonstrated potential of such approaches in designing general protein binders, their application in designing immunotherapeutics remains relatively underexplored. A relevant application is the design of T cell receptors (TCRs). Given the crucial role of T cells in mediating immune responses, redirecting these cells to tumor or infected target cells through the engineering of TCRs has shown promising results in treating diseases, especially cancer. However, the computational design of TCR interactions presents challenges for current physics-based methods, particularly due to the unique natural characteristics of these interfaces, such as low affinity and cross-reactivity. For this reason, in this study, we explored the potential of two structure-based deep learning protein design methods, ProteinMPNN and ESM-IF1, in designing fixed-backbone TCRs for binding target antigenic peptides presented by the MHC through different design scenarios. To evaluate TCR designs, we employed a comprehensive set of sequence- and structure-based metrics, highlighting the benefits of these methods in comparison to classical physics-based design methods and identifying deficiencies for improvement.


Asunto(s)
Biología Computacional , Aprendizaje Profundo , Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , Biología Computacional/métodos , Humanos , Ingeniería de Proteínas/métodos , Modelos Moleculares , Conformación Proteica , Unión Proteica
15.
J Clin Microbiol ; 62(6): e0172523, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38780286

RESUMEN

The environmental bacterium Klebsiella oxytoca displays an alarming increase of antibiotic-resistant strains that frequently cause outbreaks in intensive care units. Due to its prevalence in the environment and opportunistic presence in humans, molecular surveillance (including resistance marker screening) and high-resolution cluster analysis are of high relevance. Furthermore, K. oxytoca previously described in studies is rather a species complex (KoSC) than a single species comprising at least six closely related species that are not easily differentiated by standard typing methods. To reach a discriminatory power high enough to identify and resolve clusters within these species, whole genome sequencing is necessary. The resolution is achievable with core genome multilocus sequence typing (cgMLST) extending typing of a few housekeeping genes to thousands of core genome genes. CgMLST is highly standardized and provides a nomenclature enabling cross laboratory reproducibility and data exchange for routine diagnostics. Here, we established a cgMLST scheme not only capable of resolving the KoSC species but also producing reliable and consistent results for published outbreaks. Our cgMLST scheme consists of 2,536 core genome and 2,693 accessory genome targets, with a percentage of good cgMLST targets of 98.31% in 880 KoSC genomes downloaded from the National Center for Biotechnology Information (NCBI). We also validated resistance markers against known resistance gene patterns and successfully linked genetic results to phenotypically confirmed toxic strains carrying the til gene cluster. In conclusion, our novel cgMLST enables highly reproducible typing of four different clinically relevant species of the KoSC and thus facilitates molecular surveillance and cluster investigations.


Asunto(s)
Genoma Bacteriano , Klebsiella oxytoca , Tipificación de Secuencias Multilocus , Tipificación de Secuencias Multilocus/métodos , Klebsiella oxytoca/genética , Klebsiella oxytoca/clasificación , Klebsiella oxytoca/aislamiento & purificación , Humanos , Genoma Bacteriano/genética , Filogenia , Infecciones por Klebsiella/microbiología , Secuenciación Completa del Genoma , Técnicas de Tipificación Bacteriana/métodos , Genes Esenciales/genética , Reproducibilidad de los Resultados
16.
J Clin Microbiol ; 62(9): e0062824, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39158309

RESUMEN

Nanopore sequencing has shown the potential to democratize genomic pathogen surveillance due to its ease of use and low entry cost. However, recent genotyping studies showed discrepant results compared to gold-standard short-read sequencing. Furthermore, although essential for widespread application, the reproducibility of nanopore-only genotyping remains largely unresolved. In our multicenter performance study involving five laboratories, four public health-relevant bacterial species were sequenced with the latest R10.4.1 flow cells and V14 chemistry. Core genome MLST analysis of over 500 data sets revealed highly strain-specific typing errors in all species in each laboratory. Investigation of the methylation-related errors revealed consistent DNA motifs at error-prone sites across participants at read level. Depending on the frequency of incorrect target reads, this either leads to correct or incorrect typing, whereby only minimal frequency deviations can randomly determine the final result. PCR preamplification, recent basecalling model updates and an optimized polishing strategy notably diminished the non-reproducible typing. Our study highlights the potential for new errors to appear with each newly sequenced strain and lays the foundation for computational approaches to reduce such typing errors. In conclusion, our multicenter study shows the necessity for a new validation concept for nanopore sequencing-based, standardized bacterial typing, where single nucleotide accuracy is critical.


Asunto(s)
Bacterias , Técnicas de Genotipaje , Secuenciación de Nanoporos , Secuenciación de Nanoporos/métodos , Reproducibilidad de los Resultados , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Humanos , Técnicas de Genotipaje/métodos , Genotipo , Tipificación de Secuencias Multilocus/métodos , ADN Bacteriano/genética , Genoma Bacteriano/genética , Análisis de Secuencia de ADN/métodos
17.
J Anat ; 244(3): 537-539, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38063239

RESUMEN

Boyde et al. (2023) stated that Moura et al. (2021) did not explain how fleas generated cavities in armadillo osteoderms, which is wrongly stated, also presenting a misrepresentation of what is written about this in Moura et al. (2021).


Asunto(s)
Armadillos , Siphonaptera , Animales
18.
Acta Neuropathol ; 148(1): 16, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105932

RESUMEN

We elucidated the molecular fingerprint of vulnerable excitatory neurons within select cortical lamina of individuals with Down syndrome (DS) for mechanistic understanding and therapeutic potential that also informs Alzheimer's disease (AD) pathophysiology. Frontal cortex (BA9) layer III (L3) and layer V (L5) pyramidal neurons were microisolated from postmortem human DS and age- and sex-matched controls (CTR) to interrogate differentially expressed genes (DEGs) and key biological pathways relevant to neurodegenerative programs. We identified > 2300 DEGs exhibiting convergent dysregulation of gene expression in both L3 and L5 pyramidal neurons in individuals with DS versus CTR subjects. DEGs included over 100 triplicated human chromosome 21 genes in L3 and L5 neurons, demonstrating a trisomic neuronal karyotype in both laminae. In addition, thousands of other DEGs were identified, indicating gene dysregulation is not limited to trisomic genes in the aged DS brain, which we postulate is relevant to AD pathobiology. Convergent L3 and L5 DEGs highlighted pertinent biological pathways and identified key pathway-associated targets likely underlying corticocortical neurodegeneration and related cognitive decline in individuals with DS. Select key DEGs were interrogated as potential hub genes driving dysregulation, namely the triplicated DEGs amyloid precursor protein (APP) and superoxide dismutase 1 (SOD1), along with key signaling DEGs including mitogen activated protein kinase 1 and 3 (MAPK1, MAPK3) and calcium calmodulin dependent protein kinase II alpha (CAMK2A), among others. Hub DEGs determined from multiple pathway analyses identified potential therapeutic candidates for amelioration of cortical neuron dysfunction and cognitive decline in DS with translational relevance to AD.


Asunto(s)
Síndrome de Down , Lóbulo Frontal , Células Piramidales , Síndrome de Down/patología , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células Piramidales/patología , Células Piramidales/metabolismo , Masculino , Femenino , Lóbulo Frontal/patología , Lóbulo Frontal/metabolismo , Persona de Mediana Edad , Anciano , Fenotipo , Adulto , Anciano de 80 o más Años
19.
Am J Obstet Gynecol ; 230(2): 241.e1-241.e18, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37827271

RESUMEN

BACKGROUND: There are few prospective studies in the gynecologic surgical literature that compared patient-reported outcomes between open and minimally invasive hysterectomies within enhanced recovery after surgery pathways. OBJECTIVE: This study aimed to compare prospectively collected perioperative patient-reported symptom burden and interference measures in open compared with minimally invasive hysterectomy cohorts within enhanced recovery after surgery pathways. STUDY DESIGN: We compared patient-reported symptom burden and functional interference in 646 patients who underwent a hysterectomy (254 underwent open surgery and 392 underwent minimally invasive surgery) for benign and malignant indications under enhanced recovery after surgery protocols. Outcomes were prospectively measured using the validated MD Anderson Symptom Inventory, which was administered perioperatively up to 8 weeks after surgery. Cohorts were compared using Fisher exact and chi-squared tests, adjusted longitudinal generalized linear mixed modeling, and Kaplan Meier curves to model return to no or mild symptoms. RESULTS: The open cohort had significantly worse preoperative physical functional interference (P=.001). At the time of hospital discharge postoperatively, the open cohort reported significantly higher mean symptom severity scores and more moderate or severe scores for overall (P<.001) and abdominal pain (P<.001), fatigue (P=.001), lack of appetite (P<.001), bloating (P=.041), and constipation (P<.001) when compared with the minimally invasive cohort. The open cohort also had significantly higher interference in physical functioning (score 5.0 vs 2.7; P<.001) than the minimally invasive cohort at the time of discharge with no differences in affective interference between the 2 groups. In mixed modeling analysis of the first 7 postoperative days, both cohorts reported improved symptom burden and functional interference over time with generally slower recovery in the open cohort. From 1 to 8 postoperative weeks, the open cohort had worse mean scores for all evaluated symptoms and interference measures except for pain with urination, although scores indicated mild symptomatic burden and interference in both cohorts. The time to return to no or mild symptoms was significantly longer in the open cohort for overall pain (14 vs 4 days; P<.001), fatigue (8 vs 4 days; P<.001), disturbed sleep (2 vs 2 days; P<.001), and appetite (1.5 vs 1 days; P<.001) but was significantly longer in the minimally invasive cohort for abdominal pain (42 vs 28 days; P<.001) and bloating (42 vs 8 days; P<.001). The median time to return to no or mild functional interference was longer in the open than in the minimally invasive hysterectomy cohort for physical functioning (36 vs 32 days; P<.001) with no difference in compositive affective functioning (5 vs 5 days; P=.07) between the groups. CONCLUSION: Open hysterectomy was associated with increased symptom burden in the immediate postoperative period and longer time to return to no or mild symptom burden and interference with physical functioning. However, all patient-reported measures improved within days to weeks of both open and minimally invasive surgery and differences were not always clinically significant.


Asunto(s)
Histerectomía , Medición de Resultados Informados por el Paciente , Humanos , Femenino , Estudios Prospectivos , Histerectomía/métodos , Dolor Abdominal , Fatiga/epidemiología , Procedimientos Quirúrgicos Mínimamente Invasivos
20.
Soft Matter ; 20(13): 2978-2985, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470374

RESUMEN

Nitrile rubber (i.e., NBR) is a crosslinked copolymer of butadiene and acrylonitrile that finds widespread use in the automotive and aerospace industry as it sustains large, reversible deformations while resisting swelling by petrochemical fuels. We recently demonstrated that this material has a drift in composition due to the difference in reactivity between acrylonitrile and butadiene monomers during emulsion copolymerisation. Thus, although NBR is often thought of as a random copolymer, it does experience thermodynamic driving forces for self-assembly and kinetic barriers for processing like those of block copolymers.1 Here, we illustrate how such drift in composition hinders interdiffusion and prevents self-adhesion. The key result is that contacting uncrosslinked NBR (i) in the melt, (ii) in the presence of tackifiers, or (iii) in the presence of organic solvents promotes interdiffusion and enables self-adhesion. However, the contact times required for self-adhering, tc ∼ O(100 h), are orders of magnitude above those needed for non-polar synthetic rubbers like styrene-butadiene rubber (i.e., SBR) of comparable molecular weights and glass transition temperatures, tc ∼ O(100 s), unveiling the dramatic effect of compositional inhomogeneities and physical associations on polymer interdiffusion and large-strain mechanical properties. For example, when welded with organic solvents, the self-adhesion energy of NBR continues to increase after the solvent has evaporated because of polymer nanostructuring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA