Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 620(7973): 409-416, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532934

RESUMEN

Netrin-1 is upregulated in cancers as a protumoural mechanism1. Here we describe netrin-1 upregulation in a majority of human endometrial carcinomas (ECs) and demonstrate that netrin-1 blockade, using an anti-netrin-1 antibody (NP137), is effective in reduction of tumour progression in an EC mouse model. We next examined the efficacy of NP137, as a first-in-class single agent, in a Phase I trial comprising 14 patients with advanced EC. As best response we observed 8 stable disease (8 out of 14, 57.1%) and 1 objective response as RECIST v.1.1 (partial response, 1 out of 14 (7.1%), 51.16% reduction in target lesions at 6 weeks and up to 54.65% reduction during the following 6 months). To evaluate the NP137 mechanism of action, mouse tumour gene profiling was performed, and we observed, in addition to cell death induction, that NP137 inhibited epithelial-to-mesenchymal transition (EMT). By performing bulk RNA sequencing (RNA-seq), spatial transcriptomics and single-cell RNA-seq on paired pre- and on-treatment biopsies from patients with EC from the NP137 trial, we noted a net reduction in tumour EMT. This was associated with changes in immune infiltrate and increased interactions between cancer cells and the tumour microenvironment. Given the importance of EMT in resistance to current standards of care2, we show in the EC mouse model that a combination of NP137 with carboplatin-paclitaxel outperformed carboplatin-paclitaxel alone. Our results identify netrin-1 blockade as a clinical strategy triggering both tumour debulking and EMT inhibition, thus potentially alleviating resistance to standard treatments.


Asunto(s)
Neoplasias Endometriales , Transición Epitelial-Mesenquimal , Netrina-1 , Animales , Femenino , Humanos , Ratones , Biopsia , Carboplatino/administración & dosificación , Carboplatino/farmacología , Carboplatino/uso terapéutico , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Neoplasias Endometriales/inmunología , Neoplasias Endometriales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Perfilación de la Expresión Génica , Netrina-1/antagonistas & inhibidores , Paclitaxel/administración & dosificación , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , RNA-Seq , Análisis de Expresión Génica de una Sola Célula , Microambiente Tumoral/efectos de los fármacos
2.
Ann Neurol ; 94(6): 1102-1115, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37638563

RESUMEN

OBJECTIVE: Small-cell lung cancer (SCLC) is the malignancy most frequently associated with paraneoplastic neurological syndromes (PNS) and can trigger different antibody responses against intracellular (Hu) or neuronal surface (GABAB R) antigens. Our aim was to clarify whether the genomic and transcriptomic features of SCLC are different in patients with anti-GABAB R or anti-Hu PNS compared with SCLC without PNS. METHODS: A total of 76 SCLC tumor samples were collected: 34 anti-Hu, 14 anti-GABAB R, and 28 SCLC without PNS. The study consisted of 4 steps: (1) pathological confirmation; (2) next generation sequencing using a panel of 98 genes, including those encoding the autoantibodies targets ELAVL1-4, GABBR1-2, and KCTD16; (3) genome-wide copy number variation (CNV); and (4) whole-transcriptome RNA sequencing. RESULTS: CNV analysis revealed that patients with anti-GABAB R PNS commonly have a gain in chromosome 5q, which contains KCTD16, whereas anti-Hu and control patients often harbor a loss. No significantly different number of mutations regarding any onconeural genes was observed. Conversely, the transcriptomic profile of SCLC was different, and the differentially expressed genes allowed effective clustering of the samples into 3 groups, reflecting the antibody-based classification, with an overexpression of KCTD16 specific to anti-GABAB R PNS. Pathway analysis revealed that tumors of patients with anti-GABAB R encephalitis were enriched in B-cell signatures, as opposed to those of patients with anti-Hu, in which T-cell- and interferon-γ-related signatures were overexpressed. INTERPRETATION: SCLC genetic and transcriptomic features differentiate anti-GABAB R, anti-Hu, and non-PNS tumors. The role of KCTD16 appears to be pivotal in the tumor immune tolerance breakdown of anti-GABAB R PNS. ANN NEUROL 2023;94:1102-1115.


Asunto(s)
Neoplasias Pulmonares , Síndromes Paraneoplásicos del Sistema Nervioso , Humanos , Neoplasias Pulmonares/genética , Variaciones en el Número de Copia de ADN/genética , Síndromes Paraneoplásicos del Sistema Nervioso/genética , Proteínas ELAV/genética , Autoanticuerpos
3.
J Hepatol ; 78(5): 958-970, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36702177

RESUMEN

BACKGROUND & AIMS: Chronic coinfection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. Herein, we aimed to elucidate the molecular mechanisms underlying the widely reported observation that HDV interferes with HBV in most coinfected patients. METHODS: Patient liver tissues, primary human hepatocytes, HepaRG cells and human liver chimeric mice were used to analyze the effect of HDV on HBV using virological and RNA-sequencing analyses, as well as RNA synthesis, stability and association assays. RESULTS: Transcriptomic analyses in cell culture and mouse models of coinfection enabled us to define an HDV-induced signature, mainly composed of interferon (IFN)-stimulated genes (ISGs). We also provide evidence that ISGs are upregulated in chronically HDV/HBV-coinfected patients but not in cells that only express HDV antigen (HDAg). Inhibition of the hepatocyte IFN response partially rescued the levels of HBV parameters. We observed less HBV RNA synthesis upon HDV infection or HDV protein expression. Additionally, HDV infection or expression of HDAg alone specifically accelerated the decay of HBV RNA, and HDAg was associated with HBV RNAs. On the contrary, HDAg expression did not affect other viruses such as HCV or SARS-CoV-2. CONCLUSIONS: Our data indicate that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms. Specifically, we uncover a new viral interference mechanism in which proteins of a satellite virus affect the RNA production of its helper virus. Exploiting these findings could pave the way to the development of new therapeutic strategies against HBV. IMPACT AND IMPLICATIONS: Although the molecular mechanisms remained unexplored, it has long been known that despite its dependency, HDV decreases HBV viremia in patients. Herein, using in vitro and in vivo models, we showed that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms affecting HBV RNA metabolism, and we defined the HDV-induced modulation signature. The mechanisms we uncovered could pave the way for the development of new therapeutic strategies against HBV by mimicking and/or increasing the effect of HDAg on HBV RNA. Additionally, the HDV-induced modulation signature could potentially be correlated with responsiveness to IFN-α treatment, thereby helping to guide management of HBV/HDV-coinfected patients.


Asunto(s)
COVID-19 , Coinfección , Hepatitis B , Hepatitis D , Humanos , Ratones , Animales , Virus de la Hepatitis Delta/fisiología , Virus de la Hepatitis B/fisiología , Interferones , Antígenos de Hepatitis delta/metabolismo , Hepatitis D/complicaciones , Hepatitis B/complicaciones , Replicación Viral/fisiología , COVID-19/complicaciones , SARS-CoV-2/genética , ARN Viral/genética
4.
Part Fibre Toxicol ; 19(1): 48, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840975

RESUMEN

BACKGROUND: Epidemiological emerging evidence shows that human exposure to some nanosized materials present in the environment would contribute to the onset and/or progression of Alzheimer's disease (AD). The cellular and molecular mechanisms whereby nanoparticles would exert some adverse effects towards neurons and take part in AD pathology are nevertheless unknown. RESULTS: Here, we provide the prime evidence that titanium dioxide (TiO2) and carbon black (CB) nanoparticles (NPs) bind the cellular form of the prion protein (PrPC), a plasma membrane protein well known for its implication in prion diseases and prion-like diseases, such as AD. The interaction between TiO2- or CB-NPs and PrPC at the surface of neuronal cells grown in culture corrupts PrPC signaling function. This triggers PrPC-dependent activation of NADPH oxidase and subsequent production of reactive oxygen species (ROS) that alters redox equilibrium. Through PrPC interaction, NPs also promote the activation of 3-phosphoinositide-dependent kinase 1 (PDK1), which in turn provokes the internalization of the neuroprotective TACE α-secretase. This diverts TACE cleavage activity away from (i) TNFα receptors (TNFR), whose accumulation at the plasma membrane augments the vulnerability of NP-exposed neuronal cells to TNFα -associated inflammation, and (ii) the amyloid precursor protein APP, leading to overproduction of neurotoxic amyloid Aß40/42 peptides. The silencing of PrPC or the pharmacological inhibition of PDK1 protects neuronal cells from TiO2- and CB-NPs effects regarding ROS production, TNFα hypersensitivity, and Aß rise. Finally, we show that dysregulation of the PrPC-PDK1-TACE pathway likely occurs in the brain of mice injected with TiO2-NPs by the intra-cerebro-ventricular route as we monitor a rise of TNFR at the cell surface of several groups of neurons located in distinct brain areas. CONCLUSION: Our in vitro and in vivo study thus posits for the first time normal cellular prion protein PrPC as being a neuronal receptor of TiO2- and CB-NPs and identifies PrPC-coupled signaling pathways by which those nanoparticles alter redox equilibrium, augment the intrinsic sensitivity of neurons to neuroinflammation, and provoke a rise of Aß peptides. By identifying signaling cascades dysregulated by TiO2- and CB-NPs in neurons, our data shed light on how human exposure to some NPs might be related to AD.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Priones , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Animales , Homeostasis , Humanos , Ratones , Nanopartículas/toxicidad , Neuronas/patología , Proteínas Priónicas/metabolismo , Priones/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hollín/toxicidad , Titanio , Factor de Necrosis Tumoral alfa/metabolismo
5.
Br J Cancer ; 122(6): 885-894, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31988347

RESUMEN

BACKGROUND: Breast cancer is the second most common cancer in the world. Despite advances in therapies, the mechanisms of resistance remain the underlying cause of morbidity and mortality. Lipoic acid (LA) is an antioxidant and essential cofactor in oxidative metabolism. Its potential therapeutic effects have been well documented, but its mechanisms of action (MOA) are not fully understood. METHODS: The aim of this study is to validate the inhibitory LA effect on the proliferation of various breast cancer cell lines and to investigate the MOA that may be involved in this process. We tested LA effects by ex vivo studies on fresh human mammary tumour samples. RESULTS: We demonstrate that LA inhibits the proliferation and Akt and ERK signalling pathways of several breast cancer cells. While searching for upstream dysregulations, we discovered the loss of expression of IGF-1R upon exposure to LA. This decrease is due to the downregulation of the convertase, furin, which is implicated in the maturation of IGF-1R. Moreover, ex vivo studies on human tumour samples showed that LA significantly decreases the expression of the proliferation marker Ki67. CONCLUSION: LA exerts its anti-proliferative effect by inhibiting the maturation of IGF-1R via the downregulation of furin.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Furina/uso terapéutico , Receptor IGF Tipo 1/antagonistas & inhibidores , Ácido Tióctico/uso terapéutico , Neoplasias de la Mama/patología , Regulación hacia Abajo , Femenino , Furina/farmacología , Humanos , Ácido Tióctico/farmacología , Transfección
6.
J Pathol ; 249(3): 343-355, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257576

RESUMEN

The identification of novel regulators of tumor progression is a key challenge to gain knowledge on the biology of small intestinal neuroendocrine tumors (SI-NETs). We recently identified the loss of the axon guidance protein semaphorin 3F as a protumoral event in SI-NETs. Interestingly the expression of its receptor neuropilin-2 (NRP-2) was still maintained. This study aimed at deciphering the potential role of NRP-2 as a contributor to SI-NET progression. The role of NRP-2 in SI-NET progression was addressed using an approach integrating human tissue and serum samples, cell lines and in vivo models. Data obtained from human SI-NET tissues showed that membranous NRP-2 expression is present in a majority of tumors, and is correlated with invasion, metastatic abilities, and neovascularization. In addition, NRP-2 soluble isoform was found elevated in serum samples from metastatic patients. In preclinical mouse models of NET progression, NRP-2 silencing led to a sustained antitumor effect, partly driven by the downregulation of VEGFR2. In contrast, its ectopic expression conferred a gain of aggressiveness, driven by the activation of various oncogenic signaling pathways. Lastly, NRP-2 inhibition led to a decrease of tumor cell viability, and sensitized to therapeutic agents. Overall, our results point out NRP-2 as a potential therapeutic target for SI-NETs, and will foster the development of innovative strategies targeting this receptor. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Carcinoma Neuroendocrino/metabolismo , Neoplasias Intestinales/metabolismo , Intestino Delgado/metabolismo , Neuropilina-2/metabolismo , Anciano , Animales , Antineoplásicos/farmacología , Apoptosis , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/secundario , Línea Celular Tumoral , Movimiento Celular , Everolimus/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Intestinales/tratamiento farmacológico , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Intestino Delgado/patología , Masculino , Ratones Desnudos , Invasividad Neoplásica , Neovascularización Patológica , Neuropilina-2/sangre , Neuropilina-2/genética , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
7.
Nature ; 482(7386): 534-7, 2011 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-22158121

RESUMEN

The role of deleted in colorectal carcinoma (DCC) as a tumour suppressor has been a matter of debate for the past 15 years. DCC gene expression is lost or markedly reduced in the majority of advanced colorectal cancers and, by functioning as a dependence receptor, DCC has been shown to induce apoptosis unless engaged by its ligand, netrin-1 (ref. 2). However, so far no animal model has supported the view that the DCC loss-of-function is causally implicated as predisposing to aggressive cancer development. To investigate the role of DCC-induced apoptosis in the control of tumour progression, here we created a mouse model in which the pro-apoptotic activity of DCC is genetically silenced. Although the loss of DCC-induced apoptosis in this mouse model is not associated with a major disorganization of the intestines, it leads to spontaneous intestinal neoplasia at a relatively low frequency. Loss of DCC-induced apoptosis is also associated with an increase in the number and aggressiveness of intestinal tumours in a predisposing APC mutant context, resulting in the development of highly invasive adenocarcinomas. These results demonstrate that DCC functions as a tumour suppressor via its ability to trigger tumour cell apoptosis.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Receptores de Superficie Celular/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Apoptosis/genética , Caspasas/metabolismo , Células Cultivadas , Receptor DCC , Modelos Animales de Enfermedad , Fibroblastos , Silenciador del Gen , Genes APC , Células HEK293 , Humanos , Neoplasias Intestinales/metabolismo , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/genética , Netrina-1 , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
8.
J Biol Chem ; 290(38): 23173-87, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26224633

RESUMEN

Lipoprotein components are crucial factors for hepatitis C virus (HCV) assembly and entry. As hepatoma cells producing cell culture-derived HCV (HCVcc) particles are impaired in some aspects of lipoprotein metabolism, it is of upmost interest to biochemically and functionally characterize the in vivo produced viral particles, particularly regarding how lipoprotein components modulate HCV entry by lipid transfer receptors such as scavenger receptor BI (SR-BI). Sera from HCVcc-infected liver humanized FRG mice were separated by density gradients. Viral subpopulations, termed HCVfrg particles, were characterized for their physical properties, apolipoprotein association, and infectivity. We demonstrate that, in contrast to the widely spread distribution of apolipoproteins across the different HCVcc subpopulations, the most infectious HCVfrg particles are highly enriched in apoE, suggesting that such apolipoprotein enrichment plays a role for entry of in vivo derived infectious particles likely via usage of apolipoprotein receptors. Consistent with this salient feature, we further reveal previously undefined functionalities of SR-BI in promoting entry of in vivo produced HCV. First, unlike HCVcc, SR-BI is a particularly limiting factor for entry of HCVfrg subpopulations of very low density. Second, HCVfrg entry involves SR-BI lipid transfer activity but not its capacity to bind to the viral glycoprotein E2. In conclusion, we demonstrate that composition and biophysical properties of the different subpopulations of in vivo produced HCVfrg particles modulate their levels of infectivity and receptor usage, hereby featuring divergences with in vitro produced HCVcc particles and highlighting the powerfulness of this in vivo model for the functional study of the interplay between HCV and liver components.


Asunto(s)
Hepacivirus/metabolismo , Hepatitis C/metabolismo , Hígado/virología , Internalización del Virus , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Hepacivirus/genética , Hepatitis C/genética , Hepatitis C/patología , Humanos , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
9.
Biochim Biophys Acta ; 1852(12): 2603-17, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26360553

RESUMEN

Hereditary tyrosinemia type 1 (HT1) is the most severe inherited metabolic disease of the tyrosine catabolic pathway, with a progressive hepatic and renal injury and a fatal outcome if untreated. Toxic metabolites accumulating in HT1 have been shown to elicit endoplasmic reticulum (ER) stress response, and to induce chromosomal instability, cell cycle arrest and apoptosis perturbation. Although many studies have concentrated on elucidating these events, the molecular pathways responsible for development of hepatocellular carcinoma (HCC) still remain unclear. In this study the fah knockout murine model (fah(-/-)) was used to investigate the cellular signaling implicated in the pathogenesis of HT1. Fah(-/-) mice were subjected to drug therapy discontinuation (Nitisinone withdrawal), and livers were analyzed at different stages of the disease. Monitoring of mice revealed an increasing degeneration of the overall physiological conditions following drug withdrawal. Histological analysis unveiled diffuse hepatocellular damage, steatosis, oval-like cells proliferation and development of liver cell adenomas. Immunoblotting results revealed a progressive and chronic activation of stress pathways related to cell survival and proliferation, including several stress regulators such as Nrf2, eIF2α, CHOP, HO-1, and some members of the MAPK signaling cascade. Impairment of stress defensive mechanisms was also shown by microarray analysis in fah(-/-) mice following prolonged therapy interruption. These results suggest that a sustained activation of stress pathways in the chronic HT1 progression might play a central role in exacerbating liver degeneration.

10.
PLoS Biol ; 11(8): e1001623, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940460

RESUMEN

The Hedgehog signaling is a determinant pathway for tumor progression. However, while inhibition of the Hedgehog canonical pathway-Patched-Smoothened-Gli-has proved efficient in human tumors with activating mutations in this pathway, recent clinical data have failed to show any benefit in other cancers, even though Sonic Hedgehog (SHH) expression is detected in these cancers. Cell-adhesion molecule-related/down-regulated by Oncogenes (CDON), a positive regulator of skeletal muscle development, was recently identified as a receptor for SHH. We show here that CDON behaves as a SHH dependence receptor: it actively triggers apoptosis in the absence of SHH. The pro-apoptotic activity of unbound CDON requires a proteolytic cleavage in its intracellular domain, allowing the recruitment and activation of caspase-9. We show that by inducing apoptosis in settings of SHH limitation, CDON expression constrains tumor progression, and as such, decreased CDON expression observed in a large fraction of human colorectal cancer is associated in mice with intestinal tumor progression. Reciprocally, we propose that the SHH expression, detected in human cancers and previously considered as a mechanism for activation of the canonical pathway in an autocrine or paracrine manner, actually provides a selective tumor growth advantage by blocking CDON-induced apoptosis. In support of this notion, we present the preclinical demonstration that interference with the SHH-CDON interaction triggers a CDON-dependent apoptosis in vitro and tumor growth inhibition in vivo. The latter observation qualifies CDON as a relevant alternative target for anticancer therapy in SHH-expressing tumors.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Moléculas de Adhesión Celular/genética , Línea Celular , Línea Celular Tumoral , Femenino , Proteínas Hedgehog/genética , Humanos , Masculino , Ratones , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/genética
11.
PLoS Pathog ; 7(9): e1002231, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21909275

RESUMEN

Alteration of early haematopoietic development is thought to be responsible for the onset of immature leukemias and lymphomas. We have previously demonstrated that Tax(HTLV-1) interferes with ß-selection, an important checkpoint of early thymopoiesis, indicating that human T-cell leukemia virus type 1 (HTLV-1) infection has the potential to perturb thymic human αß T-cell development. To verify that inference and to clarify the impact of HTLV-1 infection on human T-cell development, we investigated the in vivo effects of HTLV-1 infection in a "Human Immune System" (HIS) Rag2⁻/⁻γ(c)⁻/⁻ mouse model. These mice were infected with HTLV-1, at a time when the three main subpopulations of human thymocytes have been detected. In all but two inoculated mice, the HTLV-1 provirus was found integrated in thymocytes; the proviral load increased with the length of the infection period. In the HTLV-1-infected mice we observed alterations in human T-cell development, the extent of which correlated with the proviral load. Thus, in the thymus of HTLV-1-infected HIS Rag2⁻/⁻γc⁻/⁻ mice, mature single-positive (SP) CD4⁺ and CD8⁺ cells were most numerous, at the expense of immature and double-positive (DP) thymocytes. These SP cells also accumulated in the spleen. Human lymphocytes from thymus and spleen were activated, as shown by the expression of CD25: this activation was correlated with the presence of tax mRNA and with increased expression of NF-kB dependent genes such as bfl-1, an anti-apoptotic gene, in thymocytes. Finally, hepato-splenomegaly, lymphadenopathy and lymphoma/thymoma, in which Tax was detected, were observed in HTLV-1-infected mice, several months after HTLV-1 infection. These results demonstrate the potential of the HIS Rag2⁻/⁻γ(c)⁻/⁻ animal model to elucidate the initial steps of the leukemogenic process induced by HTLV-1.


Asunto(s)
Infecciones por HTLV-I/inmunología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Timocitos/fisiología , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Infecciones por HTLV-I/patología , Trasplante de Células Madre Hematopoyéticas , Humanos , Leucemia-Linfoma de Células T del Adulto/etiología , Ratones , Timocitos/virología , Quimera por Trasplante/inmunología , Trasplante Heterólogo , Carga Viral
12.
Cell Death Dis ; 14(2): 171, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854682

RESUMEN

Notch signaling is a conserved signaling pathway that participates in many aspects of mammary gland development and homeostasis, and has extensively been associated with breast tumorigenesis. Here, to unravel the as yet debated role of Notch3 in breast cancer development, we investigated its expression in human breast cancer samples and effects of its loss in mice. Notch3 expression was very weak in breast cancer cells and was associated with good patient prognosis. Interestingly, its expression was very strong in stromal cells of these patients, though this had no prognostic value. Mechanistically, we demonstrated that Notch3 prevents tumor initiation via HeyL-mediated inhibition of Mybl2, an important regulator of cell cycle. In the mammary glands of Notch3-deficient mice, we observed accelerated tumor initiation and proliferation in a MMTV-Neu model. Notch3-null tumors were enriched in Mybl2 mRNA signature and protein expression. Hence, our study reinforces the anti-tumoral role of Notch3 in breast tumorigenesis.


Asunto(s)
Neoplasias de la Mama , Transformación Celular Neoplásica , Animales , Femenino , Humanos , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , División Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Homeostasis , Receptor Notch3/genética , Proteínas Represoras , Transactivadores
13.
Cell Death Discov ; 9(1): 230, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37414800

RESUMEN

Toll-like receptor 3 (TLR3) is a pattern recognition receptor mainly known for its role in innate immune response to infection. Indeed, binding of double-stranded RNA (dsRNA) to TLR3 triggers a pro-inflammatory cascade leading to cytokine release and immune cell activation. Its anti-tumoral potential has emerged progressively, associated with a direct impact on tumor cell death induction and with an indirect action on immune system reactivation. Accordingly, TLR3 agonists are currently being tested in clinical trials for several adult cancers. Meanwhile, TLR3 variants have been linked to auto-immune disorders, and as risk factors of viral infection and cancers. However, aside from neuroblastoma, TLR3 role in childhood cancers has not been evaluated. Here, by integrating public transcriptomic data of pediatric tumors, we unveil that high TLR3 expression is largely associated with a better prognosis in childhood sarcomas. Using osteosarcomas and rhabdomyosarcomas as models, we show that TLR3 efficiently drives tumor cell death in vitro and induces tumor regression in vivo. Interestingly, this anti-tumoral effect was lost in cells expressing the homozygous TLR3 L412F polymorphism, which is enriched in a rhabdomyosarcomas cohort. Thus, our results demonstrate the therapeutic potential associated with the targeting of TLR3 in pediatric sarcomas, but also the need to stratify patients eligible for this clinical approach with respect to the TLR3 variants expressed.

14.
Cell Death Differ ; 30(10): 2201-2212, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37633969

RESUMEN

Drug resistance and cancer relapse represent significant therapeutic challenges after chemotherapy or immunotherapy, and a major limiting factor for long-term cancer survival. Netrin-1 was initially identified as a neuronal navigation cue but has more recently emerged as an interesting target for cancer therapy, which is currently clinically investigated. We show here that netrin-1 is an independent prognostic marker for clinical progression of breast and ovary cancers. Cancer stem cells (CSCs)/Tumor initiating cells (TICs) are hypothesized to be involved in clinical progression, tumor relapse and resistance. We found a significant correlation between netrin-1 expression and cancer stem cell (CSC) markers levels. We also show in different mice models of resistance to chemotherapies that netrin-1 interference using a therapeutic netrin-1 blocking antibody alleviates resistance to chemotherapy and triggers an efficient delay in tumor relapse and this effect is associated with CSCs loss. We also demonstrate that netrin-1 interference limits tumor resistance to immune checkpoint inhibitor and provide evidence linking this enhanced anti-tumor efficacy to a decreased recruitment of a subtype of myeloid-derived suppressor cells (MDSCs) called polymorphonuclear (PMN)-MDSCs. We have functionally demonstrated that these immune cells promote CSCs features and, consequently, resistance to anti-cancer treatments. Together, these data support the view of both a direct and indirect contribution of netrin-1 to cancer stemness and we propose that this may lead to therapeutic opportunities by combining conventional chemotherapies and immunotherapies with netrin-1 interfering drugs.

15.
Cell Rep Med ; 4(12): 101339, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118405

RESUMEN

Rhabdomyosarcoma (RMS) is the main form of pediatric soft-tissue sarcoma. Its cure rate has not notably improved in the last 20 years following relapse, and the lack of reliable preclinical models has hampered the design of new therapies. This is particularly true for highly heterogeneous fusion-negative RMS (FNRMS). Although methods have been proposed to establish FNRMS organoids, their efficiency remains limited to date, both in terms of derivation rate and ability to accurately mimic the original tumor. Here, we present the development of a next-generation 3D organoid model derived from relapsed adult and pediatric FNRMS. This model preserves the molecular features of the patients' tumors and is expandable for several months in 3D, reinforcing its interest to drug combination screening with longitudinal efficacy monitoring. As a proof-of-concept, we demonstrate its preclinical relevance by reevaluating the therapeutic opportunities of targeting apoptosis in FNRMS from a streamlined approach based on transcriptomic data exploitation.


Asunto(s)
Antineoplásicos , Rabdomiosarcoma , Adulto , Humanos , Niño , Recurrencia Local de Neoplasia/tratamiento farmacológico , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Organoides/patología , Muerte Celular
16.
Am J Pathol ; 178(1): 336-44, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21224070

RESUMEN

The mammalian target of rapamycin (mTOR) inhibitors, such as rapalogues, are a promising new tool for the treatment of metastatic gastroenteropancreatic endocrine tumors. However, their mechanisms of action remain to be established. We used two murine intestinal endocrine tumoral cell lines, STC-1 and GLUTag, to evaluate the antitumor effects of rapamycin in vitro and in vivo in a preclinical model of liver endocrine metastases. In vitro, rapamycin inhibited the proliferation of cells in the basal state and after stimulation by insulin-like growth factor-1. Simultaneously, p70S6 kinase and 4EBP1 phosphorylation was inhibited. In vivo, rapamycin substantially inhibited the intrahepatic growth of STC-1 cells, irrespectively of the timing of its administration and even when the treatment was administered after cell intrahepatic engraftment. In addition, treated animals had significantly prolonged survival (mean survival time: 47.7 days in treated animals versus 31.8 days in controls) and better clinical status. Rapamycin treatment was associated with a significant decrease in mitotic index and in intratumoral vascular density within STC-1 tumors. Furthermore, the antitumoral effect obtained after treatment with a combination of rapamycin and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 was more significant than with rapamycin alone in both cell lines. Our results suggest that the antitumor efficacy of rapamycin in neuroendocrine tumors results from a combination of antiproliferative and antiangiogenic effects. Interestingly, a more potent antitumor efficiency could be obtained by simultaneously targeting several levels of the PI3K/mTOR pathway.


Asunto(s)
Antibióticos Antineoplásicos/uso terapéutico , Carcinoma Neuroendocrino/tratamiento farmacológico , Cromonas/uso terapéutico , Neoplasias Intestinales/tratamiento farmacológico , Morfolinas/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/uso terapéutico , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Neuroendocrino/enzimología , Carcinoma Neuroendocrino/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Intestinales/enzimología , Neoplasias Intestinales/patología , Ratones , Fosforilación/efectos de los fármacos
17.
Proc Natl Acad Sci U S A ; 106(40): 17146-51, 2009 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-19721007

RESUMEN

Chronic inflammation and cancer are intimately associated. This is particularly true for inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, which show a major increased risk for colorectal cancer. While the understanding of the molecular pathogenesis of IBD has recently improved, the mechanisms that link these chronic inflammatory states to colorectal cancer development are in large part unknown. One of these mechanisms is NF-kappaB pathway activation which in turn may contribute to tumor formation by providing anti-apoptotic survival signals to the epithelial cells. Based on the observation that netrin-1, the anti-apoptotic ligand for the dependence receptors DCC and UNC5H is up-regulated in colonic crypts in response to NF-kappaB, we show here that colorectal cancers from inflammatory bowel diseases patients have selected up-regulation of netrin-1. Moreover, we demonstrate that this inflammation-driven netrin-1 up-regulation is causal for colorectal cancer development as interference with netrin-1 autocrine loop in a mouse model for ulcerative colitis-associated colorectal cancer, while showing no effect on inflammation, inhibits colorectal cancer progression.


Asunto(s)
Neoplasias Colorrectales/genética , Enfermedades Inflamatorias del Intestino/genética , Factores de Crecimiento Nervioso/genética , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba , Animales , Apoptosis , Caspasa 3/metabolismo , Línea Celular , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Femenino , Células HCT116 , Células HT29 , Humanos , Inmunohistoquímica , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Netrina-1 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo
18.
Acta Neuropathol Commun ; 10(1): 18, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35139928

RESUMEN

Folliculostellate cells are S100B-expressing cells with numerous functions in the normal anterior pituitary. These cells have also been identified in pituitary neuroendocrine tumours (PitNETs), where their precise role remains elusive. Here, we aimed to build a refined cartography of S100B-expressing cells to characterise their interpatient and intratumoural spatial distribution, and to start identifying their potential functions in PitNETs. High-throughput histological analysis of S100B-stained tumour sections of 54 PitNETs revealed a significant decrease in S100B + cells in PitNETs compared to the normal anterior pituitary. A Ki67 index ≥ 3, a mitosis count > 2/10 per high power fields, and a proliferative status, were all associated with fewer S100B + cells in gonadotroph tumours. Gonadotroph tumours also showed interpatient and intratumoural heterogeneity in the spatial distribution of S100B + cells. The existence of an intratumoural heterogeneity was further confirmed by the incorporation to our spatial analysis of additional markers: Ki67, FSH, LH, ERα and SSTR2. The tumour areas with fewer S100B + cells displayed a higher percentage of Ki67 + cells, whereas strong positive correlations were observed between S100B + , FSH + , and ERα + cells. Such spatial associations suggest that S100B + folliculostellate cells could play a role in gonadotroph tumorigenesis, and may contribute to the maintenance of tumour cells in a low proliferating, FSH + /ERα + differentiated state. Albeit, further in-depth functional studies are required to decipher the mechanisms underlying these spatial associations and to potentially identify a therapeutic use.


Asunto(s)
Tumores Neuroendocrinos/patología , Neoplasias Hipofisarias/patología , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Proliferación Celular/fisiología , Receptor alfa de Estrógeno/metabolismo , Femenino , Hormona Folículo Estimulante/metabolismo , Gonadotrofos/metabolismo , Gonadotrofos/patología , Humanos , Masculino , Persona de Mediana Edad , Tumores Neuroendocrinos/metabolismo , Neoplasias Hipofisarias/metabolismo
19.
Biomater Sci ; 10(2): 485-498, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-34904143

RESUMEN

Bone marrow is a complex and dynamic microenvironment that provides essential cues to resident cells. We developed a standardized three-dimensional (3D) model to decipher mechanisms that control human cells during hematological and non-hematological processes. Our simple 3D-model is constituted of a biphasic calcium phosphate-based scaffold and human cell lines to ensure a high reproducibility. We obtained a minimal well-organized bone marrow-like structure in which various cell types and secreted extracellular matrix can be observed and characterized by in situ imaging or following viable cell retrieval. The complexity of the system can be increased and customized, with each cellular component being independently modulated according to the issue investigated. Introduction of pathological elements in this 3D-system accurately reproduced changes observed in patient bone marrow. Hence, we have developed a handy and flexible standardized microphysiological system that mimics human bone marrow, allowing histological analysis and functional assays on collected cells.


Asunto(s)
Médula Ósea , Huesos , Células de la Médula Ósea , Matriz Extracelular , Humanos , Reproducibilidad de los Resultados
20.
Eur J Cancer ; 169: 106-122, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35550950

RESUMEN

INTRODUCTION: Epithelial-to-mesenchymal transition (EMT) is associated with tumor aggressiveness, drug resistance, and poor survival in non-small cell lung cancer (NSCLC) and other cancers. The identification of immune-checkpoint ligands (ICPLs) associated with NSCLCs that display a mesenchymal phenotype (mNSCLC) could help to define subgroups of patients who may benefit from treatment strategies using immunotherapy. METHODS: We evaluated ICPL expression in silico in 130 NSCLC cell lines. In vitro, CRISPR/Cas9-mediated knockdown and lentiviral expression were used to assess the impact of ZEB1 expression on CD70. Gene expression profiles of lung cancer samples from the TCGA (n = 1018) and a dataset from MD Anderson Cancer Center (n = 275) were analyzed. Independent validation was performed by immunohistochemistry and targeted-RNA sequencing in 154 NSCLC whole sections, including a large cohort of pulmonary sarcomatoid carcinomas (SC, n = 55). RESULTS: We uncover that the expression of CD70, a regulatory ligand from the tumor necrosis factor ligand family, is enriched in mNSCLC in vitro models. Mechanistically, the EMT-inducer ZEB1 impacted CD70 expression and fostered increased activity of the CD70 promoter. CD70 overexpression was also evidenced in mNSCLC patient tumor samples and was particularly enriched in SC, a lung cancer subtype associated with poor prognosis. In these tumors, CD70 expression was associated with decreased CD3+ and CD8+ T-cell infiltration and increased T-cell exhaustion markers. CONCLUSION: Our results provide evidence on the pivotal roles of CD70 and ZEB1 in immune escape in mNSCLC, suggesting that EMT might promote cancer progression and metastasis by not only increasing cancer cell plasticity but also reprogramming the immune response in the local tumor microenvironment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ligando CD27/genética , Ligando CD27/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Ligandos , Neoplasias Pulmonares/patología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA