Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Cell Sci ; 137(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37667859

RESUMEN

Ciliates assemble numerous microtubular structures into complex cortical patterns. During ciliate division, the pattern is duplicated by intracellular segmentation that produces a tandem of daughter cells. In Tetrahymena thermophila, the induction and positioning of the division boundary involves two mutually antagonistic factors: posterior CdaA (cyclin E) and anterior CdaI (Hippo kinase). Here, we characterized the related cdaH-1 allele, which confers a pleiotropic patterning phenotype including an absence of the division boundary and an anterior-posterior mispositioning of the new oral apparatus. CdaH is a Fused or Stk36 kinase ortholog that localizes to multiple sites that correlate with the effects of its loss, including the division boundary and the new oral apparatus. CdaH acts downstream of CdaA to induce the division boundary and drives asymmetric cytokinesis at the tip of the posterior daughter. CdaH both maintains the anterior-posterior position of the new oral apparatus and interacts with CdaI to pattern ciliary rows within the oral apparatus. Thus, CdaH acts at multiple scales, from induction and positioning of structures on the cell-wide polarity axis to local organelle-level patterning.


Asunto(s)
Tetrahymena thermophila , Tetrahymena , Tetrahymena/genética , División Celular/genética , Acetamidas , Tetrahymena thermophila/genética , Citoesqueleto
2.
Cell ; 137(6): 1076-87, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19524510

RESUMEN

Polyglycylation is a posttranslational modification that generates glycine side chains on proteins. Here we identify a family of evolutionarily conserved glycine ligases that modify tubulin using different enzymatic mechanisms. In mammals, two distinct enzyme types catalyze the initiation and elongation steps of polyglycylation, whereas Drosophila glycylases are bifunctional. We further show that the human elongating glycylase has lost enzymatic activity due to two amino acid changes, suggesting that the functions of protein glycylation could be sufficiently fulfilled by monoglycylation. Depletion of a glycylase in Drosophila using RNA interference results in adult flies with strongly decreased total glycylation levels and male sterility associated with defects in sperm individualization and axonemal maintenance. A more severe RNAi depletion is lethal at early developmental stages, indicating that protein glycylation is essential. Together with the observation that multiple proteins are glycylated, our functional data point towards a general role of glycylation in protein functions.


Asunto(s)
Evolución Molecular , Glicina/metabolismo , Péptido Sintasas/genética , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Péptido Sintasas/química , Ácido Poliglutámico/metabolismo , Alineación de Secuencia
3.
EMBO Rep ; 22(9): e52911, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34338432

RESUMEN

Cilia are thin microtubule-based protrusions of eukaryotic cells. The swimming of ciliated protists and sperm cells is propelled by the beating of cilia. Cilia propagate the flow of mucus in the trachea and protect the human body from viral infections. The main force generators of ciliary beating are the outer dynein arms (ODAs) which attach to the doublet microtubules. The bending of cilia is driven by the ODAs' conformational changes caused by ATP hydrolysis. Here, we report the native ODA complex structure attaching to the doublet microtubule by cryo-electron microscopy. The structure reveals how the ODA complex is attached to the doublet microtubule via the docking complex in its native state. Combined with coarse-grained molecular dynamic simulations, we present a model of how the attachment of the ODA to the doublet microtubule induces remodeling and activation of the ODA complex.


Asunto(s)
Dineínas Axonemales , Dineínas , Dineínas Axonemales/metabolismo , Axonema/metabolismo , Cilios/metabolismo , Microscopía por Crioelectrón , Dineínas/metabolismo , Humanos , Microtúbulos/metabolismo
4.
J Eukaryot Microbiol ; 69(5): e12890, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35075744

RESUMEN

As single cells, ciliates build, duplicate, and even regenerate complex cortical patterns by largely unknown mechanisms that precisely position organelles along two cell-wide axes: anterior-posterior and circumferential (left-right). We review our current understanding of intracellular patterning along the anterior-posterior axis in ciliates, with emphasis on how the new pattern emerges during cell division. We focus on the recent progress at the molecular level that has been driven by the discovery of genes whose mutations cause organelle positioning defects in the model ciliate Tetrahymena thermophila. These investigations have revealed a network of highly conserved kinases that are confined to either anterior or posterior domains in the cell cortex. These pattern-regulating kinases create zones of cortical inhibition that by exclusion determine the precise placement of organelles. We discuss observations and models derived from classical microsurgical experiments in large ciliates (including Stentor) and interpret them in light of recent molecular findings in Tetrahymena. In particular, we address the involvement of intracellular gradients as vehicles for positioning organelles along the anterior-posterior axis.


Asunto(s)
Cilióforos , Tetrahymena thermophila , División Celular , Cilióforos/genética , Tetrahymena thermophila/genética
5.
PLoS Genet ; 15(7): e1008099, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31339880

RESUMEN

The length of cilia is controlled by a poorly understood mechanism that involves members of the conserved RCK kinase group, and among them, the LF4/MOK kinases. The multiciliated protist model, Tetrahymena, carries two types of cilia (oral and locomotory) and the length of the locomotory cilia is dependent on their position with the cell. In Tetrahymena, loss of an LF4/MOK ortholog, LF4A, lengthened the locomotory cilia, but also reduced their number. Without LF4A, cilia assembled faster and showed signs of increased intraflagellar transport (IFT). Consistently, overproduced LF4A shortened cilia and downregulated IFT. GFP-tagged LF4A, expressed in the native locus and imaged by total internal reflection microscopy, was enriched at the basal bodies and distributed along the shafts of cilia. Within cilia, most LF4A-GFP particles were immobile and a few either diffused or moved by IFT. We suggest that the distribution of LF4/MOK along the cilium delivers a uniform dose of inhibition to IFT trains that travel from the base to the tip. In a longer cilium, the IFT machinery may experience a higher cumulative dose of inhibition by LF4/MOK. Thus, LF4/MOK activity could be a readout of cilium length that helps to balance the rate of IFT-driven assembly with the rate of disassembly at steady state. We used a forward genetic screen to identify a CDK-related kinase, CDKR1, whose loss-of-function suppressed the shortening of cilia caused by overexpression of LF4A, by reducing its kinase activity. Loss of CDKR1 alone lengthened both the locomotory and oral cilia. CDKR1 resembles other known ciliary CDK-related kinases: LF2 of Chlamydomonas, mammalian CCRK and DYF-18 of C. elegans, in lacking the cyclin-binding motif and acting upstream of RCKs. The new genetic tools we developed here for Tetrahymena have potential for further dissection of the principles of cilia length regulation in multiciliated cells.


Asunto(s)
Cilios/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Tetrahymena/citología , Regulación de la Expresión Génica , Locomoción , Proteínas Protozoarias/metabolismo , Tetrahymena/metabolismo , Tetrahymena/fisiología
6.
J Cell Sci ; 132(15)2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31243050

RESUMEN

Motile cilia generate directed hydrodynamic flow that is important for the motility of cells and extracellular fluids. To optimize directed hydrodynamic flow, motile cilia are organized and oriented into a polarized array. Basal bodies (BBs) nucleate and position motile cilia at the cell cortex. Cytoplasmic BB-associated microtubules are conserved structures that extend from BBs. By using the ciliate, Tetrahymena thermophila, combined with EM-tomography and light microscopy, we show that BB-appendage microtubules assemble coincidently with new BB assembly and that they are attached to the cell cortex. These BB-appendage microtubules are specifically marked by post translational modifications of tubulin, including glycylation. Mutations that prevent glycylation shorten BB-appendage microtubules and disrupt BB positioning and cortical attachment. Consistent with the attachment of BB-appendage microtubules to the cell cortex to position BBs, mutations that disrupt the cellular cortical cytoskeleton disrupt the cortical attachment and positioning of BBs. In summary, BB-appendage microtubules promote the organization of ciliary arrays through attachment to the cell cortex.


Asunto(s)
Cuerpos Basales/metabolismo , Cilios/metabolismo , Microtúbulos/metabolismo , Tetrahymena thermophila/metabolismo , Cuerpos Basales/ultraestructura , Cilios/genética , Glicosilación , Microtúbulos/genética , Microtúbulos/ultraestructura , Mutación , Tetrahymena thermophila/genética , Tetrahymena thermophila/ultraestructura
7.
J Cell Physiol ; 233(11): 8648-8665, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29761930

RESUMEN

The mechanisms that regulate γ-tubulin, including its post-translational modifications, are poorly understood. γ-Tubulin is important for the duplication of centrioles and structurally similar basal bodies (BBs), organelles which contain a ring of nine triplet microtubules. The ciliate Tetrahymena thermophila carries hundreds of cilia in a single cell and provides an excellent model to specifically address the role of γ-tubulin in the BBs assembly and maintenance. The genome of Tetrahymena contains a single γ-tubulin gene. We show here that there are multiple isoforms of γ-tubulin that are likely generated by post-translational modifications. We identified evolutionarily conserved serine and threonine residues as potential phosphosites of γ-tubulin, including S80, S129, S131, T283, and S360. Several mutations that either prevent (S80A, S131A, T283A, S360A) or mimic (T283D) phosphorylation were conditionally lethal and at a higher temperature phenocopied a loss of γ-tubulin. Cells that overproduced S360D γ-tubulin displayed phenotypes consistent with defects in the microtubule-dependent functions, including an asymmetric division of the macronucleus and abnormalities in the pattern of BB rows, including gaps, fragmentation, and misalignment. In contrast, overexpression of S129D γ-tubulin affected the orientation, docking, and structure of the BBs, including a loss of either the B- or C-subfibers or the entire triplets. We conclude that conserved potentially phosphorylated amino acids of γ-tubulin are important for either the assembly or stability of BBs.


Asunto(s)
Secuencia de Aminoácidos/genética , Cuerpos Basales/metabolismo , Tetrahymena thermophila/genética , Tubulina (Proteína)/genética , Animales , Centriolos/genética , Cilios/genética , Genoma/genética , Microtúbulos/genética , Fosforilación , Serina/genética , Treonina/genética
8.
J Eukaryot Microbiol ; 64(3): 293-307, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27595611

RESUMEN

Ciliates such as Tetrahymena thermophila have two distinct nuclei within one cell: the micronucleus that undergoes mitosis and meiosis and the macronucleus that undergoes amitosis, a type of nuclear division that does not involve a bipolar spindle, but still relies on intranuclear microtubules. Ciliates provide an opportunity for the discovery of factors that specifically contribute to chromosome segregation based on a bipolar spindle, by identification of factors that affect the micronuclear but not the macronuclear division. Kinesin-14 is a conserved minus-end directed microtubule motor that cross-links microtubules and contributes to the bipolar spindle sizing and organization. Here, we use homologous DNA recombination to knock out genes that encode kinesin-14 orthologues (KIN141, KIN142) in Tetrahymena. A loss of KIN141 led to severe defects in the chromosome segregation during both mitosis and meiosis but did not affect amitosis. A loss of KIN141 altered the shape of the meiotic spindle in a way consistent with the KIN141's contribution to the organization of the spindle poles. EGFP-tagged KIN141 preferentially accumulated at the spindle poles during the meiotic prophase and metaphase I. Thus, in ciliates, kinesin-14 is important for nuclear divisions that involve a bipolar spindle.


Asunto(s)
Segregación Cromosómica , Cilióforos/genética , Cinesinas/genética , Cinesinas/fisiología , Meiosis , Mitosis , Tetrahymena thermophila/genética , Animales , Núcleo Celular , Cilióforos/citología , Técnicas de Inactivación de Genes , Cinesinas/clasificación , Cinesinas/ultraestructura , Macronúcleo , Profase Meiótica I , Metafase , Microtúbulos , Mutación , Filogenia , Proteínas Recombinantes , Huso Acromático , Polos del Huso , Tetrahymena/genética , Tetrahymena thermophila/citología , Tetrahymena thermophila/metabolismo
9.
Nature ; 467(7312): 218-22, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20829795

RESUMEN

In most eukaryotic cells, subsets of microtubules are adapted for specific functions by post-translational modifications (PTMs) of tubulin subunits. Acetylation of the epsilon-amino group of K40 on alpha-tubulin is a conserved PTM on the luminal side of microtubules that was discovered in the flagella of Chlamydomonas reinhardtii. Studies on the significance of microtubule acetylation have been limited by the undefined status of the alpha-tubulin acetyltransferase. Here we show that MEC-17, a protein related to the Gcn5 histone acetyltransferases and required for the function of touch receptor neurons in Caenorhabditis elegans, acts as a K40-specific acetyltransferase for alpha-tubulin. In vitro, MEC-17 exclusively acetylates K40 of alpha-tubulin. Disruption of the Tetrahymena MEC-17 gene phenocopies the K40R alpha-tubulin mutation and makes microtubules more labile. Depletion of MEC-17 in zebrafish produces phenotypes consistent with neuromuscular defects. In C. elegans, MEC-17 and its paralogue W06B11.1 are redundantly required for acetylation of MEC-12 alpha-tubulin, and contribute to the function of touch receptor neurons partly via MEC-12 acetylation and partly via another function, possibly by acetylating another protein. In summary, we identify MEC-17 as an enzyme that acetylates the K40 residue of alpha-tubulin, the only PTM known to occur on the luminal surface of microtubules.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Tubulina (Proteína)/metabolismo , Proteínas de Pez Cebra/metabolismo , Acetilación , Animales , Caenorhabditis elegans/metabolismo , Línea Celular , Dipodomys , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Tetrahymena/metabolismo , Tacto , Tubulina (Proteína)/química , Pez Cebra/embriología , Pez Cebra/metabolismo
10.
Eukaryot Cell ; 12(8): 1080-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23729382

RESUMEN

ADF/cofilin is a highly conserved actin-modulating protein. Reorganization of the actin cytoskeleton in vivo through severing and depolymerizing of F-actin by this protein is essential for various cellular events, such as endocytosis, phagocytosis, cytokinesis, and cell migration. We show that in the ciliate Tetrahymena thermophila, the ADF/cofilin homologue Adf73p associates with actin on nascent food vacuoles. Overexpression of Adf73p disrupted the proper localization of actin and inhibited the formation of food vacuoles. In vitro, recombinant Adf73p promoted the depolymerization of filaments made of T. thermophila actin (Act1p). Knockout cells lacking the ADF73 gene are viable but grow extremely slowly and have a severely decreased rate of food vacuole formation. Knockout cells have abnormal aggregates of actin in the cytoplasm. Surprisingly, unlike the case in animals and yeasts, in Tetrahymena, ADF/cofilin is not required for cytokinesis. Thus, the Tetrahymena model shows promise for future studies of the role of ADF/cofilin in vivo.


Asunto(s)
Actinas/metabolismo , Cofilina 1/genética , Proteínas de Microfilamentos/genética , Fagocitosis/genética , Tetrahymena thermophila/crecimiento & desarrollo , Tetrahymena thermophila/metabolismo , Citoesqueleto de Actina/metabolismo , Infecciones por Cilióforos/genética , Infecciones por Cilióforos/microbiología , Cofilina 1/metabolismo , Citocinesis/genética , Técnicas de Inactivación de Genes , Homología de Secuencia de Aminoácido , Tetrahymena thermophila/patogenicidad , Vacuolas/metabolismo
11.
Structure ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754431

RESUMEN

Cryoelectron microscopy (cryo-EM) has revolutionized the structural determination of macromolecular complexes. With the paradigm shift to structure determination of highly complex endogenous macromolecular complexes ex vivo and in situ structural biology, there are an increasing number of structures of native complexes. These complexes often contain unidentified proteins, related to different cellular states or processes. Identifying proteins at resolutions lower than 4 Å remains challenging because side chains cannot be visualized reliably. Here, we present DomainFit, a program for semi-automated domain-level protein identification from cryo-EM maps, particularly at resolutions lower than 4 Å. By fitting domains from AlphaFold2-predicted models into cryo-EM maps, the program performs statistical analyses and attempts to identify the domains and protein candidates forming the density. Using DomainFit, we identified two microtubule inner proteins, one of which contains a CCDC81 domain and is exclusively localized in the proximal region of the doublet microtubule in Tetrahymena thermophila.

12.
Elife ; 122024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598282

RESUMEN

Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Acetilación , Microscopía por Crioelectrón , Procesamiento Proteico-Postraduccional
13.
J Cell Physiol ; 228(11): 2175-89, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23588994

RESUMEN

Recent studies have implicated the phosducin-like protein-2 (PHLP2) in regulation of CCT, a chaperonin whose activity is essential for folding of tubulin and actin. However, the exact molecular function of PHLP2 is unclear. Here we investigate the significance of PHLP2 in a ciliated unicellular model, Tetrahymena thermophila, by deleting its single homolog, Phlp2p. Cells lacking Phlp2p became larger and died within 96 h. Overexpressed Phlp2p-HA localized to cilia, basal bodies, and cytosol without an obvious change in the phenotype. Despite similar localization, overexpressed GFP-Phlp2p caused a dominant-negative effect. Cells overproducing GFP-Phlp2p had decreased rates of proliferation, motility and phagocytosis, as compared to wild type cells or cells overproducing a non-tagged Phlp2p. Growing GFP-Phlp2p-overexpressing cells had fewer cilia and, when deciliated, failed to regenerate cilia, indicating defects in cilia assembly. Paclitaxel-treated GFP-Phlp2p cells failed to elongate cilia, indicating a change in the microtubules dynamics. The pattern of ciliary and cytosolic tubulin isoforms on 2D gels differed between wild type and GFP-Phlp2p-overexpressing cells. Thus, in Tetrahymena, PhLP2 is essential and under specific experimental conditions its activity affects tubulin and microtubule-dependent functions including cilia assembly.


Asunto(s)
Cilios/metabolismo , Microtúbulos/metabolismo , Organogénesis , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila/metabolismo , Cilios/ultraestructura , Técnicas de Inactivación de Genes , Genes Dominantes , Proteínas Fluorescentes Verdes/metabolismo , Filogenia , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Tetrahymena thermophila/citología , Tetrahymena thermophila/ultraestructura , Tubulina (Proteína)/metabolismo
14.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38077012

RESUMEN

Cryo-electron microscopy (cryo-EM) has revolutionized our understanding of macromolecular complexes, enabling high-resolution structure determination. With the paradigm shift to in situ structural biology recently driven by the ground-breaking development of cryo-focused ion beam milling and cryo-electron tomography, there are an increasing number of structures at sub-nanometer resolution of complexes solved directly within their cellular environment. These cellular complexes often contain unidentified proteins, related to different cellular states or processes. Identifying proteins at resolutions lower than 4 Å remains challenging because the side chains cannot be visualized reliably. Here, we present DomainFit, a program for automated domain-level protein identification from cryo-EM maps at resolutions lower than 4 Å. By fitting domains from artificial intelligence-predicted models such as AlphaFold2-predicted models into cryo-EM maps, the program performs statistical analyses and attempts to identify the proteins forming the density. Using DomainFit, we identified two microtubule inner proteins, one of them, a CCDC81 domain-containing protein, is exclusively localized in the proximal region of the doublet microtubule from the ciliate Tetrahymena thermophila. The flexibility and capability of DomainFit makes it a valuable tool for analyzing in situ structures.

15.
J Cell Biol ; 222(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37756660

RESUMEN

Cilia are essential organelles that protrude from the cell body. Cilia are made of a microtubule-based structure called the axoneme. In most types of cilia, the ciliary tip is distinct from the rest of the cilium. Here, we used cryo-electron tomography and subtomogram averaging to obtain the structure of the ciliary tip of the ciliate Tetrahymena thermophila. We show that the microtubules at the tip are highly crosslinked with each other and stabilized by luminal proteins, plugs, and cap proteins at the plus ends. In the tip region, the central pair lacks typical projections and twists significantly. By analyzing cells lacking a ciliary tip-enriched protein CEP104/FAP256 by cryo-electron tomography and proteomics, we discovered candidates for the central pair cap complex and explained the potential functions of CEP104/FAP256. These data provide new insights into the function of the ciliary tip and the mechanisms of ciliary assembly and length regulation.


Asunto(s)
Cilios , Microtúbulos , Tetrahymena thermophila , Axonema , Cilios/metabolismo , Microtúbulos/metabolismo , Tetrahymena thermophila/metabolismo
16.
Mol Biol Cell ; 34(8): ar82, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163326

RESUMEN

Ciliates, such as Tetrahymena thermophila, evolved complex mechanisms to determine both the location and dimensions of cortical organelles such as the oral apparatus (OA: involved in phagocytosis), cytoproct (Cyp: for eliminating wastes), and contractile vacuole pores (CVPs: involved in water expulsion). Mutations have been recovered in Tetrahymena that affect both the localization of such organelles along anterior-posterior and circumferential body axes and their dimensions. Here we describe BCD1, a ciliate pattern gene that encodes a conserved Beige-BEACH domain-containing protein a with possible protein kinase A (PKA)-anchoring activity. Similar proteins have been implicated in endosome trafficking and are linked to human Chediak-Higashi syndrome and autism. Mutations in the BCD1 gene broaden cortical organelle domains as they assemble during predivision development. The Bcd1 protein localizes to membrane pockets at the base of every cilium that are active in endocytosis. PKA activity has been shown to promote endocytosis in other organisms, so we blocked clathrin-mediated endocytosis (using "dynasore") and inhibited PKA (using H89). In both cases, treatment produced partial phenocopies of the bcd1 pattern mutant. This study supports a model in which the dimensions of diverse cortical organelle assembly-platforms may be determined by regulated balance between constitutive exocytic delivery and PKA-regulated endocytic retrieval of organelle materials and determinants.


Asunto(s)
Tetrahymena thermophila , Humanos , Tetrahymena thermophila/fisiología , Endosomas , Endocitosis , Fagocitosis , Vacuolas
17.
J Cell Sci ; 123(Pt 20): 3447-55, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20930140

RESUMEN

Microtubules--polymers of tubulin--perform essential functions, including regulation of cell shape, intracellular transport and cell motility. How microtubules are adapted to perform multiple diverse functions is not well understood. Post-translational modifications of tubulin subunits diversify the outer and luminal surfaces of microtubules and provide a potential mechanism for their functional specialization. Recent identification of a number of tubulin-modifying and -demodifying enzymes has revealed key roles of tubulin modifications in the regulation of motors and factors that affect the organization and dynamics of microtubules.


Asunto(s)
Microtúbulos/metabolismo , Animales , Cilios/metabolismo , Humanos , Modelos Biológicos , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/metabolismo
18.
J Cell Biol ; 178(6): 1065-79, 2007 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-17846175

RESUMEN

The in vivo significance of microtubule severing and the mechanisms governing its spatial regulation are not well understood. In Tetrahymena, a cell type with elaborate microtubule arrays, we engineered null mutations in subunits of the microtubule-severing complex, katanin. We show that katanin activity is essential. The net effect of katanin on the polymer mass depends on the microtubule type and location. Although katanin reduces the polymer mass and destabilizes the internal network of microtubules, its activity increases the mass of ciliary microtubules. We also show that katanin reduces the levels of several types of post-translational modifications on tubulin of internal and cortical microtubules. Furthermore, katanin deficiencies phenocopy a mutation of beta-tubulin that prevents deposition of polymodifications (glutamylation and glycylation) on microtubules. We propose that katanin preferentially severs older, post-translationally modified segments of microtubules.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Microtúbulos/fisiología , Proteínas Protozoarias/fisiología , Tetrahymena thermophila/fisiología , Adenosina Trifosfatasas/genética , Animales , Cilios/fisiología , Cilios/ultraestructura , Katanina , Mutación , Filogenia , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/genética , Tetrahymena thermophila/ultraestructura , Tubulina (Proteína)/metabolismo
19.
Nat Cell Biol ; 4(3): 256-9, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11862218

RESUMEN

Polyglycylation occurs through the post-translational addition of a polyglycine peptide to the gamma-carboxyl group of glutamic acids near the C terminus of alpha- and beta-tubulin, and has been found only in cells with axonemes, from protists to humans. In Tetrahymena thermophila, multiple sites of polyglycylation on alpha-tubulin are dispensable. By contrast, mutating similar sites on beta-tubulin has site-specific effects, affecting cell motility and cytokinesis, or resulting in cell death. Here, we address the lethality of a polyglycylation deficiency in T. thermophila using heterokaryons. Cells with a lethal mutation in the polyglycylation domain of beta-tubulin assembled axonemes that lack the central pair, B-subfibres and the transitional zone of outer microtubules (MTs). Furthermore, an arrest in cytokinesis occurred, and was associated with incomplete severing of cortical MTs positioned near the cleavage furrow. Thus, tubulin polyglycylation is required for the maintenance of some stable microtubular organelles that are all known to be polyglycylated in vivo, but its effects on MTs appear to be organelle-specific.


Asunto(s)
Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila/metabolismo , Tetrahymena thermophila/ultraestructura , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Animales , División Celular/fisiología , Glicosilación , Microscopía Electrónica , Microscopía Fluorescente , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mutación , Fenotipo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Tetrahymena thermophila/genética , Tubulina (Proteína)/genética
20.
Eukaryot Cell ; 9(1): 184-93, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19700636

RESUMEN

In most eukaryotic cells, tubulin is subjected to posttranslational glutamylation, a conserved modification of unclear function. The glutamyl side chains form as branches of the primary sequence glutamic acids in two biochemically distinct steps: initiation and elongation. The length of the glutamyl side chain is spatially controlled and microtubule type specific. Here, we probe the significance of the glutamyl side chain length regulation in vivo by overexpressing a potent side chain elongase enzyme, Ttll6Ap, in Tetrahymena. Overexpression of Ttll6Ap caused hyperelongation of glutamyl side chains on the tubulin of axonemal, cortical, and cytoplasmic microtubules. Strikingly, in the same cell, hyperelongation of glutamyl side chains stabilized cytoplasmic microtubules and destabilized axonemal microtubules. Our observations suggest that the cellular outcomes of glutamylation are mediated by spatially restricted tubulin interactors of diverse nature.


Asunto(s)
Ácido Glutámico/metabolismo , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila , Tubulina (Proteína)/metabolismo , Animales , Axonema/metabolismo , Axonema/ultraestructura , Cilios/metabolismo , Cilios/ultraestructura , Ácido Glutámico/química , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tetrahymena thermophila/citología , Tetrahymena thermophila/metabolismo , Tubulina (Proteína)/química , Moduladores de Tubulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA