Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(4): 2045-2065, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281216

RESUMEN

The genome-organizing protein p6 of Bacillus subtilis bacteriophage φ29 plays an essential role in viral development by activating the initiation of DNA replication and participating in the early-to-late transcriptional switch. These activities require the formation of a nucleoprotein complex in which the DNA adopts a right-handed superhelix wrapping around a multimeric p6 scaffold, restraining positive supercoiling and compacting the viral genome. Due to the absence of homologous structures, prior attempts to unveil p6's structural architecture failed. Here, we employed AlphaFold2 to engineer rational p6 constructs yielding crystals for three-dimensional structure determination. Our findings reveal a novel fold adopted by p6 that sheds light on its self-association mechanism and its interaction with DNA. By means of protein-DNA docking and molecular dynamic simulations, we have generated a comprehensive structural model for the nucleoprotein complex that consistently aligns with its established biochemical and thermodynamic parameters. Besides, through analytical ultracentrifugation, we have confirmed the hydrodynamic properties of the nucleocomplex, further validating in solution our proposed model. Importantly, the disclosed structure not only provides a highly accurate explanation for previously experimental data accumulated over decades, but also enhances our holistic understanding of the structural and functional attributes of protein p6 during φ29 infection.


Asunto(s)
Fagos de Bacillus , Bacillus subtilis , Fagos de Bacillus/genética , Fagos de Bacillus/química , Bacillus subtilis/virología , Replicación del ADN , ADN Viral/genética , Nucleoproteínas/metabolismo , Proteínas Virales/metabolismo
2.
Mar Drugs ; 21(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36827141

RESUMEN

The exploration of biologically relevant chemical space for the discovery of small bioactive molecules present in marine organisms has led not only to important advances in certain therapeutic areas, but also to a better understanding of many life processes. The still largely untapped reservoir of countless metabolites that play biological roles in marine invertebrates and microorganisms opens new avenues and poses new challenges for research. Computational technologies provide the means to (i) organize chemical and biological information in easily searchable and hyperlinked databases and knowledgebases; (ii) carry out cheminformatic analyses on natural products; (iii) mine microbial genomes for known and cryptic biosynthetic pathways; (iv) explore global networks that connect active compounds to their targets (often including enzymes); (v) solve structures of ligands, targets, and their respective complexes using X-ray crystallography and NMR techniques, thus enabling virtual screening and structure-based drug design; and (vi) build molecular models to simulate ligand binding and understand mechanisms of action in atomic detail. Marine natural products are viewed today not only as potential drugs, but also as an invaluable source of chemical inspiration for the development of novel chemotypes to be used in chemical biology and medicinal chemistry research.


Asunto(s)
Productos Biológicos , Productos Biológicos/farmacología , Diseño de Fármacos , Modelos Moleculares , Organismos Acuáticos , Química Farmacéutica
3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834952

RESUMEN

AL-471, the leading exponent of a class of potent HIV and enterovirus A71 (EV-A71) entry inhibitors discovered in our research group, contains four l-tryptophan (Trp) units bearing an aromatic isophthalic acid directly attached to the C2 position of each indole ring. Starting from AL-471, we (i) replaced l-Trp with d-Trp, (ii) inserted a flexible linker between C2 and the isophthalic acid, and (iii) substituted a nonaromatic carboxylic acid for the terminal isophthalic acid. Truncated analogues lacking the Trp motif were also synthesized. Our findings indicate that the antiviral activity seems to be largely independent of the stereochemistry (l- or d-) of the Trp fragment and also that both the Trp unit and the distal isophthalic moiety are essential for antiviral activity. The most potent derivative, 23 (AL-534), with the C2 shortest alkyl urea linkage (three methylenes), showed subnanomolar potency against different EV-71 clinical isolates. This finding was only observed before with the early dendrimer prototype AL-385 (12 l-Trp units) but remained unprecedented for the reduced-size prototype AL-471. Molecular modeling showed the feasibility of high-affinity binding of the novel l-Trp-decorated branches of 23 (AL-534) to an alternative site on the VP1 protein that harbors significant sequence variation among EV-71 strains.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Inhibidores de Fusión de VIH , Humanos , Triptófano/metabolismo , Antivirales/farmacología
4.
Chembiochem ; 22(2): 374-391, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32875694

RESUMEN

Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIß. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the "canonical" one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.


Asunto(s)
Factor 1 de Elongación Peptídica/química , Humanos , Modelos Moleculares , Conformación Proteica
5.
PLoS Pathog ; 15(5): e1007760, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31071193

RESUMEN

Enterovirus A71 (EV-A71) is a non-polio neurotropic enterovirus with pandemic potential. There are no antiviral agents approved to prevent or treat EV-A71 infections. We here report on the molecular mechanism by which a novel class of tryptophan dendrimers inhibits (at low nanomolar to high picomolar concentration) EV-A71 replication in vitro. A lead compound in the series (MADAL385) prevents binding and internalization of the virus but does not, unlike classical capsid binders, stabilize the particle. By means of resistance selection, reverse genetics and cryo-EM, we map the binding region of MADAL385 to the 5-fold vertex of the viral capsid and demonstrate that a single molecule binds to each vertex. By interacting with this region, MADAL385 prevents the interaction of the virus with its cellular receptors PSGL1 and heparan sulfate, thereby blocking the attachment of EV-A71 to the host cells.


Asunto(s)
Antivirales/farmacología , Cápside/metabolismo , Infecciones por Enterovirus/metabolismo , Enterovirus/efectos de los fármacos , Heparitina Sulfato/metabolismo , Glicoproteínas de Membrana/metabolismo , Triptófano/farmacología , Antivirales/química , Cápside/efectos de los fármacos , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Dendrímeros/química , Dendrímeros/farmacología , Infecciones por Enterovirus/tratamiento farmacológico , Infecciones por Enterovirus/virología , Células HeLa , Heparitina Sulfato/antagonistas & inhibidores , Humanos , Glicoproteínas de Membrana/antagonistas & inhibidores , Conformación Proteica , Triptófano/química , Replicación Viral/efectos de los fármacos
6.
Plant Physiol ; 182(4): 2143-2153, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32015077

RESUMEN

Plant growth largely depends on the maintenance of adequate intracellular levels of potassium (K+). The families of 10 Calcineurin B-Like (CBL) calcium sensors and 26 CBL-Interacting Protein Kinases (CIPKs) of Arabidopsis (Arabidopsis thaliana) decode the calcium signals elicited by environmental inputs to regulate different ion channels and transporters involved in the control of K+ fluxes by phosphorylation-dependent and -independent events. However, the detailed molecular mechanisms governing target specificity require investigation. Here, we show that the physical interaction between CIPK23 and the noncanonical ankyrin domain in the cytosolic side of the inward-rectifier K+ channel AKT1 regulates kinase docking and channel activation. Point mutations on this domain specifically alter binding to CIPK23, enhancing or impairing the ability of CIPK23 to regulate channel activity. Our data demonstrate the relevance of this protein-protein interaction that contributes to the formation of a complex between CIPK23/CBL1 and AKT1 in the membrane for the proper regulation of K+ transport.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Canales de Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/genética , Mutación Puntual , Potasio/metabolismo , Canales de Potasio/genética , Proteínas Serina-Treonina Quinasas/genética
7.
Chemistry ; 27(41): 10700-10710, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-33851758

RESUMEN

Unprecedented 3D hexa-adducts of [60]fullerene peripherally decorated with twelve tryptophan (Trp) or tyrosine (Tyr) residues have been synthesized. Studies on the antiviral activity of these novel compounds against HIV and EV71 reveal that they are much more potent against HIV and equally active against EV71 than the previously described dendrimer prototypes AL-385 and AL-463, which possess the same number of Trp/Tyr residues on the periphery but attached to a smaller and more flexible pentaerythritol core. These results demonstrate the relevance of the globular 3D presentation of the peripheral groups (Trp/Tyr) as well as the length of the spacer connecting them to the central core to interact with the viral envelopes, particularly in the case of HIV, and support the hypothesis that [60]fullerene can be an alternative and attractive biocompatible carbon-based scaffold for this type of highly symmetrical dendrimers. In addition, the functionalized fullerenes here described, which display twelve peripheral negatively charged indole moieties on their globular surface, define a new and versatile class of compounds with a promising potential in biomedical applications.


Asunto(s)
Enterovirus , Fulerenos , Infecciones por VIH , Infecciones por VIH/tratamiento farmacológico , Hexosaminidasa A , Humanos , Triptófano , Tirosina
8.
Org Biomol Chem ; 19(30): 6707-6717, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34297027

RESUMEN

Among the class of enediyne antibiotics endowed with potent antitumour activities, the calicheamicin derivative known as ozogamicin is selectively targeted to several leukaemia cell types by means of tailor-made immunoconjugates. Binding of these drugs to the DNA minor groove in a sequence-specific fashion eventually causes double-stranded cleavage that results in cell death. Use of calicheamicin ε, an unreactive analogue of calicheamicin γ1I, has demonstrated that these structurally sophisticated molecules inflict bending on certain DNA oligonucleotides of defined sequence to the extent that they increase their circularization ratio upon ligation into multimers. By modelling and simulating several linear and circular DNA constructs containing high-affinity 5'-TCCT-3' and low-affinity 5'-TTGT-3' target sites in the presence and absence of calicheamicin ε, we have shed light into the structural distortions introduced by the drug upon binding to DNA. This new insight not only informs about the direction and magnitude of the DNA curvature but also provides a rationale for an improved understanding of the preferred structural and dynamic features associated with DNA target selection by calicheamicins.


Asunto(s)
Calicheamicinas
9.
J Comput Aided Mol Des ; 35(6): 707-719, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34105031

RESUMEN

DNA curvature is the result of a combination of both intrinsic features of the double helix and external distortions introduced by the environment and the binding of proteins or drugs. The propensity of certain double-stranded DNA (dsDNA) sequences to bend is essential in crucial biological processes, such as replication and transcription, in which proteins are known to either recognize noncanonical DNA conformations or promote their formation upon DNA binding. Trabectedin (Yondelis®) is a clinically used antitumor drug which, following covalent bond formation with the 2-amino group of guanine, induces DNA curvature and enhances the circularization ratio, upon DNA ligation, of several dsDNA constructs but not others. By means of unrestrained molecular dynamics simulations using explicitly solvated all-atom models, we rationalize these experimental findings in structural terms and shed light on the crucial, albeit possibly underappreciated, role played by T4 DNA ligase in stabilizing a bent DNA conformation prior to cyclization. Taken together, our results expand our current understanding on how DNA shape modification by trabectedin may affect both the sequence-specific recognition by transcription factors to promoter sites and RNA polymerase II binding.


Asunto(s)
Antineoplásicos/química , ADN/química , Ligasas/química , Trabectedina/química , Secuencia de Bases , Guanina/química , Humanos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Unión Proteica , ARN Polimerasa II/química
10.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203525

RESUMEN

eEF1A1 and eEF1A2 are paralogous proteins whose presence in most normal eukaryotic cells is mutually exclusive and developmentally regulated. Often described in the scientific literature under the collective name eEF1A, which stands for eukaryotic elongation factor 1A, their best known activity (in a monomeric, GTP-bound conformation) is to bind aminoacyl-tRNAs and deliver them to the A-site of the 80S ribosome. However, both eEF1A1 and eEF1A2 are endowed with multitasking abilities (sometimes performed by homo- and heterodimers) and can be located in different subcellular compartments, from the plasma membrane to the nucleus. Given the high sequence identity of these two sister proteins and the large number of post-translational modifications they can undergo, we are often confronted with the dilemma of discerning which is the particular proteoform that is actually responsible for the ascribed biochemical or cellular effects. We argue in this review that acquiring this knowledge is essential to help clarify, in molecular and structural terms, the mechanistic involvement of these two ancestral and abundant G proteins in a variety of fundamental cellular processes other than translation elongation. Of particular importance for this special issue is the fact that several de novo heterozygous missense mutations in the human EEF1A2 gene are associated with a subset of rare but severe neurological syndromes and cardiomyopathies.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Animales , Proteínas de Unión al GTP/genética , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos , Mutación/genética , Factor 1 de Elongación Peptídica/genética , Unión Proteica , Procesamiento Proteico-Postraduccional
11.
Molecules ; 26(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069399

RESUMEN

The experimental construction of a double-stranded DNA microcircle of only 42 base pairs entailed a great deal of ingenuity and hard work. However, figuring out the three-dimensional structures of intermediates and the final product can be particularly baffling. Using a combination of model building and unrestrained molecular dynamics simulations in explicit solvent we have characterized the different DNA structures involved along the process. Our 3D models of the single-stranded DNA molecules provide atomic insight into the recognition event that must take place for the DNA bases in the cohesive tail of the hairpin to pair with their complementary bases in the single-stranded loops of the dumbbell. We propose that a kissing loop involving six base pairs makes up the core of the nascent dsDNA microcircle. We also suggest a feasible pathway for the hybridization of the remaining complementary bases and characterize the final covalently closed dsDNA microcircle as possessing two well-defined U-turns. Additional models of the pre-ligation complex of T4 DNA ligase with the DNA dumbbell and the post-ligation pre-release complex involving the same enzyme and the covalently closed DNA microcircle are shown to be compatible with enzyme recognition and gap ligation.


Asunto(s)
ADN de Cadena Simple/química , ADN/química , Conformación de Ácido Nucleico , Solventes/química , Termodinámica
12.
J Comput Aided Mol Des ; 34(3): 253-265, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31950463

RESUMEN

Bending of double-stranded (ds) DNA plays a crucial role in many important biological processes and is relevant for nanotechnological applications. Among all the elements that have been studied in relation to dsDNA bending, A-tracts stand out as one of the most controversial. The "ApA wedge" theory was disproved when a series of linear polynucleotides containing phased 5'-A4T4-3' or 5'-T4A4-3' runs were shown to be bent or straight, respectively, and crystallographic evidence revealed that A-tracts are unbent. Furthermore, some of the smallest dsDNA minicircles described to date (~ 100 bp in size) lack A-tracts and are subjected to varying levels of torsional stress. Representative DNA sequences from this experimental background were modeled in atomic detail and their dynamic behavior was simulated over hundreds of nanoseconds using the AMBER force field ParmBSC1. Subsequent analysis of the resulting trajectories allowed us to (i) unambiguously establish the location of the bends in all cases; (ii) identify the structural elements that are directly responsible for the macroscopically detected curvature; and (iii) reveal the importance not only of coherently summing the effects of the bending elements when they are in synchrony with the natural repeat of the helix (i.e. separated by an integral number of helical turns) but also when alternated with a half-integral separation of opposite effects. We conclude that the major determinant of the macroscopically observed bending is the proper grouping and phasing of the positive roll imposed by pyrimidine-purine (YR) steps and the negative or null roll characteristic of RY steps and A-tracts, respectively. This conclusion is in very good agreement with the structural parameters experimentally derived for much smaller DNA molecules either alone or as found in DNA-protein complexes. We expect that this work will pave the way for future studies on drug-induced DNA bending, DNA shape readout by transcription factors, structure of circular extrachromosomal DNA, and custom design of curved DNA origami scaffolds.


Asunto(s)
ADN/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Secuencia de Bases , Simulación por Computador , ADN/química , ADN/genética , Preparaciones Farmacéuticas , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/ultraestructura
13.
J Comput Aided Mol Des ; 34(10): 1045-1062, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32572668

RESUMEN

Cetirizine, a major metabolite of hydroxyzine, became a marketed second-generation H1 antihistamine that is orally active and has a rapid onset of action, long duration of effects and a very good safety record at recommended doses. The approved drug is a racemic mixture of (S)-cetirizine and (R)-cetirizine, the latter being the levorotary enantiomer that also exists in the market as a third-generation, non-sedating and highly selective antihistamine. Both enantiomers bind tightly to the human histamine H1 receptor (hH1R) and behave as inverse agonists but the affinity and residence time of (R)-cetirizine are greater than those of (S)-cetirizine. In blood plasma, cetirizine exists in the zwitterionic form and more than 90% of the circulating drug is bound to human serum albumin (HSA), which acts as an inactive reservoir. Independent X-ray crystallographic work has solved the structure of the hH1R:doxepin complex and has identified two drug-binding sites for cetirizine on equine serum albumin (ESA). Given this background, we decided to model a membrane-embedded hH1R in complex with either (R)- or (S)-cetirizine and also the complexes of both ESA and HSA with these two enantiomeric drugs to analyze possible differences in binding modes between enantiomers and also among targets. The ensuing molecular dynamics simulations in explicit solvent and additional computational chemistry calculations provided structural and energetic information about all of these complexes that is normally beyond current experimental possibilities. Overall, we found very good agreement between our binding energy estimates and extant biochemical and pharmacological evidence. A much higher degree of solvent exposure in the cetirizine-binding site(s) of HSA and ESA relative to the more occluded orthosteric binding site in hH1R is translated into larger positional fluctuations and considerably lower affinities for these two nonspecific targets. Whereas it is demonstrated that the two known pockets in ESA provide enough stability for cetirizine binding, only one such site does so in HSA due to a number of amino acid replacements. At the histamine-binding site in hH1R, the distinct interactions established between the phenyl and chlorophenyl moieties of the two enantiomers with the amino acids lining up the pocket and between their free carboxylates and Lys179 in the second extracellular loop account for the improved pharmacological profile of (R)-cetirizine.


Asunto(s)
Cetirizina/química , Cetirizina/metabolismo , Antagonistas de los Receptores Histamínicos H1 no Sedantes/metabolismo , Receptores Histamínicos/metabolismo , Albúmina Sérica Humana/metabolismo , Albúmina Sérica/metabolismo , Animales , Sitios de Unión , Antagonistas de los Receptores Histamínicos H1 no Sedantes/química , Caballos , Humanos , Unión Proteica , Estereoisomerismo
14.
Angew Chem Int Ed Engl ; 59(13): 5284-5287, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31814236

RESUMEN

We report on a stabilizer of the interaction between 14-3-3ζ and the Estrogen Receptor alpha (ERα). ERα is a driver in the majority of breast cancers and 14-3-3 proteins are negative regulators of this nuclear receptor, making the stabilization of this protein-protein interaction (PPI) an interesting strategy. The stabilizer (1) consists of three symmetric peptidic arms containing an arginine mimetic, previously described as the GCP motif. 1 stabilizes the 14-3-3ζ/ERα interaction synergistically with the natural product Fusicoccin-A and was thus hypothesized to bind to a different site. This is supported by computational analysis of 1 binding to the binary complex of 14-3-3 and an ERα-derived phosphopeptide. Furthermore, 1 shows selectivity towards 14-3-3ζ/ERα interaction over other 14-3-3 client-derived phosphomotifs. These data provide a solid support of a new binding mode for a supramolecular 14-3-3ζ/ERα PPI stabilizer.


Asunto(s)
Proteínas 14-3-3/química , Receptor alfa de Estrógeno/química , Péptidos/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arginina/química , Neoplasias de la Mama/metabolismo , Glicósidos/química , Humanos , Simulación de Dinámica Molecular , Unión Proteica
15.
Hum Genet ; 138(11-12): 1313-1322, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31673819

RESUMEN

Pyruvate dehydrogenase complex (PDC) deficiency caused by mutations in the X-linked PDHA1 gene has a broad clinical presentation, and the pattern of X-chromosome inactivation has been proposed as a major factor contributing to its variable expressivity in heterozygous females. Here, we report the first set of monozygotic twin females with PDC deficiency, caused by a novel, de novo heterozygous missense mutation in exon 11 of PDHA1 (NM_000284.3: c.1100A>T). Both twins presented in infancy with a similar clinical phenotype including developmental delay, episodes of hypotonia or encephalopathy, epilepsy, and slowly progressive motor impairment due to pyramidal, extrapyramidal, and cerebellar involvement. However, they exhibited clear differences in disease severity that correlated well with residual PDC activities (approximately 60% and 20% of mean control values, respectively) and levels of immunoreactive E1α subunit in cultured skin fibroblasts. To address whether the observed clinical and biochemical differences could be explained by the pattern of X-chromosome inactivation, we undertook an androgen receptor assay in peripheral blood. In the less severely affected twin, a significant bias in the relative activity of the two X chromosomes with a ratio of approximately 75:25 was detected, while the ratio was close to 50:50 in the other twin. Although it may be difficult to extrapolate these results to other tissues, our observation provides further support to the hypothesis that the pattern of X-chromosome inactivation may influence the phenotypic expression of the same mutation in heterozygous females and broadens the clinical and genetic spectrum of PDC deficiency.


Asunto(s)
Mutación , Piruvato Deshidrogenasa (Lipoamida)/genética , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/genética , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/patología , Inactivación del Cromosoma X , Femenino , Humanos , Masculino , Linaje , Fenotipo , Pronóstico , Piruvato Deshidrogenasa (Lipoamida)/deficiencia , Gemelos Monocigóticos
16.
Chembiochem ; 20(24): 2996-3000, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31264760

RESUMEN

The use of nucleoside 2'-deoxyribosyltransferases (NDTs) as biocatalysts for the industrial synthesis of nucleoside analogues is often hindered by their strict preference for 2'-deoxyribonucleosides. It is shown herein that a highly versatile purine NDT from Trypanosoma brucei (TbPDT) can also accept ribonucleosides as substrates; this is most likely because of the distinct role played by Asn53 at a position that is usually occupied by Asp in other NDTs. Moreover, this unusual activity was improved about threefold by introducing a single amino acid replacement at position 5, following a structure-guided approach. Biophysical and biochemical characterization revealed that the TbPDTY5F variant is a homodimer that displays maximum activity at 50 °C and pH 6.5 and shows a remarkably high melting temperature of 69 °C. Substrate specificity studies demonstrate that 6-oxopurine ribonucleosides are the best donors (inosine>guanosine≫adenosine), whereas no significant preferences exist between 6-aminopurines and 6-oxopurines as base acceptors. In contrast, no transferase activity could be detected on xanthine and 7-deazapurines. TbPDTY5F was successfully employed in the synthesis of a wide range of modified ribonucleosides containing different purine analogues.


Asunto(s)
Pentosiltransferasa/química , Pentosiltransferasa/metabolismo , Ribonucleósidos/metabolismo , Trypanosoma brucei brucei/enzimología , Concentración de Iones de Hidrógeno , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
17.
Org Biomol Chem ; 17(34): 7891-7899, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31397456

RESUMEN

Insight into the catalytic mechanism of Lactobacillus leichmannii nucleoside 2'-deoxyribosyltransferase (LlNDT) has been gained by calculating a quantum mechanics-molecular mechanics (QM/MM) free-energy landscape of the reaction within the enzyme active site. Our results support an oxocarbenium species as the reaction intermediate and thus an SN1 reaction mechanism in this family of bacterial enzymes. Our mechanistic proposal is validated by comparing experimental kinetic data on the impact of the single amino acid replacements Tyr7, Glu98 and Met125 with Ala, Asp and Ala/norLeu, respectively, and accounts for the specificity shown by this enzyme on a non-natural substrate. This work broadens our understanding of enzymatic C-N bond cleavage and C-N bond formation.


Asunto(s)
Pentosiltransferasa/química , Dominio Catalítico , Cinética , Lactobacillus leichmannii/enzimología , Modelos Químicos , Simulación de Dinámica Molecular , Prueba de Estudio Conceptual , Conformación Proteica , Teoría Cuántica , Termodinámica
18.
Org Biomol Chem ; 17(17): 4350-4358, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-30977502

RESUMEN

Pyridoxal 5'-phosphate (PLP) is a versatile cofactor involved in a large variety of enzymatic processes. Most of PLP-catalysed reactions, such as those of alanine racemases (AlaRs), present a common resting state in which the PLP is covalently bound to an active-site lysine to form an internal aldimine. The crystal structure of BsAlaR grown in the presence of Tris lacks this covalent linkage and the PLP cofactor appears deformylated. However, loss of activity in a Tris buffer only occurred after the solution was frozen prior to carrying out the enzymatic assay. This evidence strongly suggests that Tris can access the active site at subzero temperatures and behave as an alternate racemase substrate leading to mechanism-based enzyme inactivation, a hypothesis that is supported by additional X-ray structures and theoretical results from QM/MM calculations. Taken together, our findings highlight a possibly underappreciated role for a common buffer component widely used in biochemical and biophysical experiments.


Asunto(s)
Alanina Racemasa/metabolismo , Bacillus subtilis/enzimología , Frío , Iminas/metabolismo , Alanina Racemasa/química , Alanina Racemasa/aislamiento & purificación , Iminas/química , Modelos Moleculares , Estructura Molecular , Teoría Cuántica
19.
J Comput Aided Mol Des ; 33(7): 627-644, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31152293

RESUMEN

Many natural products target mammalian tubulin but only a few can form a covalent bond and hence irreversibly affect microtubule function. Among them, zampanolide (ZMP) and taccalonolide AJ (TAJ) stand out, not only because they are very potent antitumor agents but also because the adducts they form with ß-tubulin have been structurally characterized in atomic detail. By applying model building techniques, molecular orbital calculations, molecular dynamics simulations and hybrid QM/MM methods, we have gained insight into the 1,2- and 1,4-addition reactions of His229 and Asp226 to ZMP and TAJ, respectively, in the taxane-binding site of ß-tubulin. The experimentally inaccessible precovalent complexes strongly suggest a water-mediated proton shuttle mechanism for ZMP adduct formation and a direct nucleophilic attack by the carboxylate of Asp226 on C22 of the C22R,C23R epoxide in TAJ. The M-loop, which is crucially important for interprotofilament interactions, is structured into a short helix in both types of complexes, mostly as a consequence of the fixation of the phenol ring of Tyr283 and the guanidinium of Arg284. As a side benefit, we obtained evidence supporting the existence of a commonly neglected intramolecular disulfide bond between Cys241 and Cys356 in ß-tubulin that contributes to protein compactness and is absent in the ßIII isotype associated with resistance to taxanes and other drugs.


Asunto(s)
Macrólidos/farmacología , Microtúbulos/metabolismo , Esteroides/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Macrólidos/química , Microtúbulos/química , Simulación de Dinámica Molecular , Unión Proteica , Esteroides/química , Termodinámica , Tubulina (Proteína)/química , Moduladores de Tubulina/química
20.
J Comput Aided Mol Des ; 33(8): 699-703, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31435893

RESUMEN

This editorial discusses the foundation of aspects of computational chemistry and is a tribute to Peter Goodford, one of those founders, who recently passed away. Several colleagues describe Professor Goodford's work and the person himself.


Asunto(s)
Química Computacional/historia , Cristalografía por Rayos X/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA