Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proteomics ; : e2300372, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168112

RESUMEN

Rapid identification of microorganisms is essential for medical diagnostics, sanitary controls, and food safety. High-throughput analytical platforms currently rely on whole-cell MALDI-TOF mass spectrometry to process hundreds of samples per day. Although this technology has become a reference method, it is unable to process most environmental isolates and opportunistic pathogens due to an incomplete experimental spectrum database. In most cases, its discriminating power is limited to the species taxonomical rank. By recording much more sequence information at the peptide level, proteotyping by tandem mass spectrometry is able to identify the taxonomic position of any microorganism in the tree of life and can be highly discriminating at the subspecies level. We propose here a methodology for ultra-fast identification of microorganisms by tandem mass spectrometry based on direct sample infusion and a highly sensitive procedure for data processing and taxonomic identification. Results obtained on reference strains and hitherto uncharacterized bacterial isolates show identification to species level in 36 s of tandem mass spectrometry signal, 102 s when including the injection procedure. Flash proteotyping is highly discriminating, as it can provide information down to strain level. The methodology enables high throughput identification of isolates, opening up new prospects, particularly in culturomics, and diagnostics.

2.
Appl Environ Microbiol ; 90(3): e0193123, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376171

RESUMEN

White-rot fungi employ secreted carbohydrate-active enzymes (CAZymes) along with reactive oxygen species (ROS), like hydrogen peroxide (H2O2), to degrade lignocellulose in wood. H2O2 serves as a co-substrate for key oxidoreductases during the initial decay phase. While the degradation of lignocellulose by CAZymes is well documented, the impact of ROS on the oxidation of the secreted proteins remains unclear, and the identity of the oxidized proteins is unknown. Methionine (Met) can be oxidized to Met sulfoxide (MetO) or Met sulfone (MetO2) with potential deleterious, antioxidant, or regulatory effects. Other residues, like proline (Pro), can undergo carbonylation. Using the white-rot Pycnoporus cinnabarinus grown on aspen wood, we analyzed the Met content of the secreted proteins and their susceptibility to oxidation combining H218O2 with deep shotgun proteomics. Strikingly, their overall Met content was significantly lower (1.4%) compared to intracellular proteins (2.1%), a feature conserved in fungi but not in metazoans or plants. We evidenced that a catalase, widespread in white-rot fungi, protects the secreted proteins from oxidation. Our redox proteomics approach allowed the identification of 49 oxidizable Met and 40 oxidizable Pro residues within few secreted proteins, mostly CAZymes. Interestingly, many of them had several oxidized residues localized in hotspots. Some Met, including those in GH7 cellobiohydrolases, were oxidized up to 47%, with a substantial percentage of sulfone (13%). These Met are conserved in fungal homologs, suggesting important functional roles. Our findings reveal that white-rot fungi safeguard their secreted proteins by minimizing their Met content and by scavenging ROS and pinpoint redox-active residues in CAZymes.IMPORTANCEThe study of lignocellulose degradation by fungi is critical for understanding the ecological and industrial implications of wood decay. While carbohydrate-active enzymes (CAZymes) play a well-established role in lignocellulose degradation, the impact of hydrogen peroxide (H2O2) on secreted proteins remains unclear. This study aims at evaluating the effect of H2O2 on secreted proteins, focusing on the oxidation of methionine (Met). Using the model white-rot fungi Pycnoporus cinnabarinus grown on aspen wood, we showed that fungi protect their secreted proteins from oxidation by reducing their Met content and utilizing a secreted catalase to scavenge exogenous H2O2. The research identified key oxidizable Met within secreted CAZymes. Importantly, some Met, like those of GH7 cellobiohydrolases, undergone substantial oxidation levels suggesting important roles in lignocellulose degradation. These findings highlight the adaptive mechanisms employed by white-rot fungi to safeguard their secreted proteins during wood decay and emphasize the importance of these processes in lignocellulose breakdown.


Asunto(s)
Basidiomycota , Peróxido de Hidrógeno , Polyporaceae , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Madera/microbiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Basidiomycota/metabolismo , Oxidación-Reducción , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Carbohidratos , Metionina/metabolismo , Sulfonas/metabolismo
3.
BMC Genomics ; 22(1): 648, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493209

RESUMEN

BACKGROUND: Bacillus cereus is a notorious foodborne pathogen, which can grow under anoxic conditions. Anoxic growth is supported by endogenous redox metabolism, for which the thiol redox proteome serves as an interface. Here, we studied the cysteine (Cys) proteome dynamics of B. cereus ATCC 14579 cells grown under fermentative anoxic conditions. We used a quantitative thiol trapping method combined with proteomics profiling. RESULTS: In total, we identified 153 reactive Cys residues in 117 proteins participating in various cellular processes and metabolic pathways, including translation, carbohydrate metabolism, and stress response. Of these reactive Cys, 72 were detected as reduced Cys. The B. cereus Cys proteome evolved during growth both in terms of the number of reduced Cys and the Cys-containing proteins identified, reflecting its growth-phase-dependence. Interestingly, the reduced status of the B. cereus thiol proteome increased during growth, concomitantly to the decrease of extracellular oxidoreduction potential. CONCLUSIONS: Taken together, our data show that the B. cereus Cys proteome during unstressed fermentative anaerobic growth is a dynamic entity and provide an important foundation for future redox proteomic studies in B. cereus and other organisms.


Asunto(s)
Bacillus cereus , Proteoma , Anaerobiosis , Oxidación-Reducción , Proteoma/metabolismo , Proteómica , Compuestos de Sulfhidrilo
4.
Basic Res Cardiol ; 116(1): 66, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34940922

RESUMEN

Endothelial nitric oxide synthase (eNOS) activation in the heart plays a key role in exercise-induced cardioprotection during ischemia-reperfusion, but the underlying mechanisms remain unknown. We hypothesized that the cardioprotective effect of exercise training could be explained by the re-localization of eNOS-dependent nitric oxide (NO)/S-nitrosylation signaling to mitochondria. By comparing exercised (5 days/week for 5 weeks) and sedentary Wistar rats, we found that exercise training increased eNOS level and activation by phosphorylation (at serine 1177) in mitochondria, but not in the cytosolic subfraction of cardiomyocytes. Using confocal microscopy, we confirmed that NO production in mitochondria was increased in response to H2O2 exposure in cardiomyocytes from exercised but not sedentary rats. Moreover, by S-nitrosoproteomic analysis, we identified several key S-nitrosylated proteins involved in mitochondrial function and cardioprotection. In agreement, we also observed that the increase in Ca2+ retention capacity by mitochondria isolated from the heart of exercised rats was abolished by exposure to the NOS inhibitor L-NAME or to the reducing agent ascorbate, known to denitrosylate proteins. Pre-incubation with ascorbate or L-NAME also increased mitochondrial reactive oxygen species production in cardiomyocytes from exercised but not from sedentary animals. We confirmed these results using isolated hearts perfused with L-NAME before ischemia-reperfusion. Altogether, these results strongly support the hypothesis that exercise training increases eNOS/NO/S-nitrosylation signaling in mitochondria, which might represent a key mechanism of exercise-induced cardioprotection.


Asunto(s)
Peróxido de Hidrógeno , Proteína S , Animales , Mitocondrias , Miocitos Cardíacos , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo III , Ratas , Ratas Wistar
5.
Anal Bioanal Chem ; 413(29): 7265-7275, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34013402

RESUMEN

COVID-19 is the most disturbing pandemic of the past hundred years. Its causative agent, the SARS-CoV-2 virus, has been the subject of an unprecedented investigation to characterize its molecular structure and intimate functioning. While markers for its detection have been proposed and several diagnostic methodologies developed, its propensity to evolve and evade diagnostic tools and the immune response is of great concern. The recent spread of new variants with increased infectivity requires even more attention. Here, we document how shotgun proteomics can be useful for rapidly monitoring the evolution of the SARS-CoV-2 virus. We evaluated the heterogeneity of purified SARS-CoV-2 virus obtained after culturing in the Vero E6 cell line. We found that cell culture induces significant changes that are translated at the protein level, such changes being detectable by tandem mass spectrometry. Production of viral particles requires careful quality control which can be easily performed by shotgun proteomics. Although considered relatively stable so far, the SARS-CoV-2 genome turns out to be prone to frequent variations. Therefore, the sequencing of SARS-CoV-2 variants from patients reporting only the consensus genome after its amplification would deserve more attention and could benefit from more in-depth analysis of low level but crystal-clear signals, as well as complementary and rapid analysis by shotgun proteomics.


Asunto(s)
Genoma Viral , Proteómica/métodos , SARS-CoV-2/aislamiento & purificación , Secuencia de Aminoácidos , Técnicas de Cultivo de Célula , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Espectrometría de Masas en Tándem/métodos , Proteínas Virales/química , Virulencia
6.
Proteomics ; 20(14): e2000107, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32462744

RESUMEN

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a crucial tool for fighting the COVID-19 pandemic. This dataset brief presents the exploration of a shotgun proteomics dataset acquired on SARS-CoV-2 infected Vero cells. Proteins from inactivated virus samples were extracted, digested with trypsin, and the resulting peptides were identified by data-dependent acquisition tandem mass spectrometry. The 101 peptides reporting for six viral proteins were specifically analyzed in terms of their analytical characteristics, species specificity and conservation, and their proneness to structural modifications. Based on these results, a shortlist of 14 peptides from the N, S, and M main structural proteins that could be used for targeted mass-spectrometry method development and diagnostic of the new SARS-CoV-2 is proposed and the best candidates are commented.


Asunto(s)
Betacoronavirus/química , Infecciones por Coronavirus/virología , Péptidos/análisis , Neumonía Viral/virología , Proteínas Virales/análisis , Secuencia de Aminoácidos , Animales , Betacoronavirus/aislamiento & purificación , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/diagnóstico , Humanos , Pandemias , Neumonía Viral/diagnóstico , Proteómica , SARS-CoV-2 , Espectrometría de Masas en Tándem , Células Vero , Proteínas Estructurales Virales/análisis
7.
J Proteome Res ; 19(11): 4407-4416, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32697082

RESUMEN

Rapid but yet sensitive, specific, and high-throughput detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is key to diagnose infected people and to better control the spread of the virus. Alternative methodologies to PCR and immunodiagnostics that would not require specific reagents are worthy to investigate not only for fighting the COVID-19 pandemic but also to detect other emergent pathogenic threats. Here, we propose the use of tandem mass spectrometry to detect SARS-CoV-2 marker peptides in nasopharyngeal swabs. We documented that the signal from the microbiota present in such samples is low and can be overlooked when interpreting shotgun proteomic data acquired on a restricted window of the peptidome landscape. In this proof-of-concept study, simili nasopharyngeal swabs spiked with different quantities of purified SARS-CoV-2 viral material were used to develop a nanoLC-MS/MS acquisition method, which was then successfully applied on COVID-19 clinical samples. We argue that peptides ADETQALPQR and GFYAQGSR from the nucleocapsid protein are of utmost interest as their signal is intense and their elution can be obtained within a 3 min window in the tested conditions. These results pave the way for the development of time-efficient viral diagnostic tests based on mass spectrometry.


Asunto(s)
Betacoronavirus/química , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus , Nasofaringe/virología , Pandemias , Neumonía Viral , Espectrometría de Masas en Tándem/métodos , COVID-19 , Prueba de COVID-19 , Cromatografía Liquida , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus , Humanos , Proteínas de la Nucleocápside/química , Fosfoproteínas , Neumonía Viral/diagnóstico , Neumonía Viral/virología , SARS-CoV-2
8.
Proteomics ; 17(21)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28869791

RESUMEN

Blastocystis sp. is known for years as a highly prevalent anaerobic eukaryotic parasite of humans and animals. Several monophyletic clades have been delineated based on molecular data, and the occurrence of each subtype in humans and/or animal hosts has been documented. The genome of several representatives has been sequenced revealing specific traits such as an intriguing 3'-end processing of primary transcripts. Here, a first high-throughput proteomics dataset acquired on this difficult-to-cultivate parasite is presented for the zoonotic subtype T4 isolate WR1. Amongst the 2766 detected proteins, we highlighted the role of a small ADP ribosylation factor GTP-binding protein involved in intracellular traffic as major regulator of vesicle biogenesis and a voltage-dependent anion-selective channel protein because both were unexpectedly highly abundant. We show how these data may be used for gaining proteogenomics insights into Blastocystis sp. specific molecular mechanisms. We evidenced for the first time by proteogenomics a functional termination codon derived from transcript polyadenylation for seven different key cellular components.


Asunto(s)
Infecciones por Blastocystis/metabolismo , Blastocystis/química , Mucosa Intestinal/metabolismo , Proteogenómica , Proteoma/genética , Proteoma/metabolismo , Animales , Blastocystis/genética , Blastocystis/aislamiento & purificación , Infecciones por Blastocystis/genética , Infecciones por Blastocystis/parasitología , Humanos , Intestinos/parasitología , Proteoma/análisis , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
9.
Mol Microbiol ; 100(2): 362-78, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26724682

RESUMEN

The Mre11:Rad50 complex is central to DNA double strand break repair in the Archaea and Eukarya, and acts through mechanical and nuclease activities regulated by conformational changes induced by ATP binding and hydrolysis. Despite the widespread use of Mre11 and Rad50 from hyperthermophilic archaea for structural studies, little is known in the regulation of these proteins in the Archaea. Using purification and mass spectrometry approaches allowing nearly full sequence coverage of both proteins from the species Sulfolobus acidocaldarius, we show for the first time post-translational methylation of the archaeal Mre11:Rad50 complex. Under basal growth conditions, extensive lysine methylations were identified in Mre11 and Rad50 dynamic domains, as well as methylation of a few aspartates and glutamates, including a key Mre11 aspartate involved in nuclease activity. Upon γ-irradiation induced DNA damage, additional methylated residues were identified in Rad50, notably methylation of Walker B aspartate and glutamate residues involved in ATP hydrolysis. These findings strongly suggest a key role for post-translational methylation in the regulation of the archaeal Mre11:Rad50 complex and in the DNA damage response.


Asunto(s)
Proteínas Arqueales/metabolismo , Daño del ADN , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Procesamiento Proteico-Postraduccional , Adenosina Trifosfato/metabolismo , Archaea/genética , Archaea/metabolismo , Proteínas Arqueales/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Metilación , Unión Proteica , Sulfolobus acidocaldarius/genética
10.
Extremophiles ; 20(3): 301-10, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27039108

RESUMEN

Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.


Asunto(s)
Adaptación Fisiológica , Metabolismo Energético , Genoma Bacteriano , Photobacterium/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte de Electrón , Glucosa/metabolismo , Presión Hidrostática , Isoenzimas/genética , Isoenzimas/metabolismo , Maltosa/metabolismo , Metilaminas/metabolismo , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Photobacterium/metabolismo , Agua de Mar/microbiología
11.
Mol Cell Proteomics ; 13(12): 3612-25, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25293947

RESUMEN

Because of their ecological importance, amphipod crustacea are employed worldwide as test species in environmental risk assessment. Although proteomics allows new insights into the molecular mechanisms related to the stress response, such investigations are rare for these organisms because of the lack of comprehensive protein sequence databases. Here, we propose a proteogenomic approach for identifying specific proteins of the freshwater amphipod Gammarus fossarum, a keystone species in European freshwater ecosystems. After deep RNA sequencing, we created a comprehensive ORF database. We identified and annotated the most relevant proteins detected through a shotgun tandem mass spectrometry analysis carried out on the proteomes from three major tissues involved in the organism's reproductive function: the male and female reproductive systems, and the cephalon, where different neuroendocrine glands are present. The 1,873 mass-spectrometry-certified proteins represent the largest crustacean proteomic resource to date, with 218 proteins being lineage specific. Comparative proteomics between the male and female reproductive systems indicated key proteins with strong sexual dimorphism. Protein expression profiles during spermatogenesis at seven different stages highlighted the major gammarid proteins involved in the different facets of reproduction.


Asunto(s)
Anfípodos/genética , Genoma , Proteoma/genética , Espermatogénesis/genética , Animales , Copulación/fisiología , Bases de Datos de Proteínas , Femenino , Agua Dulce , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Anotación de Secuencia Molecular , Reproducción/genética , Caracteres Sexuales
12.
J Proteome Res ; 14(1): 292-303, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25363278

RESUMEN

While the decrease in human sperm count in response to pollutants is a worldwide concern, little attention is being devoted to its causes and occurrence in the biodiversity of the animal kingdom. Arthropoda is the most species-rich phyla, inhabiting all aquatic and terrestrial ecosystems. During evolution, key molecular players of the arthropod endocrine system have diverged from the vertebrate counterparts. Consequently, arthropods may have different sensitivities toward endocrine disrupting chemicals (EDCs). Here alteration of sperm quality in a crustacean, Gammarus fossarum, a popular organism in freshwater risk assessment, was investigated after laboratory exposure to various concentrations of three different xenobiotics: cadmium, methoxyfenozide, and pyriproxyfen. The integrity of the reproductive process was assessed by means of sperm-quality markers. For each substance, semiquantitative/relative proteomics based on spectral counting procedure was carried out on male gonads to observe the biological impact. The changes in a total of 871 proteins were monitored in response to toxic pressure. A drastic effect was observed on spermatozoon production, with a dose-response relationship. While exposure to EDCs leads to strong modulations of male-specific proteins in testis, no induction of female-specific proteins was noted. Also, a significant portion of orphans proved to be sensitive to toxic stress.


Asunto(s)
Anfípodos/metabolismo , Disruptores Endocrinos/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Proteoma , Proteómica/métodos , Xenobióticos/toxicidad , Anfípodos/genética , Animales , Cadmio , Relación Dosis-Respuesta a Droga , Hidrazinas , Hormonas Juveniles , Masculino , Piridinas , Factores Sexuales , Especificidad de la Especie , Espermatozoides/efectos de los fármacos
13.
BMC Genomics ; 16: 315, 2015 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-25895662

RESUMEN

BACKGROUND: The toxicity of manufactured fumed silica nanoparticles (NPs) remains poorly investigated compared to that of crystalline silica NPs, which have been associated with lung diseases after inhalation. Amorphous silica NPs are a raw material for manufactured nanocomposites, such as cosmetics, foods, and drugs, raising concerns about their potential toxicity. RESULTS: The size of the NPs was determined by dynamic light scattering and their shape was visualized by atomic force microscopy (10 ± 4 nm). The pertinent toxicological concentration and dynamic ranges were determined using viability tests and cellular impedance. We combined transcriptomics and proteomics to assess the cellular and molecular effects of fumed silica in A549 human alveolar epithelial cells. The "no observed transcriptomic adverse effect level" (NOTEL) was set to 1.0 µg/cm(2), and the "lowest observed adverse transcriptional effect level" (LOTEL) was set at 1.5 µg/cm(2). We carried out genome-wide expression profiles with microarrays and identified, by shotgun proteomics, the exoproteome changes in lung cells after exposure to NP doses (0.1, 1.0, 1.5, 3.0, and 6.0 µg/cm(2)) at two time points (24 h and 72 h). The data revealed a hierarchical, dose-dependent cellular response to silica NPs. At 1.5 µg/cm(2), the Rho signaling cascade, actin cytoskeleton remodeling, and clathrin-mediated endocytosis were induced. At 3.0 µg/cm(2), many inflammatory mediators were upregulated and the coagulation system pathway was triggered. Lastly, at 6.0 µg/cm(2), oxidative stress was initiated. The proteins identified in the extracellular compartment were consistent with these findings. CONCLUSIONS: The alliance of two high-throughput technologies allowed the quantitative assessment of the cellular effects and molecular consequences of exposure of lung cells to low doses of NPs. These results were obtained using a pathway-driven analysis instead of isolated genes. As in photography, toxicogenomics allows, at the same time, the visualization of a wide spectrum of biological responses and a "zoom in" to the details with a great depth of field. This study illustrates how such an approach based on human cell culture models is a valuable predictive screening tool to evaluate the toxicity of many potentially harmful emerging substances, alone or in mixtures, in the framework of future regulatory reinforcements.


Asunto(s)
Nanopartículas/toxicidad , Dióxido de Silicio/química , Transcriptoma/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Pulmón/citología , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Proteoma/análisis , Proteoma/metabolismo , Espectrometría de Masas en Tándem , Regulación hacia Arriba/efectos de los fármacos
14.
Redox Biol ; 70: 103044, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38266577

RESUMEN

Hyperglycemia increases the heart sensitivity to ischemia-reperfusion (IR), but the underlying cellular mechanisms remain unclear. Mitochondrial dynamics (the processes that govern mitochondrial morphology and their interactions with other organelles, such as the reticulum), has emerged as a key factor in the heart vulnerability to IR. However, it is unknown whether mitochondrial dynamics contributes to hyperglycemia deleterious effect during IR. We hypothesized that (i) the higher heart vulnerability to IR in hyperglycemic conditions could be explained by hyperglycemia effect on the complex interplay between mitochondrial dynamics, Ca2+ homeostasis, and reactive oxygen species (ROS) production; and (ii) the activation of DRP1, a key regulator of mitochondrial dynamics, could play a central role. Using transmission electron microscopy and proteomic analysis, we showed that the interactions between sarcoplasmic reticulum and mitochondria and mitochondrial fission were increased during IR in isolated rat hearts perfused with a hyperglycemic buffer compared with hearts perfused with a normoglycemic buffer. In isolated mitochondria and cardiomyocytes, hyperglycemia increased mitochondrial ROS production and Ca2+ uptake. This was associated with higher RyR2 instability. These results could contribute to explain the early mPTP activation in mitochondria from isolated hearts perfused with a hyperglycemic buffer and in hearts from streptozotocin-treated rats (to increase the blood glucose). DRP1 inhibition by Mdivi-1 during the hyperglycemic phase and before IR induction, normalized Ca2+ homeostasis, ROS production, mPTP activation, and reduced the heart sensitivity to IR in streptozotocin-treated rats. In conclusion, hyperglycemia-dependent DRP1 activation results in higher reticulum-mitochondria calcium exchange that contribute to the higher heart vulnerability to IR.


Asunto(s)
Dinaminas , Daño por Reperfusión Miocárdica , Canal Liberador de Calcio Receptor de Rianodina , Animales , Ratas , Calcio/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Hiperglucemia/metabolismo , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales , Daño por Reperfusión Miocárdica/metabolismo , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Reperfusión , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacología , Dinaminas/metabolismo
15.
Biomolecules ; 14(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540800

RESUMEN

This study aims at identifying molecular biomarkers differentiating responders and non-responders to treatment with Tumor Necrosis Factor inhibitors (TNFi) among patients with axial spondyloarthritis (axSpA). Whole blood mRNA and plasma proteins were measured in a cohort of biologic-naïve axSpA patients (n = 35), pre and post (14 weeks) TNFi treatment with adalimumab. Differential expression analysis was used to identify the most enriched pathways and in predictive models to distinguish responses to TNFi. A treatment-associated signature suggests a reduction in inflammatory activity. We found transcripts and proteins robustly differentially expressed between baseline and week 14 in responders. C-reactive protein (CRP) and Haptoglobin (HP) proteins showed strong and early decrease in the plasma of axSpA patients, while a cluster of apolipoproteins (APOD, APOA2, APOA1) showed increased expression at week 14. Responders to TNFi treatment present higher levels of markers of innate immunity at baseline, and lower levels of adaptive immunity markers, particularly B-cells. A logistic regression model incorporating ASDAS-CRP, gender, and AFF3, the top differentially expressed gene at baseline, enabled an accurate prediction of response to adalimumab in our cohort (AUC = 0.97). In conclusion, innate and adaptive immune cell type composition at baseline may be a major contributor to response to adalimumab in axSpA patients. A model including clinical and gene expression variables should also be considered.


Asunto(s)
Antirreumáticos , Espondiloartritis Axial , Espondilitis Anquilosante , Humanos , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Adalimumab/uso terapéutico , Antirreumáticos/uso terapéutico , Factor de Necrosis Tumoral alfa , Resultado del Tratamiento
16.
Yeast ; 30(9): 353-63, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23847025

RESUMEN

To identify nucleo-cytoplasmic shuttle proteins that relocate to the nucleus upon UV stress, we selected 18 targets on the basis of their conservation amongst eukaryotes and their relatively poor functional description. Their relocation was assayed using quantitative nuclear relocation assay (QNR). We focused on Pat1, a component of the cytoplasmic foci called processing bodies (p-bodies), because it had the strongest response to the stress. We verified that Pat1 accumulates in the nucleus after GFP tagging and fluorescence microscopy. Using tandem affinity purification coupled to a mass spectrometry shotgun detection and quantitation approach, we explored the dynamics of Pat1 protein-protein interaction network after UV stress. We have shown that Pat1 co-purifies with Dhh1 specifically upon UV stress. We observed that the nuclear accumulation of Pat1 upon UV stress is abolished in a dhh1∆ strain. These data provide the first evidence that Dhh1 is required for Pat1 nuclear relocation after UV stress.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Rayos Ultravioleta , Núcleo Celular/química , Citoplasma/química , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico
17.
Sci Total Environ ; 897: 165379, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423277

RESUMEN

Dreissena polymorpha is a bivalve promising for biomonitoring in freshwater ecosystems thanks to its abundance and high filtration activity allowing rapid uptake of toxicants and identification of their negative effects. Nonetheless, we still lack knowledge on its molecular responses to stress under realistic scenario, e.g. multi-contamination. Carbamazepine (CBZ) and Hg are ubiquitous pollutants sharing molecular toxicity pathways, e.g. oxidative stress. A previous study in zebra mussels showed their co-exposure to cause more alterations than single exposures, but molecular toxicity pathways remained unidentified. D. polymorpha was exposed 24 h (T24) and 72 h (T72) to CBZ (6.1 ± 0.1 µg L-1), MeHg (430 ± 10 ng L-1) and the co-exposure (6.1 ± 0.1 µg L-1CBZ and 500 ± 10 ng L-1 MeHg) at concentrations representative of polluted areas (~10× EQS). RedOx system at the gene and enzyme level, the proteome and the metabolome were compared. The co-exposure resulted in 108 differential abundant proteins (DAPs), as well as 9 and 10 modulated metabolites at T24 and T72, respectively. The co-exposure specifically modulated DAPs and metabolites involved in neurotransmission, e.g. dopaminergic synapse and GABA. CBZ specifically modulated 46 DAPs involved in calcium signaling pathways and 7 amino acids at T24. MeHg specifically modulated 55 DAPs involved in the cytoskeleton remodeling and hypoxia-induced factor 1 pathway, without altering the metabolome. Single and co-exposures commonly modulated proteins and metabolites involved in energy and amino acid metabolisms, response to stress and development. Concomitantly, lipid peroxidation and antioxidant activities were unchanged, supporting that D. polymorpha tolerated experimental conditions. The co-exposure was confirmed to cause more alterations than single exposures. This was attributed to the combined toxicity of CBZ and MeHg. Altogether, this study underlined the necessity to better characterize molecular toxicity pathways of multi-contamination that are not predictable on responses to single exposures, to better anticipate adverse effects in biota and improve risk assessment.


Asunto(s)
Dreissena , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Masculino , Compuestos de Metilmercurio/toxicidad , Compuestos de Metilmercurio/metabolismo , Bioacumulación , Ecosistema , Carbamazepina/toxicidad , Carbamazepina/metabolismo , Contaminantes Químicos del Agua/análisis
18.
Sci Rep ; 13(1): 11586, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463979

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are taxonomically widespread copper-enzymes boosting biopolymers conversion (e.g. cellulose, chitin) in Nature. White-rot Polyporales, which are major fungal wood decayers, may possess up to 60 LPMO-encoding genes belonging to the auxiliary activities family 9 (AA9). Yet, the functional relevance of such multiplicity remains to be uncovered. Previous comparative transcriptomic studies of six Polyporales fungi grown on cellulosic substrates had shown the overexpression of numerous AA9-encoding genes, including some holding a C-terminal domain of unknown function ("X282"). Here, after carrying out structural predictions and phylogenetic analyses, we selected and characterized six AA9-X282s with different C-term modularities and atypical features hitherto unreported. Unexpectedly, after screening a large array of conditions, these AA9-X282s showed only weak binding properties to cellulose, and low to no cellulolytic oxidative activity. Strikingly, proteomic analysis revealed the presence of multiple phosphorylated residues at the surface of these AA9-X282s, including a conserved residue next to the copper site. Further analyses focusing on a 9 residues glycine-rich C-term extension suggested that it could hold phosphate-binding properties. Our results question the involvement of these AA9 proteins in the degradation of plant cell wall and open new avenues as to the divergence of function of some AA9 members.


Asunto(s)
Basidiomycota , Cobre , Filogenia , Cobre/metabolismo , Proteómica , Polisacáridos/metabolismo , Celulosa/metabolismo , Basidiomycota/metabolismo , Fosfatos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
19.
Front Mol Neurosci ; 16: 1118707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063368

RESUMEN

Creatine transporter deficiency (CTD), a leading cause of intellectual disability is a result of the mutation in the gene encoding the creatine transporter SLC6A8, which prevents creatine uptake into the brain, causing mental retardation, expressive speech and language delay, autistic-like behavior and epilepsy. Preclinical in vitro and in vivo data indicate that dodecyl creatine ester (DCE) which increases the creatine brain content, might be a therapeutic option for CTD patients. To gain a better understanding of the pathophysiology and DCE treatment efficacy in CTD, this study focuses on the identification of biomarkers related to cognitive improvement in a Slc6a8 knockout mouse model (Slc6a8-/y) engineered to mimic the clinical features of CTD patients which have low brain creatine content. Shotgun proteomics analysis of 4,035 proteins in four different brain regions; the cerebellum, cortex, hippocampus (associated with cognitive functions) and brain stem, and muscle as a control, was performed in 24 mice. Comparison of the protein abundance in the four brain regions between DCE-treated intranasally Slc6a8-/y mice and wild type and DCE-treated Slc6a8-/y and vehicle group identified 14 biomarkers, shedding light on the mechanism of action of DCE. Integrative bioinformatics and statistical modeling identified key proteins in CTD, including KIF1A and PLCB1. The abundance of these proteins in the four brain regions was significantly correlated with both the object recognition and the Y-maze tests. Our findings suggest a major role for PLCB1, KIF1A, and associated molecules in the pathogenesis of CTD.

20.
Sci Data ; 10(1): 643, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735452

RESUMEN

Proteogenomic methodologies have enabled the identification of protein sequences in wild species without annotated genomes, shedding light on molecular mechanisms affected by pollution. However, proteomic resources for sentinel species are limited, and organ-level investigations are necessary to expand our understanding of their molecular biology. This study presents proteomic resources obtained from proteogenomic analyses of key organs (hepatopancreas, gills, hemolymph) from three established aquatic sentinel invertebrate species of interest in ecotoxicological/ecological research and environmental monitoring: Gammarus fossarum, Dreissena polymorpha, and Palaemon serratus. Proteogenomic analyses identified thousands of proteins for each species, with over 90% of them being annotated to putative function. Functional analysis validated the relevance of the proteomic atlases by revealing similarities in functional annotation of catalogues of proteins across analogous organs in the three species, while deep contrasts between functional profiles are delimited across different organs in the same organism. These organ-level proteomic atlases are crucial for future research on these sentinel animals, aiding in the evaluation of aquatic environmental risks and providing a valuable resource for ecotoxicological studies.


Asunto(s)
Invertebrados , Proteogenómica , Animales , Secuencia de Aminoácidos , Proteómica , Especies Centinela
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA