Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 184: 105075, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35715030

RESUMEN

Downy mildew, caused by Plasmopara viticola (Berk. and M. A. Curtis) Berl. and De Toni, is a serious disease of grapevines in general and King Ruby seedless cultivar in particular, affecting their growth and yield. Magnesium carbonate (MgCO3) is an antitranspirant, which induces stomatal closing and enhances plant growth and physiology. In this study, effect of foliar application of MgCO3 at 1 and 3% on plant resistance, growth, yield and physiology of grapevines (cv. King Ruby seedless) infected with downy mildew was investigated under field conditions. The obtained results showed that foliar application of MgCO3 at 3% led to upregulation of the transcription factor JERF3 (9.6-fold), and the defense-related genes GLU (6.3-fold), POD (8.7-fold), PR1 (9.6-fold), and CHI II (8.6-fold). In addition, this treatment led to a reduction in the disease severity (78%), and an increment in the yield per grapevine (20%). Furthermore, biochemical properties of berries, total contents of the photosynthetic pigments, phenolic compounds, and activities of the antioxidant enzymes peroxidase and polyphenol oxidase also enhanced. In contrast, lipid peroxidation, and H2O2 content in grapevines leaves reduced in response to MgCO3 spraying. Light microscope observations revealed that average number of closed stomata increased and the average stomatal pore area decreased in grapevines leaves as a result to MgCO3 spraying. Based on these results, we can conclude that spraying with MgCO3 at 3% has effective roles in inducing the plant resistance against downy mildew, and improving the growth and yield of grapevines.


Asunto(s)
Oomicetos , Peronospora , Vitis , Frutas , Peróxido de Hidrógeno , Magnesio , Oomicetos/fisiología , Enfermedades de las Plantas/genética , Vitis/genética
2.
Plants (Basel) ; 12(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38005689

RESUMEN

Zirconium (Zr) is one of the toxic metals that are heavily incorporated into the ecosystem due to intensive human activities. Their accumulation in the ecosystem disrupts the food chain, causing undesired alterations. Despite Zr's phytotoxicity, its impact on plant growth and redox status remains unclear, particularly if combined with elevated CO2 (eCO2). Therefore, a greenhouse pot experiment was conducted to test the hypothesis that eCO2 can alleviate the phytotoxic impact of Zr upon oat (Avena sativa) plants by enhancing their growth and redox homeostasis. A complete randomized block experimental design (CRBD) was applied to test our hypothesis. Generally, contamination with Zr strikingly diminished the biomass and photosynthetic efficiency of oat plants. Accordingly, contamination with Zr triggered remarkable oxidative damage in oat plants, with concomitant alteration in the antioxidant defense system of oat plants. Contrarily, elevated levels of CO2 (eCO2) significantly mitigated the adverse effect of Zr upon both fresh and dry weights as well as the photosynthesis of oat plants. The improved photosynthesis consequently quenched the oxidative damage caused by Zr by reducing the levels of both H2O2 and MDA. Moreover, eCO2 augmented the total antioxidant capacity with the concomitant accumulation of molecular antioxidants (e.g., polyphenols, flavonoids). In addition, eCO2 not only improved the activities of antioxidant enzymes such as peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT) but also boosted the ASC/GSH metabolic pool that plays a pivotal role in regulating redox homeostasis in plant cells. In this regard, our research offers a novel perspective by delving into the previously unexplored realm of the alleviative effects of eCO2. It sheds light on how eCO2 distinctively mitigates oxidative stress induced by Zr, achieving this by orchestrating adjustments to the redox balance within oat plants.

3.
Front Plant Sci ; 12: 763365, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777446

RESUMEN

Downy mildew is the most destructive disease of grapevines in the regions of relatively warm and humid climate causing up to 50% yield losses. Application of silicon- (Si-) based products have been extensively studied against various oomycete, fungal, bacterial, and viral plant diseases, but studies on Si application in their nanosize are limited. In this study, the field application of silica nanoparticles (SiNPs) on Thompson Seedless grapevines (H4 strain) infected with downy mildew was evaluated. In addition, molecular, physiological, ultrastructural, and toxicity investigations were also conducted. The obtained results revealed that spraying of grapevines with SiNPs at 150 ppm significantly overexpressed the transcription factor jasmonate and ethylene-responsive factor 3 recording 8.7-fold, and the defense-related genes ß-1,3-glucanase (11-fold), peroxidase (10.7-fold) pathogenesis-related-protein 1 (10.6-fold), and chitinase (6.5-fold). Moreover, a reduction up to 81.5% in the disease severity was achieved in response to this treatment. Shoot length and yield per grapevine were considerably enhanced recording up to 26.3 and 23.7% increase, respectively. The berries quality was also improved. Furthermore, this treatment led to an enhancement in the photosynthetic pigments, induction of phenolic and ascorbic acid contents, an increase in the activity of peroxidase and polyphenol oxidase enzymes, and a reduction in the cellular electrolyte leakage, lipid peroxidation, and H2O2 content. Scanning electron microscopy observations showed an increase up to 86.6% in the number of closed stomata and a reduction up to 55% in the average stomatal pore area in response to this treatment. Observations of the transmission electron microscopy showed ultrastructural alterations in the cells of a grapevine leaf due to the infection with downy mildew, including plasmolysis and disruption of the cellular components, abnormal chloroplasts, and thickening of the cell wall and cell membrane. These abnormal alterations were reduced in response to SiNPs spray. In contrast, this study also showed that this treatment had considerable cytotoxic and genotoxic effects at this direct dose/concentration. So, additional investigations to determine the SiNPs residue in the produced edible plant parts are urgently needed. In addition, the pre-harvest interval, toxicity index, and risk assessment should be evaluated before any recommendation for use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA