Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(52): e2209960119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36538479

RESUMEN

Sensorimotor learning is a dynamic, systems-level process that involves the combined action of multiple neural systems distributed across the brain. Although much is known about the specialized cortical systems that support specific components of action (such as reaching), we know less about how cortical systems function in a coordinated manner to facilitate adaptive behavior. To address this gap, our study measured human brain activity using functional MRI (fMRI) while participants performed a classic sensorimotor adaptation task and used a manifold learning approach to describe how behavioral changes during adaptation relate to changes in the landscape of cortical activity. During early adaptation, areas in the parietal and premotor cortices exhibited significant contraction along the cortical manifold, which was associated with their increased covariance with regions in the higher-order association cortex, including both the default mode and fronto-parietal networks. By contrast, during Late adaptation, when visuomotor errors had been largely reduced, a significant expansion of the visual cortex along the cortical manifold was associated with its reduced covariance with the association cortex and its increased intraconnectivity. Lastly, individuals who learned more rapidly exhibited greater covariance between regions in the sensorimotor and association cortices during early adaptation. These findings are consistent with a view that sensorimotor adaptation depends on changes in the integration and segregation of neural activity across more specialized regions of the unimodal cortex with regions in the association cortex implicated in higher-order processes. More generally, they lend support to an emerging line of evidence implicating regions of the default mode network (DMN) in task-based performance.


Asunto(s)
Mapeo Encefálico , Corteza Motora , Humanos , Encéfalo , Corteza Motora/diagnóstico por imagen , Imagen por Resonancia Magnética , Aprendizaje
2.
J Neurosci ; 43(32): 5831-5847, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474309

RESUMEN

In daily life, prehension is typically not the end goal of hand-object interactions but a precursor for manipulation. Nevertheless, functional MRI (fMRI) studies investigating manual manipulation have primarily relied on prehension as the end goal of an action. Here, we used slow event-related fMRI to investigate differences in neural activation patterns between prehension in isolation and prehension for object manipulation. Sixteen (seven males and nine females) participants were instructed either to simply grasp the handle of a rotatable dial (isolated prehension) or to grasp and turn it (prehension for object manipulation). We used representational similarity analysis (RSA) to investigate whether the experimental conditions could be discriminated from each other based on differences in task-related brain activation patterns. We also used temporal multivoxel pattern analysis (tMVPA) to examine the evolution of regional activation patterns over time. Importantly, we were able to differentiate isolated prehension and prehension for manipulation from activation patterns in the early visual cortex, the caudal intraparietal sulcus (cIPS), and the superior parietal lobule (SPL). Our findings indicate that object manipulation extends beyond the putative cortical grasping network (anterior intraparietal sulcus, premotor and motor cortices) to include the superior parietal lobule and early visual cortex.SIGNIFICANCE STATEMENT A simple act such as turning an oven dial requires not only that the CNS encode the initial state (starting dial orientation) of the object but also the appropriate posture to grasp it to achieve the desired end state (final dial orientation) and the motor commands to achieve that state. Using advanced temporal neuroimaging analysis techniques, we reveal how such actions unfold over time and how they differ between object manipulation (turning a dial) versus grasping alone. We find that a combination of brain areas implicated in visual processing and sensorimotor integration can distinguish between the complex and simple tasks during planning, with neural patterns that approximate those during the actual execution of the action.


Asunto(s)
Objetivos , Desempeño Psicomotor , Femenino , Humanos , Masculino , Encéfalo/fisiología , Mapeo Encefálico/métodos , Fuerza de la Mano/fisiología , Imagen por Resonancia Magnética/métodos , Movimiento/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiología
3.
PLoS Comput Biol ; 19(11): e1011596, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37917718

RESUMEN

Motor errors can have both bias and noise components. Bias can be compensated for by adaptation and, in tasks in which the magnitude of noise varies across the environment, noise can be reduced by identifying and then acting in less noisy regions of the environment. Here we examine how these two processes interact when participants reach under a combination of an externally imposed visuomotor bias and noise. In a center-out reaching task, participants experienced noise (zero-mean random visuomotor rotations) that was target-direction dependent with a standard deviation that increased linearly from a least-noisy direction. They also experienced a constant bias, a visuomotor rotation that varied (across groups) from 0 to 40 degrees. Critically, on each trial, participants could select one of three targets to reach to, thereby allowing them to potentially select targets close to the least-noisy direction. The group who experienced no bias (0 degrees) quickly learned to select targets close to the least-noisy direction. However, groups who experienced a bias often failed to identify the least-noisy direction, even though they did partially adapt to the bias. When noise was introduced after participants experienced and adapted to a 40 degrees bias (without noise) in all directions, they exhibited an improved ability to find the least-noisy direction. We developed two models-one for reach adaptation and one for target selection-that could explain participants' adaptation and target-selection behavior. Our data and simulations indicate that there is a trade-off between adaptation and selection. Specifically, because bias learning is local, participants can improve performance, through adaptation, by always selecting targets that are closest to a chosen direction. However, this comes at the expense of improving performance, through selection, by reaching toward targets in different directions to find the least-noisy direction.


Asunto(s)
Desempeño Psicomotor , Percepción Visual , Humanos , Aprendizaje , Ruido , Sesgo , Adaptación Fisiológica , Movimiento
4.
Cereb Cortex ; 33(8): 4761-4778, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36245212

RESUMEN

Humans vary greatly in their motor learning abilities, yet little is known about the neural processes that underlie this variability. We identified distinct profiles of human sensorimotor adaptation that emerged across 2 days of learning, linking these profiles to the dynamics of whole-brain functional networks early on the first day when cognitive strategies toward sensorimotor adaptation are believed to be most prominent. During early learning, greater recruitment of a network of higher-order brain regions, involving prefrontal and anterior temporal cortex, was associated with faster learning. At the same time, greater integration of this "cognitive network" with a sensorimotor network was associated with slower learning, consistent with the notion that cognitive strategies toward adaptation operate in parallel with implicit learning processes of the sensorimotor system. On the second day, greater recruitment of a network that included the hippocampus was associated with faster learning, consistent with the notion that declarative memory systems are involved with fast relearning of sensorimotor mappings. Together, these findings provide novel evidence for the role of higher-order brain systems in driving variability in adaptation.


Asunto(s)
Encéfalo , Aprendizaje , Humanos , Adaptación Fisiológica , Lóbulo Temporal , Hipocampo
5.
J Neurophysiol ; 129(1): 115-130, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36475897

RESUMEN

Real-world search behavior often involves limb movements, either during search or after search. Here we investigated whether movement-related costs influence search behavior in two kinds of search tasks. In our visual search tasks, participants made saccades to find a target object among distractors and then moved a cursor, controlled by the handle of a robotic manipulandum, to the target. In our manual search tasks, participants moved the cursor to perform the search, placing it onto objects to reveal their identity as either a target or a distractor. In all tasks, there were multiple targets. Across experiments, we manipulated either the effort or time costs associated with movement such that these costs varied across the search space. We varied effort by applying different resistive forces to the handle, and we varied time costs by altering the speed of the cursor. Our analysis of cursor and eye movements during manual and visual search, respectively, showed that effort influenced manual search but did not influence visual search. In contrast, time costs influenced both visual and manual search. Our results demonstrate that, in addition to perceptual and cognitive factors, movement-related costs can also influence search behavior.NEW & NOTEWORTHY Numerous studies have investigated the perceptual and cognitive factors that influence decision making about where to look, or move, in search tasks. However, little is known about how search is influenced by movement-related costs associated with acting on an object once it has been visually located or acting during manual search. In this article, we show that movement time costs can bias visual and manual search and that movement effort costs bias manual search.


Asunto(s)
Movimientos Oculares , Movimiento , Humanos , Movimientos Sacádicos , Percepción Visual , Desempeño Psicomotor
6.
Nat Rev Neurosci ; 19(9): 519-534, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30089888

RESUMEN

Skilled sensorimotor interactions with the world result from a series of decision-making processes that determine, on the basis of information extracted during the unfolding sequence of events, which movements to make and when and how to make them. Despite this inherent link between decision-making and sensorimotor control, research into each of these two areas has largely evolved in isolation, and it is only fairly recently that researchers have begun investigating how they interact and, together, influence behaviour. Here, we review recent behavioural, neurophysiological and computational research that highlights the role of decision-making processes in the selection, planning and control of goal-directed movements in humans and nonhuman primates.


Asunto(s)
Encéfalo/fisiología , Toma de Decisiones/fisiología , Neuronas/fisiología , Desempeño Psicomotor , Animales , Objetivos , Humanos , Modelos Neurológicos , Actividad Motora
7.
Cereb Cortex ; 32(16): 3423-3440, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34963128

RESUMEN

Error-based and reward-based processes are critical for motor learning and are thought to be mediated via distinct neural pathways. However, recent behavioral work in humans suggests that both learning processes can be bolstered by the use of cognitive strategies, which may mediate individual differences in motor learning ability. It has been speculated that medial temporal lobe regions, which have been shown to support motor sequence learning, also support the use of cognitive strategies in error-based and reinforcement motor learning. However, direct evidence in support of this idea remains sparse. Here we first show that better overall learning during error-based visuomotor adaptation is associated with better overall learning during the reward-based shaping of reaching movements. Given the cognitive contribution to learning in both of these tasks, these results support the notion that strategic processes, associated with better performance, drive intersubject variation in both error-based and reinforcement motor learning. Furthermore, we show that entorhinal cortex volume is larger in better learning individuals-characterized across both motor learning tasks-compared with their poorer learning counterparts. These results suggest that individual differences in learning performance during error and reinforcement learning are related to neuroanatomical differences in entorhinal cortex.


Asunto(s)
Aprendizaje , Refuerzo en Psicología , Humanos , Movimiento , Vías Nerviosas , Desempeño Psicomotor , Recompensa
8.
J Vis ; 23(6): 4, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289172

RESUMEN

Real world search tasks often involve action on a target object once it has been located. However, few studies have examined whether movement-related costs associated with acting on located objects influence visual search. Here, using a task in which participants reached to a target object after locating it, we examined whether people take into account obstacles that increase movement-related costs for some regions of the reachable search space but not others. In each trial, a set of 36 objects (4 targets and 32 distractors) were displayed on a vertical screen and participants moved a cursor to a target after locating it. Participants had to fixate on an object to determine whether it was a target or distractor. A rectangular obstacle, of varying length, location, and orientation, was briefly displayed at the start of the trial. Participants controlled the cursor by moving the handle of a robotic manipulandum in a horizontal plane. The handle applied forces to simulate contact between the cursor and the unseen obstacle. We found that search, measured using eye movements, was biased to regions of the search space that could be reached without moving around the obstacle. This result suggests that when deciding where to search, people can incorporate the physical structure of the environment so as to reduce the movement-related cost of subsequently acting on the located target.


Asunto(s)
Movimientos Oculares , Movimiento , Humanos , Desempeño Psicomotor
9.
J Neurosci ; 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34035139

RESUMEN

Recent data and motor control theory argues that movement planning involves preparing the neural state of primary motor cortex (M1) for forthcoming action execution. Theories related to internal models, feedback control, and predictive coding also emphasize the importance of sensory prediction (and processing) prior to (and during) the movement itself, explaining why motor-related deficits can arise from damage to primary somatosensory cortex (S1). Motivated by this work, here we examined whether motor planning, in addition to changing the neural state of M1, changes the neural state of S1, preparing it for the sensory feedback that arises during action. We tested this idea in two human functional MRI studies (N=31, 16 female) involving delayed object manipulation tasks, focusing our analysis on pre-movement activity patterns in M1 and S1. We found that the motor effector to be used in the upcoming action could be decoded, well before movement, from neural activity in M1 in both studies. Critically, we found that this effector information was also present, well before movement, in S1. In particular, we found that the encoding of effector information in area 3b (S1 proper) was linked to the contralateral hand, similarly to that found in M1, whereas in areas 1 and 2 this encoding was present in both the contralateral and ipsilateral hemispheres. Together, these findings suggest that motor planning not only prepares the motor system for movement, but also changes the neural state of the somatosensory system, presumably allowing it to anticipate the sensory information received during movement.SIGNIFICANCE STATEMENT:Whereas recent work on motor cortex has emphasized the critical role of movement planning in preparing neural activity for movement generation, it has not investigated the extent to which planning also modulates the activity in adjacent primary somatosensory cortex (S1). This reflects a key gap in knowledge, given that recent motor control theories emphasize the importance of sensory feedback processing in effective movement generation. Here we find, through a convergence of experiments and analyses, that the planning of object manipulation tasks, in addition to modulating the activity in motor cortex, changes the state of neural activity in different subfields of human S1. We suggest that this modulation prepares S1 for the sensory information it will receive during action execution.

10.
Cereb Cortex ; 31(6): 2952-2967, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33511976

RESUMEN

It is well established that movement planning recruits motor-related cortical brain areas in preparation for the forthcoming action. Given that an integral component to the control of action is the processing of sensory information throughout movement, we predicted that movement planning might also modulate early sensory cortical areas, readying them for sensory processing during the unfolding action. To test this hypothesis, we performed 2 human functional magnetic resonance imaging studies involving separate delayed movement tasks and focused on premovement neural activity in early auditory cortex, given the area's direct connections to the motor system and evidence that it is modulated by motor cortex during movement in rodents. We show that effector-specific information (i.e., movements of the left vs. right hand in Experiment 1 and movements of the hand vs. eye in Experiment 2) can be decoded, well before movement, from neural activity in early auditory cortex. We find that this motor-related information is encoded in a separate subregion of auditory cortex than sensory-related information and is present even when movements are cued visually instead of auditorily. These findings suggest that action planning, in addition to preparing the motor system for movement, involves selectively modulating primary sensory areas based on the intended action.


Asunto(s)
Estimulación Acústica/métodos , Anticipación Psicológica/fisiología , Corteza Auditiva/diagnóstico por imagen , Corteza Auditiva/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
11.
Neuroimage ; 231: 117830, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33549746

RESUMEN

Changes in resting-state functional connectivity (rs-FC) under general anesthesia have been widely studied with the goal of identifying neural signatures of consciousness. This work has commonly revealed an apparent fragmentation of whole-brain network structure during unconsciousness, which has been interpreted as reflecting a break-down in connectivity and a disruption of the brain's ability to integrate information. Here we show, by studying rs-FC under varying depths of isoflurane-induced anesthesia in nonhuman primates, that this apparent fragmentation, rather than reflecting an actual change in network structure, can be simply explained as the result of a global reduction in FC. Specifically, by comparing the actual FC data to surrogate data sets that we derived to test competing hypotheses of how FC changes as a function of dose, we found that increases in whole-brain modularity and the number of network communities - considered hallmarks of fragmentation - are artifacts of constructing FC networks by thresholding based on correlation magnitude. Taken together, our findings suggest that deepening levels of unconsciousness are instead associated with the increasingly muted expression of functional networks, an observation that constrains current interpretations as to how anesthesia-induced FC changes map onto existing neurobiological theories of consciousness.


Asunto(s)
Anestesia General/métodos , Anestésicos por Inhalación/administración & dosificación , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Animales , Encéfalo/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Femenino , Macaca fascicularis , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/efectos de los fármacos
12.
PLoS Comput Biol ; 16(2): e1007632, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32109940

RESUMEN

It is well-established that people can factor into account the distribution of their errors in motor performance so as to optimize reward. Here we asked whether, in the context of motor learning where errors decrease across trials, people take into account their future, improved performance so as to make optimal decisions to maximize reward. One group of participants performed a virtual throwing task in which, periodically, they were given the opportunity to select from a set of smaller targets of increasing value. A second group of participants performed a reaching task under a visuomotor rotation in which, after performing a initial set of trials, they selected a reward structure (ratio of points for target hits and misses) for different exploitation horizons (i.e., numbers of trials they might be asked to perform). Because movement errors decreased exponentially across trials in both learning tasks, optimal target selection (task 1) and optimal reward structure selection (task 2) required taking into account future performance. The results from both tasks indicate that people anticipate their future motor performance so as to make decisions that will improve their expected future reward.


Asunto(s)
Toma de Decisiones , Aprendizaje , Destreza Motora , Desempeño Psicomotor , Adolescente , Adulto , Femenino , Humanos , Masculino , Modelos Estadísticos , Movimiento , Tiempo de Reacción , Reproducibilidad de los Resultados , Recompensa , Rotación , Estrés Mecánico , Adulto Joven
13.
Cereb Cortex ; 30(10): 5229-5241, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32469053

RESUMEN

General anesthetics are routinely used to induce unconsciousness, and much is known about their effects on receptor function and single neuron activity. Much less is known about how these local effects are manifest at the whole-brain level nor how they influence network dynamics, especially past the point of induced unconsciousness. Using resting-state functional magnetic resonance imaging (fMRI) with nonhuman primates, we investigated the dose-dependent effects of anesthesia on whole-brain temporal modular structure, following loss of consciousness. We found that higher isoflurane dose was associated with an increase in both the number and isolation of whole-brain modules, as well as an increase in the uncoordinated movement of brain regions between those modules. Conversely, we found that higher dose was associated with a decrease in the cohesive movement of brain regions between modules, as well as a decrease in the proportion of modules in which brain regions participated. Moreover, higher dose was associated with a decrease in the overall integrity of networks derived from the temporal modules, with the exception of a single, sensory-motor network. Together, these findings suggest that anesthesia-induced unconsciousness results from the hierarchical fragmentation of dynamic whole-brain network structure, leading to the discoordination of temporal interactions between cortical modules.


Asunto(s)
Encéfalo/fisiopatología , Estado de Conciencia/fisiología , Isoflurano/farmacología , Inconsciencia/fisiopatología , Animales , Encéfalo/efectos de los fármacos , Mapeo Encefálico , Estado de Conciencia/efectos de los fármacos , Haplorrinos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Descanso/fisiología , Inconsciencia/inducido químicamente
14.
J Neurophysiol ; 124(3): 994-1004, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32816611

RESUMEN

Skillful manipulation requires forming memories of object dynamics, linking applied force to motion. Although it has been assumed that such memories are linked to objects, a recent study showed that people can form separate memories when these are linked to different controlled points on an object (Heald JB, Ingram JN, Flanagan JR, Wolpert DM. Nat Hum Behav 2: 300-311, 2018). In that study, participants controlled the handle of a robotic device to move a virtual bar with circles (control points) on the left and right sides. Participants were instructed to move either the left or right control point to a target on the left or right, respectively, such that the required movement was constant. When these control points were paired with opposing force fields, adaptation was observed. In this previous study, both the controlled point and the target changed between contexts. To assess which of these factors is critical for learning, here, we used a similar paradigm but with a bar that automatically rotated as it was moved. In the first experiment, the bar rotated, such that the left and right control points moved to a common target. In the second experiment, the bar rotated such that a single control point moved to a target located on either the left or right. In both experiments, participants were able to learn opposing force fields applied in the two contexts. We conclude that separate memories of dynamics can be formed for different "contact goals," involving a unique combination of the controlled point on an object and the target location this point "contacts."NEW & NOTEWORTHY Skilled manipulation requires forming memories of object dynamics, previously assumed to be associated with entire objects. However, we recently demonstrated that people can form multiple motor memories when explicitly instructed to move different locations on an object to different targets. Here, we show that separate motor memories can be learned for different contact goals, which involve a unique combination of a control point and target.


Asunto(s)
Objetivos , Memoria/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Percepción Espacial/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
15.
Cereb Cortex ; 29(11): 4662-4678, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30668674

RESUMEN

The primate visual system contains myriad feedback projections from higher- to lower-order cortical areas, an architecture that has been implicated in the top-down modulation of early visual areas during working memory and attention. Here we tested the hypothesis that these feedback projections also modulate early visual cortical activity during the planning of visually guided actions. We show, across three separate human functional magnetic resonance imaging (fMRI) studies involving object-directed movements, that information related to the motor effector to be used (i.e., limb, eye) and action goal to be performed (i.e., grasp, reach) can be selectively decoded-prior to movement-from the retinotopic representation of the target object(s) in early visual cortex. We also find that during the planning of sequential actions involving objects in two different spatial locations, that motor-related information can be decoded from both locations in retinotopic cortex. Together, these findings indicate that movement planning selectively modulates early visual cortical activity patterns in an effector-specific, target-centric, and task-dependent manner. These findings offer a neural account of how motor-relevant target features are enhanced during action planning and suggest a possible role for early visual cortex in instituting a sensorimotor estimate of the visual consequences of movement.


Asunto(s)
Intención , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Corteza Visual/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Actividad Motora/fisiología , Vías Visuales/fisiología , Adulto Joven
16.
J Neurophysiol ; 121(4): 1342-1351, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625003

RESUMEN

Skillful manipulation requires forming and recalling memories of the dynamics of objects linking applied force to motion. It has been assumed that such memories are associated with entire objects. However, we often control different locations on an object, and these locations may be associated with different dynamics. We have previously demonstrated that multiple memories can be formed when participants are explicitly instructed to control different visual points marked on an object. A key question is whether this novel finding generalizes to more natural situations in which control points are implicitly defined by the task. To answer this question, we used objects with no explicit control points and tasks designed to encourage the use of distinct implicit control points. Participants moved a handle, attached to a robotic interface, to control the position of a rectangular object ("eraser") in the horizontal plane. Participants were required to move the eraser straight ahead to wipe away a column of dots ("dust"), located to either the left or right. We found that participants adapted to opposing dynamics when linked to the left and right dust locations, even though the movements required for these two contexts were the same. Control conditions showed this learning could not be accounted for by contextual cues or the fact that the task goal required moving in a straight line. These results suggest that people naturally control different locations on manipulated objects depending on the task context and that doing so affords the formation of separate motor memories. NEW & NOTEWORTHY Skilled manipulation requires forming motor memories of object dynamics, which have been assumed to be associated with entire objects. However, we recently demonstrated that people can form multiple memories when explicitly instructed to control different visual points on an object. In this article we show that this novel finding generalizes to more natural situations in which control points are implicitly defined by the task.


Asunto(s)
Memoria , Destreza Motora , Adolescente , Femenino , Generalización Psicológica , Mano/fisiología , Humanos , Masculino , Movimiento , Análisis y Desempeño de Tareas , Adulto Joven
17.
J Neurosci ; 37(48): 11572-11591, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29066555

RESUMEN

The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay.SIGNIFICANCE STATEMENT Visual presentation of an object activates shape-processing areas and retinotopic locations in early visual areas. Moreover, if the object is grasped in the dark after a delay, these areas show "reactivation." Here, we show that these areas are also activated and reactivated for haptic object exploration and haptically guided grasping. Touch-related activity occurs not only in the retinotopic location of the visual stimulus, but also at the occipital pole (OP), corresponding to the foveal representation, even though the stimulus was unseen and located peripherally. That is, the same "visual" regions are implicated in both visual and haptic exploration; however, touch also recruits high-acuity central representation within early visual areas during both haptic exploration of objects and subsequent actions toward them. Functional connectivity analysis shows that the OP is more strongly connected with ventral and dorsal stream areas when participants explore an object in the dark than when they view it.


Asunto(s)
Sensibilidad de Contraste/fisiología , Oscuridad , Fóvea Central/fisiología , Reconocimiento Visual de Modelos/fisiología , Percepción del Tacto/fisiología , Corteza Visual/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Tacto/fisiología , Adulto Joven
18.
J Neurophysiol ; 120(5): 2522-2531, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30183472

RESUMEN

During goal-directed reaching, people typically direct their gaze to the target before the start of the hand movement and maintain fixation until the hand arrives. This gaze strategy improves reach accuracy in two ways. It enables the use of central vision at the end of movement, and it allows the use of extraretinal information in guiding the hand to the target. Here we tested whether fixating the reach target further facilitates reach accuracy by optimizing the use of peripheral vision in detecting, and rapidly responding to, reach errors during the ongoing movement. We examined automatic visuomotor corrections in response to displacements of the cursor representing the hand position as a function of gaze fixation location during unimanual goal-directed reaching. Eight fixation targets were positioned either in line with, or at different angles relative to, the straight-ahead movement direction (manipulation of fixation angle), and at different distances from the location of the visual perturbation (manipulation of fixation distance). We found that corrections were fastest and strongest when gaze was directed at the reach target compared with when gaze was directed to a different location in the workspace. We found that the gain of the visuomotor response was strongly affected by fixation angle, and to a smaller extent by fixation distance, with lower gains as the angle or distance increased. We submit that fixating the reach target improves reach accuracy by facilitating rapid visuomotor responses to reach errors viewed in peripheral vision. NEW & NOTEWORTHY It is well known that directing gaze to the reach target allows the use of foveal visual feedback and extraretinal information to improve the accuracy of reaching movements. Here we demonstrate that target fixation also optimizes rapid visuomotor corrections to reach errors viewed in peripheral vision, with the angle of gaze relative to the hand movement being a critical determinant in the gain of the visuomotor response.


Asunto(s)
Retroalimentación Sensorial , Fijación Ocular , Desempeño Psicomotor , Adulto , Femenino , Mano/fisiología , Humanos , Masculino
19.
J Neurophysiol ; 120(4): 1602-1615, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29995600

RESUMEN

Successful motor performance relies on our ability to adapt to changes in the environment by learning novel mappings between motor commands and sensory outcomes. Such adaptation is thought to involve two distinct mechanisms: an implicit, error-based component linked to slow learning and an explicit, strategic component linked to fast learning and savings (i.e., faster relearning). Because behavior, at any given moment, is the resultant combination of these two processes, it has remained a challenge to parcellate their relative contributions to performance. The explicit component to visuomotor rotation (VMR) learning has recently been measured by having participants verbally report their aiming strategy used to counteract the rotation. However, this procedure has been shown to magnify the explicit component. Here we tested whether task-specific eye movements, a natural component of reach planning, but poorly studied in motor learning tasks, can provide a direct readout of the state of the explicit component during VMR learning. We show, by placing targets on a visible ring and including a delay between target presentation and reach onset, that individual differences in gaze patterns during sensorimotor learning are linked to participants' rates of learning and their expression of savings. Specifically, we find that participants who, during reach planning, naturally fixate an aimpoint rotated away from the target location, show faster initial adaptation and readaptation 24 h later. Our results demonstrate that gaze behavior cannot only uniquely identify individuals who implement cognitive strategies during learning but also how their implementation is linked to differences in learning. NEW & NOTEWORTHY Although it is increasingly well appreciated that sensorimotor learning is driven by two separate components, an error-based process and a strategic process, it has remained a challenge to identify their relative contributions to performance. Here we demonstrate that task-specific eye movements provide a direct read-out of explicit strategies during sensorimotor learning in the presence of visual landmarks. We further show that individual differences in gaze behavior are linked to learning rate and savings.


Asunto(s)
Movimientos Oculares , Aprendizaje , Desempeño Psicomotor , Femenino , Fuerza de la Mano , Humanos , Masculino , Rotación , Corteza Sensoriomotora/fisiología , Adulto Joven
20.
Neuroimage ; 157: 586-597, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28647484

RESUMEN

Multiple cortical regions are crucial for perceiving the visual world, yet the processes shaping representations in these regions are unclear. To address this issue, we must elucidate how perceptual features shape representations of the environment. Here, we explore how the weighting of different visual features affects neural representations of objects and scenes, focusing on the scene-selective parahippocampal place area (PPA), but additionally including the retrosplenial complex (RSC), occipital place area (OPA), lateral occipital (LO) area, fusiform face area (FFA) and occipital face area (OFA). Across three experiments, we examined functional magnetic resonance imaging (fMRI) activity while human observers viewed scenes and objects that varied in geometry (shape/layout) and surface properties (texture/material). Interestingly, we found equal sensitivity in the PPA for these properties within a scene, revealing that spatial-selectivity alone does not drive activation within this cortical region. We also observed sensitivity to object texture in PPA, but not to the same degree as scene texture, and representations in PPA varied when objects were placed within scenes. We conclude that PPA may process surface properties in a domain-specific manner, and that the processing of scene texture and geometry is equally-weighted in PPA and may be mediated by similar underlying neuronal mechanisms.


Asunto(s)
Mapeo Encefálico/métodos , Lóbulo Occipital/fisiología , Giro Parahipocampal/fisiología , Percepción Espacial/fisiología , Lóbulo Temporal/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Lóbulo Occipital/diagnóstico por imagen , Giro Parahipocampal/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA