Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(20): 3705-3719.e14, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179667

RESUMEN

The intestinal microbiota is an important modulator of graft-versus-host disease (GVHD), which often complicates allogeneic hematopoietic stem cell transplantation (allo-HSCT). Broad-spectrum antibiotics such as carbapenems increase the risk for intestinal GVHD, but mechanisms are not well understood. In this study, we found that treatment with meropenem, a commonly used carbapenem, aggravates colonic GVHD in mice via the expansion of Bacteroides thetaiotaomicron (BT). BT has a broad ability to degrade dietary polysaccharides and host mucin glycans. BT in meropenem-treated allogeneic mice demonstrated upregulated expression of enzymes involved in the degradation of mucin glycans. These mice also had thinning of the colonic mucus layer and decreased levels of xylose in colonic luminal contents. Interestingly, oral xylose supplementation significantly prevented thinning of the colonic mucus layer in meropenem-treated mice. Specific nutritional supplementation strategies, including xylose supplementation, may combat antibiotic-mediated microbiome injury to reduce the risk for intestinal GVHD in allo-HSCT patients.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteroides , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Meropenem , Ratones , Mucinas/metabolismo , Moco/metabolismo , Polisacáridos/metabolismo , Xilosa
2.
Nature ; 592(7852): 138-143, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731925

RESUMEN

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Asunto(s)
Antígenos Bacterianos/análisis , Antígenos Bacterianos/inmunología , Bacterias/inmunología , Antígenos HLA/inmunología , Melanoma/inmunología , Melanoma/microbiología , Péptidos/análisis , Péptidos/inmunología , Presentación de Antígeno , Bacterias/clasificación , Bacterias/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Antígenos HLA/análisis , Humanos , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/patología , Metástasis de la Neoplasia/inmunología , Filogenia , ARN Ribosómico 16S/genética
3.
Clin Infect Dis ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306502

RESUMEN

BACKGROUND: Equitable representation of members from historically marginalized groups is important in clinical trials, which inform standards of care. The goal of this study was to characterize the demographics and proportional subgroup reporting and representation of participants enrolled in randomized controlled trials (RCTs) of antibacterials used to treat Staphylococcus aureus infections. METHODS: We examined randomized controlled registrational and strategy trials published from 2000-2021 to determine the sex, race, and ethnicity of participants. Participation to incidence ratios (PIRs) were calculated by dividing the percentage of study participants in each demographic group by the percentage of the disease population in each group. Underrepresentation was defined as a PIR <0.8. RESULTS: Of the 87 included studies, 82 (94.2%) reported participant sex; 69 (79.3%) reported participant race; and 20 (23.0%) included ethnicity data. Only 17 (19.5%) studies enrolled American Indian/Alaskan Native participants. Median PIRs indicated that Asian and Black participants were underrepresented in RCTs compared with the incidence of methicillin-resistant S. aureus (MRSA) infections in these subgroups. Underrepresentation of Black participants was associated with a larger study size, international sites, industry sponsorship, and Phase 2/3 trials compared with Phase 4 trials (P<0.05 for each). Black participants had over 4 times the odds of being underrepresented in Phase 2/3 trials compared with Phase 4 trials (OR 4.57; 95% CI 1.14-18.3). CONCLUSIONS: Standardized reporting methods for race and ethnicity and efforts to increase recruitment of marginalized groups would help ensure equity, rigor, and generalizability in RCTs of antibacterial agents and reduce health inequities.

4.
Clin Infect Dis ; 72(9): 1507-1513, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32544947

RESUMEN

BACKGROUND: Stenotrophomonas maltophilia is increasingly common in patients with acute myeloid leukemia (AML). Little is known about factors that drive S. maltophilia infection. We evaluated the microbiome and cumulative antibiotic use as predictors of S. maltophilia infection in AML patients receiving remission induction chemotherapy (RIC). METHODS: Subanalysis of a prospective, observational cohort of patients with AML receiving RIC between September 2013 and August 2015 was performed. Fecal and oral microbiome samples collected from initiation of RIC until neutrophil recovery were assessed for the relative abundance of Stenotrophomonas via 16S rRNA gene quantitation. The primary outcome, microbiologically proven S. maltophilia infection, was analyzed using a time-varying Cox proportional hazards model. RESULTS: Of 90 included patients, 8 (9%) developed S. maltophilia infection (pneumonia, n = 6; skin-soft tissue, n = 2); 4/8 (50%) patients were bacteremic; and 7/8 (88%) patients with S. maltophilia infection had detectable levels of Stenotrophomonas vs 22/82 (27%) without infection (P < .01). An oral Stenotrophomonas relative abundance of 36% predicted infection (sensitivity, 96%; specificity, 93%). No association of S. maltophilia infection with fecal relative abundance was found. Cumulative meropenem exposure was associated with increased infection risk (hazard ratio, 1.17; 95% confidence interval, 1.01-1.35; P = .03). CONCLUSIONS: Here, we identify the oral microbiome as a potential source for S. maltophilia infection and highlight cumulative carbapenem use as a risk factor for S. maltophilia in leukemia patients. These data suggest that real-time monitoring of the oral cavity might identify patients at risk for S. maltophilia infection.


Asunto(s)
Infecciones por Bacterias Gramnegativas , Leucemia Mieloide Aguda , Microbiota , Stenotrophomonas maltophilia , Carbapenémicos/uso terapéutico , Infecciones por Bacterias Gramnegativas/epidemiología , Humanos , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/tratamiento farmacológico , Estudios Prospectivos , ARN Ribosómico 16S/genética
5.
J Antimicrob Chemother ; 76(2): 385-395, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33164081

RESUMEN

BACKGROUND: Approximately half of clinical carbapenem-resistant Enterobacterales (CRE) isolates lack carbapenem-hydrolysing enzymes and develop carbapenem resistance through alternative mechanisms. OBJECTIVES: To elucidate development of carbapenem resistance mechanisms from clonal, recurrent ESBL-positive Enterobacterales (ESBL-E) bacteraemia isolates in a vulnerable patient population. METHODS: This study investigated a cohort of ESBL-E bacteraemia cases in Houston, TX, USA. Oxford Nanopore Technologies long-read and Illumina short-read sequencing data were used for comparative genomic analysis. Serial passaging experiments were performed on a set of clinical ST131 Escherichia coli isolates to recapitulate in vivo observations. Quantitative PCR (qPCR) and qRT-PCR were used to determine copy number and transcript levels of ß-lactamase genes, respectively. RESULTS: Non-carbapenemase-producing CRE (non-CP-CRE) clinical isolates emerged from an ESBL-E background through a concurrence of primarily IS26-mediated amplifications of blaOXA-1 and blaCTX-M-1 group genes coupled with porin inactivation. The discrete, modular translocatable units (TUs) that carried and amplified ß-lactamase genes mobilized intracellularly from a chromosomal, IS26-bound transposon and inserted within porin genes, thereby increasing ß-lactamase gene copy number and inactivating porins concurrently. The carbapenem resistance phenotype and TU-mediated ß-lactamase gene amplification were recapitulated by passaging a clinical ESBL-E isolate in the presence of ertapenem. Clinical non-CP-CRE isolates had stable carbapenem resistance phenotypes in the absence of ertapenem exposure. CONCLUSIONS: These data demonstrate IS26-mediated mechanisms underlying ß-lactamase gene amplification with concurrent outer membrane porin disruption driving emergence of clinical non-CP-CRE. Furthermore, these amplifications were stable in the absence of antimicrobial pressure. Long-read sequencing can be utilized to identify unique mobile genetic element mechanisms that drive antimicrobial resistance.


Asunto(s)
Bacteriemia , Porinas , Antibacterianos/farmacología , Bacteriemia/tratamiento farmacológico , Proteínas Bacterianas/genética , Carbapenémicos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Porinas/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
6.
BMC Bioinformatics ; 21(Suppl 21): 581, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33371887

RESUMEN

BACKGROUND: The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated. RESULTS: We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients. CONCLUSIONS: Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE .


Asunto(s)
Biología Computacional/métodos , Microbiota , Humanos , Leucemia/microbiología
7.
Clin Infect Dis ; 71(1): 63-71, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31436833

RESUMEN

BACKGROUND: The majority of studies that provide insights into the influence of the microbiome on the health of hematologic malignancy patients have concentrated on the transplant setting. Here, we sought to assess the predictive capacity of the gastrointestinal microbiome and its relationship to infectious outcomes in patients with acute myeloid leukemia (AML). METHODS: 16s rRNA-based analysis was performed on oral swabs and stool samples obtained biweekly from baseline until neutrophil recovery following induction chemotherapy (IC) in 97 AML patients. Microbiome characteristics were correlated with clinical outcomes both during and after IC completion. RESULTS: At the start of IC, higher stool Shannon diversity (hazard ratio [HR], 0.36; 95% confidence interval [CI], .18-.74) and higher relative abundance of Porphyromonadaceae (HR, 0.36; 95% CI, .18-.73) were associated with increased probability of remaining infection-free during neutropenia. A baseline stool Shannon diversity cutoff of <2 had optimal operating characteristics for predicting infectious complications during neutropenia. Although 56 patients received therapy >72 hours with a carbapenem, none of the patients had an infection with an extended spectrum ß-lactamase-producing organism. Patients who received carbapenems for >72 hours had significantly lower α-diversity at neutrophil recovery (P = .001) and were approximately 4 times more likely to have infection in the 90 days following neutrophil recovery (HR, 4.55; 95% CI, 1.73-11.93). CONCLUSIONS: Our results suggest that gut microbiome evaluation could assist with infectious risk stratification and that improved targeting of antibiotic administration during IC could decrease subsequent infectious complications in AML patients.Baseline microbiome diversity is a strong independent predictor of infection during acute myeloid leukemia induction chemotherapy (IC) among clinical and microbiome covariates. Higher baseline levels of Porphyromonadaceae appear protective against infection, while carbapenem use is associated with consequences to the microbiome and infection susceptibility post-IC.


Asunto(s)
Microbioma Gastrointestinal , Leucemia Mieloide Aguda , Heces , Humanos , Quimioterapia de Inducción , Leucemia Mieloide Aguda/tratamiento farmacológico , ARN Ribosómico 16S/genética
8.
Dig Dis Sci ; 65(3): 674-685, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32002757

RESUMEN

Over the past decade, it has become exceedingly clear that the microbiome is a critical factor in human health and disease and thus should be investigated to develop innovative treatment strategies. The field of metagenomics has come a long way in leveraging the advances of next-generation sequencing technologies resulting in the capability to identify and quantify all microorganisms present in human specimens. However, the field of metagenomics is still in its infancy, specifically in regard to the limitations in computational analysis, statistical assessments, standardization, and validation due to vast variability in the cohorts themselves, experimental design, and bioinformatic workflows. This review summarizes the methods, technologies, computational tools, and model systems for characterizing and studying the microbiome. We also discuss important considerations investigators must make when interrogating the involvement of the microbiome in health and disease in order to establish robust results and mechanistic insights before moving into therapeutic design and intervention.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Microbiota/fisiología , Análisis de Secuencia de ADN/métodos , Animales , Biología Computacional/tendencias , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , Humanos , Aprendizaje Automático/tendencias , Metagenómica/tendencias , Análisis de Secuencia de ADN/tendencias
9.
Clin Orthop Relat Res ; 477(10): 2367-2377, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31393339

RESUMEN

BACKGROUND: The treatment of osteomyelitis can be challenging because of poor antibiotic penetration into the infected bone and toxicities associated with prolonged antibiotic regimens to control infection. Irreversible electroporation (IRE), a percutaneous image-guided ablation technology in which the targeted delivery of high-voltage electrical pulses permanently damages the cell membrane, has been shown to effectively control bacterial growth in various settings. However, IRE for the management of bone infections has yet to be evaluated. QUESTIONS/PURPOSES: We aimed to evaluate IRE for treating osteomyelitis by assessing (1) the efficacy of IRE to suppress the in vitro growth of a clinical isolate of S. aureus, alone or combined with cefazolin; and (2) the effects of IRE on the in vivo treatment of a rabbit model of osteomyelitis. METHODS: S. aureus strain UAMS-1 expanded in vitro to the log phase was subjected to an electric field of 2700 V/cm, which was delivered in increasing numbers of pulses. Immediately after electroporation, bacteria were plated on agar plates with or without cefazolin. The number of colony-forming units (CFUs) was scored the following day. ANOVA tests were used to analyze in vitro data. In a rabbit osteomyelitis model, we inoculated the same bacterial strain into the radius of adult male New Zealand White rabbits. Three weeks after inoculation, all animals (n = 32) underwent irrigation and débridement, as well as wound culture of the infected forelimb. Then, they were randomly assigned to one of four treatment groups (n = eight per group): untreated control, cefazolin only, IRE only, or combined IRE + cefazolin. Serial radiography was performed to assess disease progression using a semiquantitative grading scale. Bone and soft-tissue specimens from the infected and contralateral forelimbs were collected at 4 weeks after treatment for bacterial isolation and histologic assessment using a semiquantitative scale. RESULTS: The in vitro growth of S. aureus UAMS-1 was impaired by IRE in a pulse-dependent fashion; the number of CFUs/mL was different among seven pulse levels, namely 0, 10, 30, 60, 90, 120, and 150 pulses. With the number of CFUs/mL observed in untreated controls set as 100%, 10 pulses rendered a median of 50.2% (range 47.1% to 58.2%), 30 pulses rendered a median of 2.7% (range 2.5% to 2.8%), 60 pulses rendered a median of 0.014% (range 0.012% to 0.015%), 90 pulses rendered a median of 0.004% (range 0.002% to 0.004%), 120 pulses rendered a median of 0.001% (range 0.001% to 0.001%), and 150 pulses rendered a median of 0.001% (range 0.000% to 0.001%) (Kruskal-Wallis test: p = 0.003). There was an interaction between the effect of the number of pulses and the concentration of cefazolin (two-way ANOVA: F [8, 30] = 17.24; p < 0.001), indicating that combining IRE with cefazolin is more effective than either treatment alone at suppressing the growth of S. aureus UAMS-1. Likewise, the clinical response in the rabbit model (the percentage of animals without detectable residual bacteria in the bone and surrounding soft tissue after treatment) was better in the combination group than in the other groups: control, 12.5% (one of eight animals); IRE only, 12.5% (one of eight animals); cefazolin only, 25% (two of eight animals); and IRE + cefazolin, 75% (six of eight animals) (two-sided Fisher's exact test: p = 0.030). CONCLUSIONS: IRE effectively suppressed the growth of S. aureus UAMS-1 and enhanced the antibacterial effect of cefazolin in in vitro studies. When translated to a rabbit osteomyelitis model, the addition of IRE to conventional parenteral antibiotic treatment produced the strongest response, which supports the in vitro findings. CLINICAL RELEVANCE: Our results show that IRE may improve the results of standard parenteral antibiotic treatment, thus setting the stage for models with larger animals and perhaps trials in humans for validation.


Asunto(s)
Electroporación/métodos , Osteomielitis/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Animales , Modelos Animales de Enfermedad , Masculino , Conejos , Distribución Aleatoria
10.
Clin Infect Dis ; 67(3): 398-406, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29546356

RESUMEN

Background: Pathobionts, bacteria that are typically human commensals but can cause disease, contribute significantly to antimicrobial resistance. Staphylococcus epidermidis is a prototypical pathobiont as it is a ubiquitous human commensal but also a leading cause of healthcare-associated bacteremia. We sought to determine the etiology of a recent increase in invasive S. epidermidis isolates resistant to linezolid. Methods: Whole-genome sequencing (WGS) was performed on 176 S. epidermidis bloodstream isolates collected at the MD Anderson Cancer Center in Houston, Texas, between 2013 and 2016. Molecular relationships were assessed via complementary phylogenomic approaches. Abundance of the linezolid resistance determinant cfr was determined in stool samples via reverse-transcription quantitative polymerase chain reaction. Results: Thirty-nine of the 176 strains were linezolid resistant (22%). Thirty-one of the 39 linezolid-resistant S. epidermidis infections were caused by a particular clone resistant to multiple antimicrobials that spread among leukemia patients and carried cfr on a 49-kb plasmid (herein called pMB151a). The 6 kb of pMB151a surrounding the cfr gene was nearly 100% identical to a cfr-containing plasmid isolated from livestock-associated staphylococci in China. Analysis of serial stool samples from leukemia patients revealed progressive staphylococcal domination of the intestinal microflora and an increase in cfr abundance following linezolid use. Conclusions: The combination of linezolid use plus transmission of a multidrug-resistant clone drove expansion of invasive, linezolid-resistant S. epidermidis. Our results lend support to the notion that a combination of antibiotic stewardship plus infection control measures may help to control the spread of a multidrug-resistant pathobiont.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Linezolid/farmacología , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/genética , Programas de Optimización del Uso de los Antimicrobianos , Proteínas Bacterianas/genética , Evolución Molecular , Heces/microbiología , Humanos , Microbiota , Staphylococcus epidermidis/efectos de los fármacos , Secuenciación Completa del Genoma
11.
Proc Natl Acad Sci U S A ; 112(20): 6431-6, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941374

RESUMEN

The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/microbiología , Streptococcus agalactiae/genética , Adulto , Secuencia de Bases , Análisis por Conglomerados , Genoma Bacteriano/genética , Humanos , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Ontario/epidemiología , Filogenia , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Serogrupo , Especificidad de la Especie , Texas/epidemiología
12.
BMC Bioinformatics ; 18(1): 94, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28178947

RESUMEN

BACKGROUND: The Human Microbiome has been variously associated with the immune-regulatory mechanisms involved in the prevention or development of many non-infectious human diseases such as autoimmunity, allergy and cancer. Integrative approaches which aim at associating the composition of the human microbiome with other available information, such as clinical covariates and environmental predictors, are paramount to develop a more complete understanding of the role of microbiome in disease development. RESULTS: In this manuscript, we propose a Bayesian Dirichlet-Multinomial regression model which uses spike-and-slab priors for the selection of significant associations between a set of available covariates and taxa from a microbiome abundance table. The approach allows straightforward incorporation of the covariates through a log-linear regression parametrization of the parameters of the Dirichlet-Multinomial likelihood. Inference is conducted through a Markov Chain Monte Carlo algorithm, and selection of the significant covariates is based upon the assessment of posterior probabilities of inclusions and the thresholding of the Bayesian false discovery rate. We design a simulation study to evaluate the performance of the proposed method, and then apply our model on a publicly available dataset obtained from the Human Microbiome Project which associates taxa abundances with KEGG orthology pathways. The method is implemented in specifically developed R code, which has been made publicly available. CONCLUSIONS: Our method compares favorably in simulations to several recently proposed approaches for similarly structured data, in terms of increased accuracy and reduced false positive as well as false negative rates. In the application to the data from the Human Microbiome Project, a close evaluation of the biological significance of our findings confirms existing associations in the literature.


Asunto(s)
Bacterias/clasificación , Modelos Lineales , Microbiota , Algoritmos , Teorema de Bayes , Simulación por Computador , Humanos , Cadenas de Markov , Método de Montecarlo
14.
Cancer ; 122(14): 2186-96, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27142181

RESUMEN

BACKGROUND: Despite increasing data on the impact of the microbiome on cancer, the dynamics and role of the microbiome in infection during therapy for acute myelogenous leukemia (AML) are unknown. Therefore, the authors sought to determine correlations between microbiome composition and infectious outcomes in patients with AML who were receiving induction chemotherapy (IC). METHODS: Buccal and fecal specimens (478 samples) were collected twice weekly from 34 patients with AML who were undergoing IC. Oral and stool microbiomes were characterized by 16S ribosomal RNA V4 sequencing using an Illumina MiSeq system. Microbial diversity and genera composition were associated with clinical outcomes. RESULTS: Baseline stool α-diversity was significantly lower in patients who developed infections during IC compared with those who did not (P = .047). Significant decreases in both oral and stool microbial α-diversity were observed over the course of IC, with a linear correlation between α-diversity change at the 2 sites (P = .02). Loss of both oral and stool α-diversity was associated significantly with the receipt of a carbapenem P < 0.001. Domination events by the majority of genera were transient (median duration, 1 sample), whereas the number of domination events by pathogenic genera increased significantly over the course of IC (P = .002). Moreover, patients who lost microbial diversity over the course of IC were significantly more likely to contract a microbiologically documented infection within the 90 days after IC neutrophil recovery (P = .04). CONCLUSIONS: The current data present the largest longitudinal analyses to date of oral and stool microbiomes in patients with AML and suggest that microbiome measurements could assist with the mitigation of infectious complications of AML therapy. Cancer 2016;122:2186-96. © 2016 American Cancer Society.


Asunto(s)
Microbioma Gastrointestinal , Quimioterapia de Inducción/efectos adversos , Infecciones/etiología , Leucemia Mieloide Aguda/complicaciones , Adulto , Anciano , Biodiversidad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Infecciones/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Metagenoma , Metagenómica/métodos , Persona de Mediana Edad , Pronóstico , ARN Ribosómico 16S/genética , Adulto Joven
15.
J Bacteriol ; 197(5): 882-92, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25512313

RESUMEN

The WxL domain recently has been identified as a novel cell wall binding domain found in numerous predicted proteins within multiple Gram-positive bacterial species. However, little is known about the function of proteins containing this novel domain. Here, we identify and characterize 6 Enterococcus faecium proteins containing the WxL domain which, by reverse transcription-PCR (RT-PCR) and genomic analyses, are located in three similarly organized operons, deemed WxL loci A, B, and C. Western blotting, electron microscopy, and enzyme-linked immunosorbent assays (ELISAs) determined that genes of WxL loci A and C encode antigenic, cell surface proteins exposed at higher levels in clinical isolates than in commensal isolates. Secondary structural analyses of locus A recombinant WxL domain-containing proteins found they are rich in ß-sheet structure and disordered segments. Using Biacore analyses, we discovered that recombinant WxL proteins from locus A bind human extracellular matrix proteins, specifically type I collagen and fibronectin. Proteins encoded by locus A also were found to bind to each other, suggesting a novel cell surface complex. Furthermore, bile salt survival assays and animal models using a mutant from which all three WxL loci were deleted revealed the involvement of WxL operons in bile salt stress and endocarditis pathogenesis. In summary, these studies extend our understanding of proteins containing the WxL domain and their potential impact on colonization and virulence in E. faecium and possibly other Gram-positive bacterial species.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Enterococcus faecium/metabolismo , Matriz Extracelular/metabolismo , Infecciones por Bacterias Grampositivas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Enterococcus faecium/química , Enterococcus faecium/genética , Enterococcus faecium/patogenicidad , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Datos de Secuencia Molecular , Operón , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Alineación de Secuencia , Virulencia
16.
J Infect Dis ; 209(10): 1520-3, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24307742

RESUMEN

Invasive group A streptococcal (GAS) strains often have genetic differences compared to GAS strains from nonsterile sites. Invasive, "hypervirulent" GAS strains can arise from a noninvasive progenitor following subcutaneous inoculation in mice, but such emergence has been rarely characterized in humans. We used whole genome analyses of multiple GAS isolates from the same patient to document the molecular basis for emergence of a GAS strain with an invasive phenotype during human infection. In contrast to previous theories, we found that elimination of production of the cysteine protease SpeB was not necessary for emergence of GAS with an invasive, "hypervirulent" phenotype.


Asunto(s)
Variación Genética , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/genética , Anciano , Antibacterianos/uso terapéutico , Ceftriaxona/uso terapéutico , Humanos , Masculino , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Úlcera Cutánea/tratamiento farmacológico , Úlcera Cutánea/microbiología
17.
J Clin Microbiol ; 52(8): 2905-12, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24899021

RESUMEN

Viridans group streptococci (VGS) are a heterogeneous group of medically important bacteria that cannot be accurately assigned to a particular species using conventional phenotypic methods. Although multilocus sequence analysis (MLSA) is considered the gold standard for VGS species-level identification, MLSA is not yet feasible in the clinical setting. Conversely, molecular methods, such as sodA and 16S rRNA gene sequencing, are clinically practical but not sufficiently accurate for VGS species-level identification. Here, we present data regarding the use of an ∼ 400-nucleotide internal fragment of the gene encoding DNA gyrase subunit B (GyrB) for VGS species-level identification. MLSA, internal gyrB, sodA, full-length, and 5' 16S gene sequences were used to characterize 102 unique VGS blood isolates collected from 2011 to 2012. When using the MLSA species assignment as a reference, full-length and 5' partial 16S gene and sodA sequence analyses failed to correctly assign all strains to a species. Precise species determination was particularly problematic for Streptococcus mitis and Streptococcus oralis isolates. However, the internal gyrB fragment allowed for accurate species designations for all 102 strains. We validated these findings using 54 VGS strains for which MLSA, 16S gene, sodA, and gyrB data are available at the NCBI, showing that gyrB is superior to 16S gene and sodA sequence analyses for VGS species identification. We also observed that specific polymorphisms in the 133-amino acid sequence of the internal GyrB fragment can be used to identify invasive VGS species. Thus, the GyrB amino acid sequence may offer a more practical and accurate method for classifying invasive VGS strains to the species level.


Asunto(s)
Girasa de ADN/genética , Técnicas de Diagnóstico Molecular/métodos , Polimorfismo Genético , Estreptococos Viridans/clasificación , Estreptococos Viridans/genética , Bacteriemia/diagnóstico , Bacteriemia/microbiología , ADN Bacteriano/química , ADN Bacteriano/genética , ADN de Helmintos/química , ADN de Helmintos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Humanos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/microbiología , Estreptococos Viridans/aislamiento & purificación
19.
mBio ; 15(5): e0017024, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38564699

RESUMEN

Penicillin-binding protein 5 (PBP5) of Enterococcus faecium (Efm) is vital for ampicillin resistance (AMP-R). We previously designated three forms of PBP5, namely, PBP5-S in Efm clade B strains [ampicillin susceptible (AMP-S)], PBP5-S/R (AMP-S or R), and PBP5-R (AMP-R) in clade A strains. Here, pbp5 deletion resulted in a marked reduction in AMP minimum inhibitory concentrations (MICs) to 0.01-0.09 µg/mL for clade B and 0.12-0.19 µg/mL for clade A strains; in situ complementation restored parental AMP MICs. Using D344SRF (lacking ftsW/psr/pbp5), constructs with ftsWA/psrA (from a clade A1 strain) cloned upstream of pbp5-S and pbp5-S/R alleles resulted in modest increases in MICs to 3-8 µg/mL, while high MICs (>64 µg/mL) were seen using pbp5 from A1 strains. Next, using ftsW ± psr from clade B and clade A/B and B/A hybrid constructs, the presence of psrB, even alone or in trans, resulted in much lower AMP MICs (3-8 µg/mL) than when psrA was present (MICs >64 µg/mL). qRT PCR showed relatively greater pbp5 expression (P = 0.007) with pbp5 cloned downstream of clade A1 ftsW/psr (MIC >128 µg/mL) vs when cloned downstream of clade B ftsW/psr (MIC 4-16 µg/mL), consistent with results in western blots. In conclusion, we report the effect of clade A vs B psr on AMP MICs as well as the impact of pbp5 alleles from different clades. While previously, Psr was not thought to contribute to AMP MICs in Efm, our results showed that the presence of psrB resulted in a major decrease in Efm AMP MICs. IMPORTANCE: The findings of this study shed light on ampicillin resistance in Enterococcus faecium clade A strains. They underscore the significance of alterations in the amino acid sequence of penicillin-binding protein 5 (PBP5) and the pivotal role of the psr region in PBP5 expression and ampicillin resistance. Notably, the presence of a full-length psrB leads to reduced PBP5 expression and lower minimum inhibitory concentrations (MICs) of ampicillin compared to the presence of a shorter psrA, regardless of the pbp5 allele involved. Additionally, clade B E. faecium strains exhibit lower AMP MICs when both psr alleles from clades A and B are present, although it is important to consider other distinctions between clade A and B strains that may contribute to this effect. It is intriguing to note that the divergence between clade A and clade B E. faecium and the subsequent evolution of heightened AMP MICs in hospital-associated strains appear to coincide with changes in Pbp5 and psr. These changes in psr may have resulted in an inactive Psr, facilitating increased PBP5 expression and greater ampicillin resistance. These results raise the possibility that a mimicker of PsrB, if one could be designed, might be able to lower MICs of ampicillin-resistant E. faecium, thus potentially resorting ampicillin to our therapeutic armamentarium for this species.


Asunto(s)
Antibacterianos , Enterococcus faecium , Proteínas de Unión a las Penicilinas , Resistencia betalactámica , Ampicilina/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Resistencia betalactámica/genética , Enterococcus faecium/genética , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/metabolismo , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo
20.
Front Microbiol ; 14: 1186424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448579

RESUMEN

Infections lacking precise diagnosis are often caused by a rare or uncharacterized pathogen, a combination of pathogens, or a known pathogen carrying undocumented or newly acquired genes. Despite medical advances in infectious disease diagnostics, many patients still experience mortality or long-term consequences due to undiagnosed or misdiagnosed infections. Thus, there is a need for an exhaustive and universal diagnostic strategy to reduce the fraction of undocumented infections. Compared to conventional diagnostics, metagenomic next-generation sequencing (mNGS) is a promising, culture-independent sequencing technology that is sensitive to detecting rare, novel, and unexpected pathogens with no preconception. Despite the fact that several studies and case reports have identified the effectiveness of mNGS in improving clinical diagnosis, there are obvious shortcomings in terms of sensitivity, specificity, costs, standardization of bioinformatic pipelines, and interpretation of findings that limit the integration of mNGS into clinical practice. Therefore, physicians must understand the potential benefits and drawbacks of mNGS when applying it to clinical practice. In this review, we will examine the current accomplishments, efficacy, and restrictions of mNGS in relation to conventional diagnostic methods. Furthermore, we will suggest potential approaches to enhance mNGS to its maximum capacity as a clinical diagnostic tool for identifying severe infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA