Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 19(9): 6418-6423, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31430166

RESUMEN

Intermetallic nanoparticles are remarkable due to their often enhanced catalytic, magnetic, and optical properties, which arise from their ordered crystal structures and high structural stability. Typical syntheses of intermetallic nanoparticles include thermal annealing of the disordered counterpart in atmosphere (or vacuum) or colloidal syntheses, where the phase transformation is achieved in solution. Although both methods can produce intermetallic nanoparticles, there is difficulty in achieving monodisperse nanoparticles, which is critical to exploiting their properties for various applications. Here, we show that overgrowth on random alloy AuCu nanoparticles mediated by size refocusing yields monodisperse intermetallic AuCu nanoparticles. Size refocusing has been used in syntheses of semiconductor and upconverting nanocrystals to achieve monodisperse samples, but now we demonstrate size refocusing as a mechanism to achieve the disorder-to-order phase transformation in multimetallic nanoparticles. The phase transformation was monitored by time evolution experiments, where analysis of reaction aliquots with transmission electron microscopy and powder X-ray diffraction revealed the generation and dissolution of small nanoparticles coupled with an increase in the average size of the nanoparticles and conversion to the ordered phase. This demonstration advances the understanding of intermetallic nanoparticle formation in colloidal syntheses, which can expedite the development of electrocatalysts and magnetic storage materials.

2.
Nano Lett ; 17(9): 5526-5532, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28840730

RESUMEN

Surface strains can enhance the performance of platinum-based core@shell electrocatalysts for the oxygen reduction reaction (ORR). Bimetallic core@shell nanoparticles (NPs) are widely studied nanocatalysts but often have limited lattice mismatch and surface compositions; investigations of core@shell NPs with greater compositional complexity and lattice misfit are in their infancy. Here, a new class of multimetallic NPs composed of intermetallic cores and random alloy shells is reported. Specifically, face-centered cubic Pt-Cu random alloy shells were deposited on PdCu B2 intermetallic seeds in a facet-dependent manner, giving rise to faceted core@shell NPs with highly strained surfaces. High-resolution transmission electron microscopy revealed orientation-dependent surface strains, where the compressive strains were greater on Pt-Cu {200} than {111} facets. These core@shell NPs provide higher specific area and mass activities for the ORR when compared to conventional Pt-Cu NPs. Moreover, these intermetallic@random alloy NPs displayed high endurance, undergoing 10,000 cycles with only a slight decay in activity and no apparent structural changes.

3.
Nanoscale Adv ; 2(3): 1105-1114, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36133036

RESUMEN

Bimetallic nanocrystals with a core@shell architecture are versatile, multifunctional particles. The lattice mismatch between core and shell regions induces strain, affecting the electronic properties of the shell metal, which is important for applications in catalysis. Here, we analyze this strain in core@shell nanocubes as a function of lattice mismatch and shell thickness. Coupling geometric phase analysis from atomic resolution scanning transmission electron microscopy images with molecular dynamics simulations reveals lattice relaxation in the shell within only a few monolayers and an overexpansion in the axial direction. Interestingly, many works report core@shell metal nanocatalysts with optimum performance at greater shell thicknesses. Our findings suggest that not strain alone but secondary factors, such as structural defects or structural changes in operando, may account for observed enhancements in some strain-engineered nanocatalysts; e.g., Rh@Pt nanocubes for formic acid electrooxidation.

4.
Nanoscale ; 12(4): 2532-2541, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932821

RESUMEN

Pd-Based nanoparticles are excellent alternatives to the typically used Pt-based materials that catalyze fuel cell reactions. Specifically, Pd-based intermetallic nanomaterials have shown great promise as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline media; however, their synthesis remains a challenge and shape-controlled nanoparticles are limited. Here, a low-temperature approach to intermetallic Pd3Pb nanocubes is demonstrated and their electrocatalytic properties evaluated for the ORR. The intermetallic Pd3Pb nanocubes outperformed all reference catalysts, with a mass activity of 154 mA mgPd-1 which is a 130% increase in activity compared to the commercial Pd/C reference and a 230% increase compared to Pd nanocubes. Tafel analysis reveals that the Pd3Pb nanocubes are highly selective for the 4-electron reduction pathway, with minimal HO2- formation. Density functional theory (DFT) calculations show that the increased activity for the intermetallic nanocubes compared to Pd is likely due to the weakening of OH* adsorption, decreasing the required overpotential. These results show that intermetallic Pd3Pb nanocubes are highly efficient for the 4-electron pathway of the ORR and could inspire the study of other shape-controlled intermetallics as catalysts for fuel cell applications.

5.
ACS Nano ; 13(4): 4008-4017, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30957486

RESUMEN

Pt catalysts are widely studied for the oxygen reduction reaction, but their cost and susceptibility to poisoning limit their use. A strategy to address both problems is to incorporate a second transition metal to form a bimetallic alloy; however, the durability of such catalysts can be hampered by leaching of non-noble metal components. Here, we show that random alloyed surfaces can be stabilized to achieve high durability by depositing the alloyed phase on top of intermetallic seeds using a model system with PdCu cores and PtCu shells. Specifically, random alloyed PtCu shells were deposited on PdCu seeds that were either the atomically random face-centered cubic phase (FCC A1, Fm3m) or the atomically ordered CsCl-like phase (B2, Pm3m). Precise control over crystallite size, particle shape, and composition allowed for comparison of these two core@shell PdCu@PtCu catalysts and the effects of the core phase on electrocatalytic durability. Indeed, the nanocatalyst with the intermetallic core saw only an 18% decrease in activity after stability testing (and minimal Cu leaching), whereas the nanocatalyst with the random alloy core saw a 58% decrease (and greater Cu leaching). The origin of this enhanced durability was probed by classical molecular dynamics simulations of model catalysts, with good agreement between model and experiment. Although many random alloy and intermetallic nanocatalysts have been evaluated, this study directly compares random alloy and intermetallic cores for electrocatalysis with the enhanced durability achieved with the intermetallic cores likely general to other core@shell nanocatalysts.

6.
Adv Mater ; : e1801563, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29984851

RESUMEN

As synthetic methods advance for metal nanoparticles, more rigorous studies of structure-function relationships can be made. Many electrocatalytic processes depend on the size, shape, and composition of the nanocatalysts. Here, the properties and electrocatalytic behavior of random alloyed and intermetallic nanoparticles are compared. Beginning with an introduction of metallic nanoparticles for catalysis and the unique features of bimetallic compositions, the discussion transitions to case studies of nanoscale electrocatalysts where direct comparisons of alloy and intermetallic compositions are undertaken for methanol electrooxidation, formic acid electrooxidation, the oxygen reduction reaction, and the electroreduction of carbon dioxide (CO2 ). Design and synthesis strategies for random alloyed and intermetallic nanoparticles are discussed, with an emphasis on Pt-M and Cu-M compositions as model systems. The differences in catalytic performance between alloys and intermetallic nanoparticles are highlighted in order to provide an outlook for future electrocatalyst design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA