Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.487
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(4): e2312556121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38227655

RESUMEN

Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease caused by the rodent-transmitted orthohantaviruses (HVs), with China possessing the most cases globally. The virus hosts in China are Apodemus agrarius and Rattus norvegicus, and the disease spread is strongly influenced by global climate dynamics. To assess and predict the spatiotemporal trends of HFRS from 2005 to 2098, we collected historical HFRS data in mainland China (2005-2020), historical and projected climate and population data (2005-2098), and spatial variables including biotic, environmental, topographical, and socioeconomic. Spatiotemporal predictions and mapping were conducted under 27 scenarios incorporating multiple integrated representative concentration pathway models and population scenarios. We identify the type of magistral HVs host species as the best spatial division, including four region categories. Seven extreme climate indices associated with temperature and precipitation have been pinpointed as key factors affecting the trends of HFRS. Our predictions indicate that annual HFRS cases will increase significantly in 62 of 356 cities in mainland China. Rattus regions are predicted to be the most active, surpassing Apodemus and Mixed regions. Eighty cities are identified as at severe risk level for HFRS, each with over 50 reported cases annually, including 22 new cities primarily located in East China and Rattus regions after 2020, while 6 others develop new risk. Our results suggest that the risk of HFRS will remain high through the end of this century, with Rattus norvegicus being the most active host, and that extreme climate indices are significant risk factors. Our findings can inform evidence-based policymaking regarding future risk of HFRS.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Ratas , Animales , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/etiología , Clima , Zoonosis , China/epidemiología , Murinae , Incidencia
2.
J Immunol ; 212(7): 1081-1093, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38380993

RESUMEN

Arthritis causes Fos-like 2 (Fosl2) inactivation, and various immune cells contribute to its pathogenesis. However, little is known about the role of Fosl2 in hematopoiesis and the possible pathological role of Fosl2 inactivation in the hematopoietic system in arthritis. In this study, we show that Fosl2 maintains hematopoietic stem cell (HSC) quiescence and differentiation while controlling the inflammatory response via macrophages. Fosl2-specific deletion in the hematopoietic system caused the expansion of HSCs and myeloid cell growth while affecting erythroid and B cell differentiation. Fosl2 inactivation enhanced macrophage M1 polarization and stimulated proinflammatory cytokines and myeloid growth factors, skewing HSCs toward myeloid cell differentiation, similar to hematopoietic alterations in arthritic mice. Loss of Fosl2 mediated by Vav-iCre also displays an unexpected deletion in embryonic erythro-myeloid progenitor-derived osteoclasts, leading to osteopetrosis and anemia. The reduced bone marrow cellularity in Vav-iCreFosl2f/f mice is a consequence of the reduced bone marrow space in osteopetrotic mice rather than a direct role of Fosl2 in hematopoiesis. Thus, Fosl2 is indispensable for erythro-myeloid progenitor-derived osteoclasts to maintain the medullary cavity to ensure normal hematopoiesis. These findings improve our understanding of the pathogenesis of bone-destructive diseases and provide important implications for developing therapeutic approaches for these diseases.


Asunto(s)
Antígeno 2 Relacionado con Fos , Células Madre Hematopoyéticas , Osteopetrosis , Animales , Ratones , Artritis/patología , Trastornos de Fallo de la Médula Ósea/patología , Diferenciación Celular , Hematopoyesis/genética , Osteopetrosis/genética , Osteopetrosis/patología , Antígeno 2 Relacionado con Fos/genética
3.
Proc Natl Acad Sci U S A ; 120(30): e2305187120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459543

RESUMEN

Genetic alterations are often acquired during prolonged propagation of pluripotent stem cells (PSCs). This ruins the stem cell quality and hampers their full applications. Understanding how PSCs maintain genomic integrity would provide the clues to overcome the hurdle. It has been known that embryonic stem cells (ESCs) utilize high-fidelity pathways to ensure genomic stability, but the underlying mechanisms remain largely elusive. Here, we show that many DNA damage response and repair genes display differential alternative splicing in mouse ESCs compared to differentiated cells. Particularly, Rev1 and Polq, two key genes for mutagenic translesion DNA synthesis (TLS) and microhomology-mediated end joining (MMEJ) repair pathways, respectively, display a significantly higher rate of cryptic exon (CE) inclusion in ESCs. The frequent CE inclusion disrupts the normal protein expressions of REV1 and POLθ, thereby suppressing the mutagenic TLS and MMEJ. Further, we identify an ESC-specific RNA binding protein DPPA5A which stimulates the CE inclusion in Rev1 and Polq. Depletion of DPPA5A in mouse ESCs decreased the CE inclusion of Rev1 and Polq, induced the protein expression, and stimulated the TLS and MMEJ activity. Enforced expression of DPPA5A in NIH3T3 cells displayed reverse effects. Mechanistically, we found that DPPA5A directly regulated CE splicing of Rev1. DPPA5A associates with U2 small nuclear ribonucleoprotein of the spliceosome and binds to the GA-rich motif in the CE of Rev1 to promote CE inclusion. Thus, our study uncovers a mechanism to suppress mutagenic TLS and MMEJ pathways in ESCs.


Asunto(s)
Mutágenos , Nucleotidiltransferasas , Animales , Ratones , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células 3T3 NIH , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ADN , Daño del ADN
4.
J Biol Chem ; 300(2): 105645, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218225

RESUMEN

Glutathione (GSH) is a highly abundant tripeptide thiol that performs diverse protective and biosynthetic functions in cells. While changes in GSH availability are associated with inborn errors of metabolism, cancer, and neurodegenerative disorders, studying the limiting role of GSH in physiology and disease has been challenging due to its tight regulation. To address this, we generated cell and mouse models that express a bifunctional glutathione-synthesizing enzyme from Streptococcus thermophilus (GshF), which possesses both glutamate-cysteine ligase and glutathione synthase activities. GshF expression allows efficient production of GSH in the cytosol and mitochondria and prevents cell death in response to GSH depletion, but not ferroptosis induction, indicating that GSH is not a limiting factor under lipid peroxidation. CRISPR screens using engineered enzymes further revealed genes required for cell proliferation under cellular and mitochondrial GSH depletion. Among these, we identified the glutamate-cysteine ligase modifier subunit, GCLM, as a requirement for cellular sensitivity to buthionine sulfoximine, a glutathione synthesis inhibitor. Finally, GshF expression in mice is embryonically lethal but sustains postnatal viability when restricted to adulthood. Overall, our work identifies a conditional mouse model to investigate the limiting role of GSH in physiology and disease.


Asunto(s)
Glutamato-Cisteína Ligasa , Glutatión , Animales , Ratones , Butionina Sulfoximina/farmacología , Modelos Animales de Enfermedad , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Línea Celular Tumoral , Humanos
5.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38221905

RESUMEN

BACKGROUND: Portal vein thrombosis (PVT) is a significant issue in cirrhotic patients, necessitating early detection. This study aims to develop a data-driven predictive model for PVT diagnosis in chronic hepatitis liver cirrhosis patients. METHODS: We employed data from a total of 816 chronic cirrhosis patients with PVT, divided into the Lanzhou cohort (n = 468) for training and the Jilin cohort (n = 348) for validation. This dataset encompassed a wide range of variables, including general characteristics, blood parameters, ultrasonography findings and cirrhosis grading. To build our predictive model, we employed a sophisticated stacking approach, which included Support Vector Machine (SVM), Naïve Bayes and Quadratic Discriminant Analysis (QDA). RESULTS: In the Lanzhou cohort, SVM and Naïve Bayes classifiers effectively classified PVT cases from non-PVT cases, among the top features of which seven were shared: Portal Velocity (PV), Prothrombin Time (PT), Portal Vein Diameter (PVD), Prothrombin Time Activity (PTA), Activated Partial Thromboplastin Time (APTT), age and Child-Pugh score (CPS). The QDA model, trained based on the seven shared features on the Lanzhou cohort and validated on the Jilin cohort, demonstrated significant differentiation between PVT and non-PVT cases (AUROC = 0.73 and AUROC = 0.86, respectively). Subsequently, comparative analysis showed that our QDA model outperformed several other machine learning methods. CONCLUSION: Our study presents a comprehensive data-driven model for PVT diagnosis in cirrhotic patients, enhancing clinical decision-making. The SVM-Naïve Bayes-QDA model offers a precise approach to managing PVT in this population.


Asunto(s)
Vena Porta , Trombosis de la Vena , Humanos , Vena Porta/patología , Factores de Riesgo , Teorema de Bayes , Medicina de Precisión , Cirrosis Hepática/complicaciones , Cirrosis Hepática/diagnóstico , Fibrosis , Trombosis de la Vena/complicaciones , Trombosis de la Vena/diagnóstico
6.
Immunity ; 44(5): 1162-76, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27156384

RESUMEN

Hemorrhagic stroke and brain microbleeds are caused by cerebrovascular ruptures. Fast repair of such ruptures is the most promising therapeutic approach. Due to a lack of high-resolution in vivo real-time studies, the dynamic cellular events involved in cerebrovascular repair remain unknown. Here, we have developed a cerebrovascular rupture system in zebrafish by using multi-photon laser, which generates a lesion with two endothelial ends. In vivo time-lapse imaging showed that a macrophage arrived at the lesion and extended filopodia or lamellipodia to physically adhere to both endothelial ends. This macrophage generated mechanical traction forces to pull the endothelial ends and facilitate their ligation, thus mediating the repair of the rupture. Both depolymerization of microfilaments and inhibition of phosphatidylinositide 3-kinase or Rac1 activity disrupted macrophage-endothelial adhesion and impaired cerebrovascular repair. Our study reveals a hitherto unexpected role for macrophages in mediating repair of cerebrovascular ruptures through direct physical adhesion and mechanical traction.


Asunto(s)
Aneurisma Roto/inmunología , Traumatismos Cerebrovasculares/inmunología , Endotelio Vascular/fisiología , Macrófagos/inmunología , Fenómenos Mecánicos , Remodelación Vascular , Pez Cebra/inmunología , Citoesqueleto de Actina/metabolismo , Animales , Adhesión Celular , Células Cultivadas , Fosfatidilinositol 3-Quinasas/metabolismo , Tracción , Cicatrización de Heridas , Proteína de Unión al GTP rac1/metabolismo
7.
Circ Res ; 133(7): 631-647, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37646156

RESUMEN

BACKGROUND: Efferocytosis is an activity of macrophages that is pivotal for the resolution of inflammation in hypertension. The precise mechanism by which macrophages coordinate efferocytosis and internalize apoptotic cardiomyocytes remains unknown. The aim of this study was to determine whether SIRT3 (sirtuin-3) is required for both apoptotic cardiomyocyte engulfment and anti-inflammatory responses during efferocytosis. METHODS: We generated myeloid SIRT3 knockout mice and FXN (frataxin) knock-in mice carrying an acetylation-defective lysine to arginine K189R mutation (FXNK189R). The mice were given Ang II (angiotensin II) infusion for 7 days. We analyzed cardiac macrophages' mitochondrial iron levels, efferocytosis activity, and phenotype both in vivo and in vitro. RESULTS: We showed that SIRT3 deficiency exacerbated Ang II-induced downregulation of the efferocytosis receptor MerTK (c-Mer tyrosine kinase) and proinflammatory cytokine production, accompanied by disrupted mitochondrial iron homeostasis in cardiac macrophages. Quantitative acetylome analysis revealed that SIRT3 deacetylated FXN at lysine 189. Ang II attenuated SIRT3 activity and enhanced the acetylation level of FXNK189. Acetylated FXN further reduced the synthesis of ISCs (iron-sulfur clusters), resulting in mitochondrial iron accumulation. Phagocytic internalization of apoptotic cardiomyocytes increased myoglobin content, and derived iron ions promoted mitochondrial iron overload and lipid peroxidation. An iron chelator deferoxamine improved the levels of MerTK and efferocytosis, thereby attenuating proinflammatory macrophage activation. FXNK189R mice showed improved macrophage efferocytosis, reduced cardiac inflammation, and suppressed cardiac fibrosis. CONCLUSIONS: The SIRT3-FXN axis has the potential to resolve cardiac inflammation by increasing macrophage efferocytosis and anti-inflammatory activities.


Asunto(s)
Miocitos Cardíacos , Sirtuina 3 , Animales , Ratones , Tirosina Quinasa c-Mer/genética , Lisina , Sirtuina 3/genética , Frataxina
8.
Exp Cell Res ; 442(2): 114235, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236989

RESUMEN

BACKGROUND & AIMS: Activation of hepatic stellate cells (HSCs) is the key process underlying liver fibrosis. Unveiling its molecular mechanism may provide an effective target for inhibiting liver fibrosis. Protein ubiquitination is a dynamic and reversible process. Deubiquitinases (DUBs) catalyze the removal of ubiquitin chains from substrate proteins, thereby inhibiting the biological processes regulated by ubiquitination signals. However, there are few studies revealing the role of deubiquitination in the activation of HSCs. METHODS & RESULTS: Single-cell RNA sequencing (scRNA-seq) revealed significantly decreased USP18 expression in activated HSCs when compared to quiescent HSCs. In mouse primary HSCs, continuous activation of HSCs led to a gradual decrease in USP18 expression whilst restoration of USP18 expression significantly inhibited HSC activation. Injection of USP18 lentivirus into the portal vein of a CCl4-induced liver fibrosis mouse model confirmed that overexpression of USP18 can significantly reduce the degree of liver fibrosis. In terms of mechanism, we screened some targets of USP18 in mouse primary HSCs and found that USP18 could directly bind to TAK1. Furthermore, we demonstrated that USP18 can inhibit TAK1 activity by interfering with the K63 ubiquitination of TAK1. CONCLUSIONS: Our study demonstrated that USP18 inhibited HSC activation and alleviated liver fibrosis via modulation of TAK1 activity; this may prove to be an effective target for inhibiting liver fibrosis.

9.
Cell Mol Life Sci ; 81(1): 241, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38806811

RESUMEN

Aspergillus ochraceus is the traditional ochratoxin A (OTA)-producing fungus with density-dependent behaviors, which is known as quorum sensing (QS) that is mediated by signaling molecules. Individual cells trend to adapt environmental changes in a "whole" flora through communications, allowing fungus to occupy an important ecological niche. Signals perception, transmission, and feedback are all rely on a signal network that constituted by membrane receptors and intracellular effectors. However, the interference of density information in signal transduction, which regulates most life activities of Aspergillus, have yet to be elucidated. Here we show that the G protein-coupled receptor (GPCR) to cAMP pathway is responsible for transmitting density information, and regulates the key point in life cycle of A. ochraceus. Firstly, the quorum sensing phenomenon of A. ochraceus is confirmed, and identified the density threshold is 103 spores/mL, which represents the low density that produces the most OTA in a series quorum density. Moreover, the GprC that classified as sugar sensor, and intracellular adenylate cyclase (AcyA)-cAMP-PKA pathway that in response to ligands glucose and HODEs are verified. Furthermore, GprC and AcyA regulate the primary metabolism as well as secondary metabolism, and further affects the growth of A. ochraceus during the entire life cycle. These studies highlight a crucial G protein signaling pathway for cell communication that is mediated by carbohydrate and oxylipins, and clarified a comprehensive effect of fungal development, which include the direct gene regulation and indirect substrate or energy supply. Our work revealed more signal molecules that mediated density information and connected effects on important adaptive behaviors of Aspergillus ochraceus, hoping to achieve comprehensive prevention and control of mycotoxin pollution from interrupting cell communication.


Asunto(s)
Aspergillus ochraceus , AMP Cíclico , Glucosa , Percepción de Quorum , Transducción de Señal , Aspergillus ochraceus/metabolismo , Aspergillus ochraceus/genética , Glucosa/metabolismo , AMP Cíclico/metabolismo , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ocratoxinas/metabolismo
10.
J Med Genet ; 61(6): 543-548, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38228392

RESUMEN

BACKGROUND: METHODS: The GRN mutations, especially of the loss of function type, are causative of frontotemporal dementia (FTD). However, several GRN variants can be found in other neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease. So far, there have been over 300 GRN mutations reported globally. However, the genetic spectrum and phenotypic characteristics have not been fully elucidated in Chinese population.The participants were from the dementia cohort of Peking Union Medical College Hospital (n=1945). They received history inquiry, cognitive evaluation, brain imaging and exome sequencing. The dementia subjects carrying the rare variants of the GRN were included in this study. Those with the pathogenic or likely pathogenic variants of other dementia-related genes were excluded. RESULTS: 14 subjects carried the rare variants of GRN. They were clinically diagnosed with behavioural variant of FTD (n=2), non-fluent/agrammatic variant primary progressive aphasia (PPA, n=3), semantic variant PPA (n=1), AD (n=6) and mixed dementia (n=2). 13 rare variants of GRN were found, including 6 novel variants (W49X, S226G, M152I, A91E, G79E and A303S). The most prevalent symptom was amnesia (85.7%, 12/14), followed by psychiatric and behavioural disorder (78.6%, 11/14). In terms of lobar atrophy, temporal atrophy/hypometabolism was the most common (85.7%, 12/14), followed by parietal atrophy/hypometabolism (78.6%, 11/14). CONCLUSION: The novel GRN variants identified in this study contribute to enrich the GRN mutation repertoire. There is phenotypic similarity and diversity among Chinese patients with the GRN mutations.


Asunto(s)
Demencia Frontotemporal , Estudios de Asociación Genética , Progranulinas , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pueblo Asiatico/genética , China/epidemiología , Estudios de Cohortes , Demencia/genética , Demencia/patología , Demencia/epidemiología , Pueblos del Este de Asia , Secuenciación del Exoma , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Progranulinas/genética
11.
Neuroimage ; 298: 120779, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39122059

RESUMEN

[18F]-Florbetazine ([18F]-92) is a selective PET tracer for ß-amyloid (Aß) depositions with a novel diaryl-azine scaffold to reduce lipophilicity and to achieve higher gray-to-white matter contrast. We aimed to assess its diagnostic value in Alzheimer's disease (AD) and pharmacokinetics characteristics in human subjects. METHODS: Six healthy controls (HCs) and nine AD patients underwent dynamic PET examination with [18F]-Florbetazine and a structural MRI scan. The time-activity-curves (TACs) for volumes of interest (VOIs) in cerebral cortex, cerebellar cortex and cerebral white matter was depicted and their standardized uptake value ratios (SUVRs) with cerebellar cortex as reference were compared between HCs and AD patients. The cerebral gray-to-white matter SUV ratio (GWR) was also calculated. RESULTS: In HCs, radioactivities in the cerebral cortex VOIs were homogeneously low and at the same level as in cerebellar cortex, while in AD patients, cortical VOIs expected to contain Aß exhibited high radioactivity. Cerebral cortex SUVRs remain relatively low in HCs while keep increasing along with time in AD patients. After 15 min, the cerebral cortex SUVRs became significant higher in AD patients compared to HCs with 100 % discrimination accuracy. In AD patients, GWR remained over 1.3 for all time intervals and visual inspection showed lower uptake in cerebral white matter compared to cerebral cortex. CONCLUSION: [18F]-Florbetazine PET showed high uptake on Aß plaques and high gray-to-white contrast in AD patients that are favorable in visual read. [18F]-Florbetazine can be potentially used for detection and quantification of Aß depositions in the living human brain.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Compuestos de Anilina , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Tomografía de Emisión de Positrones/métodos , Masculino , Anciano , Femenino , Péptidos beta-Amiloides/metabolismo , Compuestos de Anilina/farmacocinética , Radiofármacos/farmacocinética , Persona de Mediana Edad , Glicoles de Etileno/farmacocinética , Radioisótopos de Flúor/farmacocinética , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Anciano de 80 o más Años , Tetrabenazina/análogos & derivados
12.
Funct Integr Genomics ; 24(2): 53, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38453820

RESUMEN

Hepatocellular carcinoma (HCC) is one of the malignancies with the worst prognosis worldwide, in the occurrence and development of which glycolysis plays a central role. This study uncovered a mechanism by which ZNF692 regulates ALDOA-dependent glycolysis in HCC cells. RT-qPCR and western blotting were used to detect the expression of ZNF692, KAT5, and ALDOA in HCC cell lines and a normal liver cell line. The influences of transfection-induced alterations in the expression of ZNF692, KAT5, and ALDOA on the functions of HepG2 cells were detected by performing MTT, flow cytometry, Transwell, cell scratch, and colony formation assays, and the levels of glucose and lactate were determined using assay kits. ChIP and luciferase reporter assays were conducted to validate the binding of ZNF692 to the KAT5 promoter, and co-IP assays to detect the interaction between KAT5 and ALDOA and the acetylation of ALDOA. ZNF692, KAT5, and ALDOA were highly expressed in human HCC samples and cell lines, and their expression levels were positively correlated in HCC. ZNF692, ALDOA, or KAT5 knockdown inhibited glycolysis, proliferation, invasion, and migration and promoted apoptosis in HepG2 cells. ZNF692 bound to the KAT5 promoter and promoted its activity. ALDOA acetylation levels were elevated in HCC cell lines. KAT5 bound to ALDOA and catalyzed ALDOA acetylation. ALDOA or KAT5 overexpression in the same time of ZNF692 knockdown, compared to ZNF692 knockdown only, stimulated glycolysis, proliferation, invasion, and migration and reduced apoptosis in HepG2 cells. ZNF692 promotes the acetylation modification and protein expression of ALDOA by catalyzing KAT5 transcription, thereby accelerating glycolysis to drive HCC cell development.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Células Hep G2 , Glucólisis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo
13.
Hum Genet ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110251

RESUMEN

Any opacification of the lens can be defined as cataracts, and lens epithelium cells play a crucial role in guaranteeing lens transparency by maintaining its homeostasis. Although several causative genes of congenital cataracts have been reported, the mechanisms underlying lens opacity remain unclear. In this study, a large family with congenital cataracts was collected and genetic analysis revealed a pathological mutation (c.3857 C > T, p.T1287I) in the GBF1 gene; all affected individuals in the family carried this heterozygous mutation, while unaffected family members did not. Functional studies in human lens epithelium cell line revealed that this mutation led to a reduction in GBF1 protein levels. Knockdown of endogenous GBF1 activated XBP1s in the unfolded protein response signal pathway, and enhances autophagy in an mTOR-independent manner. Heterozygous Gbf1 knockout mice also displayed typic cataract phenotype. Together, our study identified GBF1 as a novel causative gene for congenital cataracts. Additionally, we found that GBF1 deficiency activates the unfolded protein response and leads to enhanced autophagy, which may contribute to lens opacity.

14.
J Cell Sci ; 135(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34859819

RESUMEN

Insulin signalling is tightly controlled by various factors, but the exact molecular mechanism remains incompletely understood. We have previously reported that phospholipase C-related but catalytically inactive protein (PRIP; used here to refer to both PRIP-1 and PRIP-2, also known as PLCL1 and PLCL2, respectively) interacts with Akt1, the central molecule in insulin signalling. Here, we investigated whether PRIP is involved in the regulation of insulin signalling in adipocytes. We found that insulin signalling, including insulin-stimulated phosphorylation of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1) and Akt, and glucose uptake were impaired in adipocytes from PRIP double-knockout (PRIP-KO) mice compared with those from wild-type (WT) mice. The amount of IR expressed on the cell surface was decreased in PRIP-KO adipocytes. Immunoprecipitation assays showed that PRIP interacted with IR. The reduced cell surface IR in PRIP-KO adipocytes was comparable with that in WT cells when Rab5 (Rab5a, -5b and -5c) expression was silenced using specific siRNA. In contrast, the dephosphorylation of IRS-1 at serine residues, some of which have been reported to be involved in the internalisation of IR, was impaired in cells from PRIP-KO mice. These results suggest that PRIP facilitates insulin signalling by modulating the internalisation of IR in adipocytes.


Asunto(s)
Insulina , Fosfolipasas de Tipo C , Adipocitos , Animales , Proteínas Sustrato del Receptor de Insulina/genética , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Fosforilación , Transducción de Señal
15.
Radiology ; 312(2): e233377, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39162633

RESUMEN

Background Attenuation coefficient (AC) and shear-wave speed (SWS) are established US markers for assessing patients with metabolic dysfunction-associated steatotic liver disease (MASLD), while shear-wave dispersion slope (DS) is not. Purpose To assess the relationship between the multiparametric US imaging markers DS, AC, and SWS and liver histopathologic necroinflammation in patients with MASLD. Materials and Methods This international multicenter prospective study enrolled consecutive patients with biopsy-proven MASLD between June 2019 and March 2023. Before biopsy, all participants underwent multiparametric US, and measurements of DS, AC, and SWS were obtained. Multivariable linear regression analyses were performed to assess the association of clinical variables and imaging markers with pathologic findings. The diagnostic performance of imaging markers for determining inflammation grade, steatosis grade, and fibrosis stage was assessed using the area under the receiver operating characteristic curve (AUC). Results A total of 124 participants (mean age, 53 years ± 15 [SD]; 62 males) were evaluated. In multivariable regression, lobular inflammation was associated with DS (regression coefficient, 0.06; P = .02), alanine aminotransferase level (regression coefficient, 0.002; P = .002), and Hispanic or Latino ethnicity (regression coefficient, -0.68; P = .047), while steatosis was associated with AC (regression coefficient, 3.66; P < .001) and fibrosis was associated with SWS (regression coefficient, 2.02; P < .001) and body mass index (regression coefficient, 0.05; P = .02). DS achieved an AUC of 0.72 (95% CI: 0.63, 0.82) for identifying participants with inflammation grade A2 or higher (moderate to severe inflammation). AC showed excellent performance for identifying participants with grade S1 (mild) or higher steatosis (AUC, 0.92 [95% CI: 0.87, 0.97]), while SWS showed excellent performance for identifying participants with fibrosis stage F2 or higher (clinically significant fibrosis) (AUC, 0.91 [95% CI: 0.86, 0.96]). Of the three US markers, SWS showed the highest AUC (0.81 [95% CI: 0.74, 0.89]) for the diagnosis of metabolic dysfunction-associated steatohepatitis. Conclusion Of the three US imaging markers (DS, AC, and SWS), DS was most associated with lobular inflammation grade at histologic examination and demonstrated fair diagnostic performance in distinguishing moderate to severe lobular inflammation. ClinicalTrials.gov Identifier: NCT04012242 Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Yin in this issue.


Asunto(s)
Hígado Graso , Cirrosis Hepática , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Cirrosis Hepática/diagnóstico por imagen , Hígado Graso/diagnóstico por imagen , Hígado Graso/complicaciones , Ultrasonografía/métodos , Adulto , Hígado/diagnóstico por imagen , Hígado/patología , Anciano , Inflamación/diagnóstico por imagen , Biomarcadores/sangre
16.
Small ; 20(4): e2305918, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37702143

RESUMEN

The semiconductor industry occupies a crucial position in the fields of integrated circuits, energy, and communication systems. Effective mass (mE ), which is closely related to electron transition, thermal excitation, and carrier mobility, is a key performance indicator of semiconductor. However, the highly neglected mE is onerous to measure experimentally, which seriously hinders the evaluation of semiconductor properties and the understanding of the carrier migration mechanisms. Here, a chemically explainable effective mass predictive platform (CEEM) is constructed by deep learning, to identify n-type and p-type semiconductors with low mE . Based on the graph network, a versatile explainable network is innovatively designed that enables CEEM to efficiently predict the mE of any structure, with the area under the curve of 0.904 for n-type semiconductors and 0.896 for p-type semiconductors, and derive the most relevant chemical factors. Using CEEM, the currently largest mE database is built that contains 126 335 entries and screens out 466 semiconductors with low mE for transparent conductive materials, photovoltaic materials, and water-splitting materials. Moreover, a user-friendly and interactive CEEM web is provided that supports query, prediction, and explanation of mE . CEEM's high efficiency, accuracy, flexibility, and explainability open up new avenues for the discovery and design of high-performance semiconductors.

17.
Small ; : e2404171, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185810

RESUMEN

All-solid-state lithium sulfide-based batteries (ASSLSBs) have drawn much attention due to their intrinsic safety and excellent performance in overcoming the polysulfide shuttle effect. However, the sluggish kinetics of Li2S cathode severely impede commercial utilization. Here, a Cu+, I- co-doping strategy is employed to activate the kinetics of Li2S to construct high-performance ASSLSBs. The electronic conductivity and Li-ion diffusion coefficient of the co-doped Li2S are increased by five and two orders of magnitude, respectively. Cu+ as a redox medium greatly improves the reaction kinetics, which is supported by ex situ X-ray photoelectron spectroscopy. Density functional theory calculation (DFT) shows that Cu+, I- co-doping reduces the Li-ions diffusion energy barrier. The co-doped Li2S exhibits a remarkable improvement in capacity (1165.23 mAh g-1 (6.65 times that of pristine Li2S) at 0.02 C and 592.75 mAh g-1 at 2 C), and excellent cycling stability (84.58% capacity retention after 6200 cycles at 2 C) at room temperature. Moreover, an ASSLSB, fabricated with a lithium-free (Si─C) anode, obtains a high specific capacity of 1082.7 mAh g-1 at 0.05 C and 97% capacity retention after 400 cycles at 0.5 C. This work provides a broad prospect for the development of ASSLSBs with practical energy density exceeding that of traditional lithium-ion batteries.

18.
Small ; 20(23): e2309366, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38150620

RESUMEN

Nanocatalytic-based wound therapeutics present a promising strategy for generating reactive oxygen species (ROS) to antipathogen to promote wound healing. However, the full clinical potential of these nanocatalysts is limited by their low reactivity, limited targeting ability, and poor biodegradability in the wound microenvironment. Herein, a bio-organic nanozyme is developed by encapsulating a FeZn-based bimetallic organic framework (MOF) (MIL-88B-Fe/Zn) in platelet membranes (PM@MIL-88B-Fe/Zn) for antimicrobial activity during wound healing. The introduction of Zn in MIL-88B-Fe/Zn modulates the electronic structure of Fe thus accelerating the catalytic kinetics of its peroxidase-like activity to catalytically generate powerful ROS. The platelet membrane coating of MOF innovatively enhanced the interaction between nanoparticles and the biological environment, further developing bacterial-targeted therapy with excellent antibacterial activity against both gram-positive and gram-negative bacteria. Furthermore, this nanozyme markedly suppressed the levels of inflammatory cytokines and promoted angiogenesis in vivo to effectively treat skin surface wounds and accelerate wound healing. PM@MIL-88B-Fe/Zn exhibited superior biodegradability, favourable metabolism and non-toxic accumulation, eliminating concerns regarding side effects from long-term exposure. The high catalytic reactivity, excellent targeting features, and biodegradability of these nanoenzymes developed in this study provide useful insights into the design and synthesis of nanocatalysts/nanozymes for practical biomedical applications.


Asunto(s)
Antibacterianos , Estructuras Metalorgánicas , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Animales , Cicatrización de Heridas/efectos de los fármacos , Plaquetas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Humanos
19.
Small ; : e2404711, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150087

RESUMEN

Aluminum Scandium Nitride (Al1-xScxN) has received attention for its exceptional ferroelectric properties, whereas the fundamental mechanism determining its dynamic response and reliability remains elusive. In this work, an unreported nucleation-based polarization switching mechanism in Al0.7Sc0.3N (AlScN) is unveiled, driven by its intrinsic ferroelectricity rooted in the ionic displacement. Fast polarization switching, characterized by a remarkably low characteristic time of 0.00183 ps, is captured, and effectively simulated using a nucleation-limited switching (NLS) model, where the profound effect of defects on the nucleation and domain propagation is systematically studied. These findings are further integrated into Monte Carlo simulations to unravel the influence of the activation energy for ferroelectric switching on the distributions of switching thresholds. The long-term reliability of devices is also confirmed by time-dependent dielectric breakdown (TDDB) measurements, and the effect of thickness scaling is discussed. Ferroelectric field-effect transistors (FeFETs) are demonstrated through the integration of AlScN and 2D MoS2 channel, where biological synaptic functions can be emulated with optimized operation voltage. The artificial neural network built from AlScN-based FeFETs achieves 93.8% recognition accuracy of handwritten digits, demonstrating the potential of ferroelectric AlScN in future neuromorphic computing applications.

20.
Biol Reprod ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38320203

RESUMEN

Accumulating evidence indicates that paternally-derived miRNAs play a crucial role in the development of early embryos and are regarded as the key factor in the successful development of somatic cell cloned embryos. In our previous study, bta-miR-301a was found to be highly expressed in bovine sperm, and was delivered into oocytes during fertilization. In this study, bioinformatics, dual luciferase reporter assays, rescue experiments and gain- and loss-of-function experiments indicated that ACVR1 is the target gene of bta-miR-301a in early bovine embryos. By microinjecting bta-miR-301a mimic into embryos of parthenogenetic or somatic cell nuclear transfer, we observed that bta-miR-301a prolonged the first cleavage time of the embryos and increased the blastocyst formation rate. Thus, this study provides preliminary evidence that bta-miR-301a influences remodeling of the microfilament skeleton, prolongs the first cleavage time, and improves the developmental competence of embryos by negatively regulating ACVR1 translation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA