Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 715: 149999, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678787

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition and metabolic disorder, has emerged as a significant health issue worldwide. D-mannose, a natural monosaccharide widely existing in plants and animals, has demonstrated metabolic regulatory properties. However, the effect and mechanism by which D-mannose may counteract NAFLD have not been studied. In this study, network pharmacology followed by molecular docking analysis was utilized to identify potential targets of mannose against NAFLD, and the leptin receptor-deficient, genetically obese db/db mice was employed as an animal model of NAFLD to validate the regulation of D-mannose on core targets. As a result, 67 targets of mannose are predicted associated with NAFLD, which are surprisingly centered on the mechanistic target of rapamycin (mTOR). Further analyses suggest that mTOR signaling is functionally enriched in potential targets of mannose treating NAFLD, and that mannose putatively binds to mTOR as a core mechanism. Expectedly, repeated oral gavage of supraphysiological D-mannose ameliorates liver steatosis of db/db mice, which is based on suppression of hepatic mTOR signaling. Moreover, daily D-mannose administration reduced hepatic expression of lipogenic regulatory genes in counteracting NAFLD. Together, these findings reveal D-mannose as an effective and potential NAFLD therapeutic through mTOR suppression, which holds translational promise.


Asunto(s)
Manosa , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico , Serina-Treonina Quinasas TOR , Animales , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Manosa/farmacología , Manosa/metabolismo , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
2.
J Craniofac Surg ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968026

RESUMEN

OBJECTIVE: Cephalic Index (CI), the ratio of head width to length, is one of the indexes reflecting cranial morphological characteristics. Current norms were established by European and American countries. The purpose of the study was to study anthropometry of cranial parameters using computed tomography scans to establish the CI of the sampled Chinese Children. METHODS: The cross-sectional study was carried out on patients of age younger than 14 years old at Shanghai Children's Medical Center. The measurement of maximum cranial breadth and maximum cranial length were taken on a computed tomography scan machine and recorded for analysis. Cephalic Index was calculated for each age and sex group and compared with previously established norms. RESULTS: Five hundred eighteen patients met the inclusion criteria, including 301 males and 217 females. The means for boys and girls were 87.1 (SD: 4.3) and 85.8 (SD: 4.3), respectively. There was a significant difference between boys and girls (P < 0.01). Cephalic Index in different ages and on applying the 1-way analysis of variance association was statistically insignificant (P = 0.19). CONCLUSIONS: Chinese head shape was brachycephalic. A statistically significant correlation was seen between the CI and sex, while not age.

3.
BMC Genomics ; 24(1): 25, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36647018

RESUMEN

BACKGROUND: Apostichopus japonicus is an economically important species in the global aquaculture industry. Russian A. japonicus, mainly harvested in the Vladivostok region, exhibits significant phenotypic differentiation, including in many economically important traits, compared with Chinese A. japonicus owing to differences in their habitat. However, both the genetic basis for the phenotypic divergence and the population genetic structure of Russian and Chinese A. japonicus are unknown. RESULT: In this study, 210 individuals from seven Russian and Chinese A. japonicus populations were sampled for whole-genome resequencing. The genetic structure analysis differentiated the Russian and Chinese A. japonicus into two groups. Population genetic analyses indicated that the Russian population showed a high degree of allelic linkage and had undergone stronger positive selection compared with the Chinese populations. Gene ontology terms enriched among candidate genes with group selection analysis were mainly involved in immunity, such as inflammatory response, antimicrobial peptides, humoral immunity, and apoptosis. Genome-wide association analysis yielded eight single-nucleotide polymorphism loci significantly associated with parapodium number, and these loci are located in regions with a high degree of genomic differentiation between the Chinese and Russia populations. These SNPs were associated with five genes. Gene expression validation revealed that three of these genes were significantly differentially expressed in individuals differing in parapodium number. AJAP08772 and AJAP08773 may directly affect parapodium production by promoting endothelial cell proliferation and metabolism, whereas AJAP07248 indirectly affects parapodium production by participating in immune responses. CONCLUSIONS: This study, we performed population genetic structure and GWAS analysis on Chinese and Russian A. japonicus, and found three candidate genes related to the number of parapodium. The results provide an in-depth understanding of the differences in the genetic structure of A. japonicus populations in China and Russia, and provide important information for subsequent genetic analysis and breeding of this species.


Asunto(s)
Stichopus , Animales , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Stichopus/genética , Genoma de Planta
4.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37811651

RESUMEN

Probiotics are not only a food supplement, but they have shown great potential in their nutritional, health and therapeutic effects. To maximize the beneficial effects of probiotics, it is commonly achieved by adding prebiotics. Prebiotics primarily comprise indigestible carbohydrates, specific peptides, proteins, and lipids, with oligosaccharides being the most extensively studied prebiotics. However, these rapidly fermenting oligosaccharides have many drawbacks and can cause diarrhea and flatulence in the body. Hence, the exploration of new prebiotic is of great interest. Besides oligosaccharides, protein hydrolysates have been demonstrated to enhance the expression of beneficial properties of probiotics. Consequently, this paper outlines the mechanism underlying the action of protein hydrolysates on probiotics, as well as the advantageous impacts of proteins hydrolysates derived from various food sources on probiotics. In addition, this paper also reviews the currently reported biological activities of protein hydrolysates. The aim is a theoretical basis for the development and implementation of novel prebiotics.

5.
Mediators Inflamm ; 2022: 2185198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032780

RESUMEN

Menopause is accompanied with an increased risk of cardiovascular disease. DNA methylation may have a significant impact on postmenopausal women's development of coronary heart disease. DNA methylation alterations in peripheral blood mononuclear cells (PBMCs) from women with coronary heart disease and healthy controls were detected using the Illumina Infinium MethylationEPIC BeadChip platform in this work. We employed Sangerbox technology and the GO and KEGG databases to further study the pathogenesis of coronary heart disease in postmenopausal women. After that, we used functional epigenetic module analysis and Cytoscape to remove the hub genes from the protein-protein interaction networks. Five genes (FOXA2, PTRD, CREB1, CTNAP2, and FBN2) were the hub genes. Lipid accumulation, endothelial cell failure, inflammatory responses, monocyte recruitment and aggregation, and other critical biological processes were all influenced by these genes. Finally, we employed methylation-specific PCR to demonstrate that FOXA2 was methylated at a high level in postmenopausal women with coronary heart disease. To better understand coronary heart disease in postmenopausal women's molecular mechanisms, our study examine the major factors contributing to the state of DNA methylation modification, which will help discover novel diagnostic tools and treatment options.


Asunto(s)
Enfermedad Coronaria , Leucocitos Mononucleares , ADN , Metilación de ADN , Epigénesis Genética , Femenino , Humanos , Posmenopausia
6.
J Dairy Sci ; 104(8): 8517-8529, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33896635

RESUMEN

Escherichia coli O157:H7 (E. coli O157:H7), one of the most widespread foodborne pathogens, can cause a series of diseases and even lead to death. In this study, a highly sensitive method was developed by combining aptamer-exonuclease III (Exo III)-assisted amplification with lateral flow assay (LFA) based on gold nanoparticles (AuNP). The compound of single-stranded (ss) DNA-anti-E. coli O157:H7 aptamer (ssDNA-aptamer) was formed by hybridization between designed target ssDNA and aptamer. When E. coli O157:H7 was present, target bacteria were bound with the aptamer, and the free target ssDNA was hybridized with the probes of the designed hairpin (HP) structure. Exo III digests the 3' double-stranded blunt end of the complex and releases the enzyme product. Because the remaining sequence of the HP of the designed enzyme product was the same as the target ssDNA sequence, the target ssDNA could be amplified. Finally, the enhanced target ssDNA was combined with AuNP-LFA to achieve visual detection of E. coli O157:H7. The quantitative ability of this platform for E. coli O157:H7 was 7.6 × 101 cfu/mL in pure culture, and the detection limit in milk was 8.35 × 102 cfu/mL. This LFA was highly specific to E. coli O157:H7, and the time for detection of E. coli O157:H7 in milk was 4 h. Hence, this system has important application prospects in the detection of pathogenic bacteria in dairy products.


Asunto(s)
Escherichia coli O157 , Nanopartículas del Metal , Animales , Exodesoxirribonucleasas , Microbiología de Alimentos , Oro , Leche
7.
Pediatr Neurosurg ; 56(5): 416-423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34352798

RESUMEN

OBJECTIVE: This study aims to assess the impact of early diagnosis and surgery on children with congenital dermal sinus, investigate the relationship between MRI findings and extent of surgical exploration, and summarize our clinical experience with the surgical management in cases with central nervous system (CNS) infection. METHODS: The skin features, preoperative MRI images, intraoperative findings, postoperative pathological characteristics, and prognoses of 56 children with congenital dermal sinus were analyzed retrospectively. RESULTS: All the children had a pinpoint ostium in the skin, and 52 out of the 56 children (92.9%) had intraspinal dermoid cysts or epidermoid cysts. Before surgery, MRI did not show intraspinal lesions in 13 children, and surgery revealed intradural lesions in 9 of these children (69.2%). Among 46 children without CNS infection, 16 children had neurological impairment before surgery. After surgery, recovery was complete in 36 children, partial in 9 children, and absent in 3 children. All children with CNS infection had neurological impairment before surgery. After surgery, the condition improved in 8 children and exacerbated in 2 children. Children without CNS infection had statistically significantly better prognosis than children with CNS infection (p = 0.03). CONCLUSION: A pinpoint ostium in the dorsal midline is the characteristic feature of congenital dermal sinus. In cases without intraspinal lesions on MRI, the spinal canal should be explored intraoperatively to ensure complete removal of the lesion and prevent recurrences. In cases without CNS infection, early diagnosis and timely surgery are beneficial to the recovery of nerve function.


Asunto(s)
Quiste Dermoide , Quiste Epidérmico , Espina Bífida Oculta , Niño , Quiste Dermoide/diagnóstico por imagen , Quiste Dermoide/cirugía , Humanos , Imagen por Resonancia Magnética , Recurrencia Local de Neoplasia , Estudios Retrospectivos , Espina Bífida Oculta/diagnóstico por imagen , Espina Bífida Oculta/cirugía
8.
Curr Genet ; 66(1): 141-153, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31256233

RESUMEN

Reversible phosphorylation of proteins regulated by protein kinases and phosphatases mediate multiple biological events in eukaryotes. In this study, a dual-specificity cell division cycle 14 phosphatase, MaCdc14, was functionally characterized in Metarhizium acridum. Deletion of MaCdc14 decreased branch numbers, affected septum formation and resulted in multiple nuclei in each hyphal compartment, indicating nuclear division and cytokinesis defects. The spore production capacity was severely impaired with decreased conidial yield and delayed conidiation in MaCdc14-deletion mutant (ΔMaCdc14). The transcription levels of conidiation-related genes were significantly changed after MaCdc14 inactivation. The morphology of conidia was uneven in size and the germination rate of conidia was increased in ΔMaCdc14. In addition, ΔMaCdc14 displayed significantly enhanced conidial tolerance to ultraviolet (UV) irradiation but had no significant effect on the thermotolerance, the sensitivities to cell wall damage reagents, osmotic and oxidative stresses, and virulence compared to the wild-type strain and complementary transformant. Furthermore, the pigmentation of ΔMaCdc14 was increased by the upregulated expression of melanin synthesis-related genes, which may result in the enhanced UV-B tolerance of ΔMaCdc14. In summary, MaCdc14 negatively regulated UV-B tolerance by mediating the transcription of melanin synthesis-related genes, contributed to conidiation by regulating the expression levels of conidiation-related genes and also played important roles in cytokinesis and morphogenesis in Metarhizium acridum.


Asunto(s)
Proteínas de Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Melaninas/biosíntesis , Metarhizium/fisiología , Metarhizium/efectos de la radiación , Proteínas Tirosina Fosfatasas/genética , Rayos Ultravioleta , Adaptación Biológica , Proteínas de Ciclo Celular/metabolismo , Citocinesis/genética , Mutación , Filogenia , Proteínas Tirosina Fosfatasas/metabolismo , Esporas Fúngicas , Estrés Fisiológico , Virulencia
9.
Appl Microbiol Biotechnol ; 103(5): 2251-2262, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30631896

RESUMEN

Conidiation capacity and conidial quality are very important for the production and application of mycopesticides. Most filamentous ascomycetous fungi have two distinct patterns of conidiation. Conidiation through microcycle conidiation proceeds to more rapidly achieve a maximum of conidial yield than normal conidiation and hence is of greater merit for exploitation in mass production of fungal insect pathogens, such as Metarhizium acridum. In this study, the mechanism underlying the conidiation pattern shift in M. acridum was explored by characterization of the fungal homeobox gene MaH1. MaH1 was evidently localized to the nuclei of hyphae and transcriptionally expressed at a maximal level when conidiation began. Intriguingly, deletion of MaH1 in M. acridum resulted in a shift of normal conidiation to microcycle conidiation on one-quarter strength Sabouraud's dextrose agar medium, and hence accelerated conidiation and increased conidial yield. In the deletion mutant, moreover, conidia became larger in size and hyphae cells were shorter in length while conidial virulence and stress tolerance were not altered. As revealed by digital gene expression profiling, MaH1 controlled the shift of conidiation patterns by mediating transcription of a set of genes related to hyphal growth, cell differentiation, conidiation, and some important signaling pathways. These findings indicate that MaH1 and its downstream genes can be exploited to increase the conidial yield for more efficient production of mycopesticides.


Asunto(s)
Agentes de Control Biológico/metabolismo , Genes Homeobox/genética , Insectos/microbiología , Metarhizium/genética , Metarhizium/metabolismo , Control Biológico de Vectores/métodos , Esporas Fúngicas/crecimiento & desarrollo , Secuencia de Aminoácidos/genética , Animales , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/genética , Hifa/crecimiento & desarrollo , Insecticidas/farmacología , Esporas Fúngicas/genética
10.
Cancer Innov ; 3(2): e107, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38946929

RESUMEN

SRY-box transcription factor 30 (SOX30) participates in tumor cell apoptosis in lung cancer. The occurrence of somatic SOX30 mutations, the expression signature of SOX30 in normal and cancer tissues, the correlation of SOX30 with immune cells and immune-related genes, and the clinical significance of SOX30 in various cancers have stimulated interest in SOX30 as a potential cancer biomarker. SOX30 influences drug sensitivity and tumor immunity in specific cancer types. In this review, we have comprehensively summarized the latest research on the role of SOX30 in cancer by combining bioinformatics evidence and a literature review. We summarize recent research on SOX30 in cancer regarding somatic mutations, trials, transcriptome analysis, clinical information, and SOX30-mediated regulation of malignant phenotypes. Additionally, we report on the diagnostic value of SOX30 mRNA expression levels across different cancer types. This review on the role of SOX30 in cancer progression may provide insights into possible research directions for SOX30 in cancer and a theoretical basis for guiding future studies.

11.
Heliyon ; 10(12): e32321, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38948036

RESUMEN

As an abundant marine bioresource, tunicates could be exploited in the food industry. However, limited knowledge of their chemical composition and nutritional profiles prohibited further application. In this study, two common edible tunicate species, Halocynthia roretzi (HR) and Halocynthia aurantium (HA), were subjected to comprehensive composition analysis in terms of moisture, protein, lipids, cellulose, ash, amino acids, fatty acids, non-cellulose carbohydrates and minerals. Reddish HR was much bigger than purple HA with respect to body length and weight, and their moisture fell within 82.98 %-90.92 %. The non-edible outer shell part (OS) and edible internal organs part (IO) had a dry weight ratio of around 3:2 for both two species. Generally, for both HR and HA, IO was more abundant in protein and lipids. In contrast, OS had much higher cellulose contents, confirming the better suitability of IO as a nutritional seafood. IO was richer in essential amino acids and unsaturated fatty acids, while OS had more abundant saturated fatty acids. The detected non-cellulose monosugars ranged from 0.47 % to 1.18 % and indicated the presence of some sulfated glycans. IO of HR had higher contents of essential minerals, such as Cu, Zn, and Fe, while IO of HA showed a higher K content. To sum up, this study identified the chemical composition and nutritional profile variations among different tunicate species and various dissected parts, guiding the development of specific strategies to exploit tunicates for proper food applications.

12.
Br J Pharmacol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961617

RESUMEN

ß-arrestin2, a member of the arrestin family, mediates the desensitization and internalization of most G protein-coupled receptors (GPCRs) and functions as a scaffold protein in signalling pathways. Previous studies have demonstrated that ß-arrestin2 expression is dysregulated in malignant tumours, fibrotic diseases, cardiovascular diseases and metabolic diseases, suggesting its pathological roles. Transcription and post-transcriptional modifications can affect the expression of ß-arrestin2. Furthermore, post-translational modifications, such as phosphorylation, ubiquitination, SUMOylation and S-nitrosylation affect the cellular localization of ß-arrestin2 and its interaction with downstream signalling molecules, which further regulate the activity of ß-arrestin2. This review summarizes the structure and function of ß-arrestin2 and reveals the mechanisms involved in the regulation of ß-arrestin2 at multiple levels. Additionally, recent studies on the role of ß-arrestin2 in some major diseases and its therapeutic prospects have been discussed to provide a reference for the development of drugs targeting ß-arrestin2.

13.
Dalton Trans ; 52(35): 12360-12367, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37593791

RESUMEN

It is crucial to develop cost-effective novel non-noble metal catalysts with high activity and durability for large-scale industrial hydrogen production via water splitting. Here, based on a facile powder metallurgy method, Ni3Fe intermetallic electrodes with porous structures and controllable phases have been designed and fabricated by sintering mixed Ni and Fe powders under an Ar atmosphere. The effects of sintering temperature on the morphology, porous structure and phase composition of the intermetallic were studied. The resultant Ni3Fe-900 intermetallic electrode exhibits promising HER activity in alkaline electrolytes with an overpotential of 112 mV to drive a current density of 10 mA cm-2. Additionally, the Ni3Fe-900 intermetallic electrode shows good alkali corrosion resistance and stability in the HER process at a current density as high as 500 mA cm-2 for 24 h with no significant changes of the surface morphology, porous structure and phases. The efficient HER performance of the Ni3Fe-900 electrode is attributed to the unique intrinsic activity of the intermetallic electrode, increased accessible active sites originating from the porous structure and accelerated charge transfer. This work provides new insights into the design of electrocatalysts for industrial large-scale hydrogen production by water splitting.

14.
Foods ; 12(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37835337

RESUMEN

Tunicates are widely distributed worldwide and are recognized as abundant marine bioresources with many potential applications. In this review, state-of-the-art studies on chemical composition analyses of various tunicate species were summarized; these studies confirmed that tunicates contain nutrients similar to fish (such as abundant cellulose, protein, and ω-3 fatty acid (FA)-rich lipids), indicating their practical and feasible uses for food or animal feed exploration. However, the presence of certain toxic elements should be evaluated in terms of safety. Moreover, recent studies on bioactive substances extracted from tunicates (such as toxins, sphingomyelins, and tunichromes) were analyzed, and their biological properties were comprehensively reviewed, including antimicrobial, anticancer, antioxidant, antidiabetic, and anti-inflammatory activities. In addition, some insights and prospects for the future exploration of tunicates are provided which are expected to guide their further application in the food, animal feed, and pharmaceutical industries. This review is critical to providing a new pathway for converting the common pollution issues of hydroponic nutrients into valuable marine bioresources.

15.
Food Chem ; 407: 135157, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36529012

RESUMEN

Surimi products have unsatisfactory gel properties. Hence, this study evaluates the effect of collagen-adding on surimi gel properties and provides the first observation results regarding collagen type influence. With higher water solubility and more charged amino acids than type II, collagen type I intertwines with surimi myofibrillar proteins better to induce higher exposure of protein functional domains, more sufficient conformational changes of myosin and greater formation of chemical forces among proteins. These enhancements accelerate the gelation rate, leading to a well-stabilized surimi gel. The collagen I-containing surimi gels show more compact structures with uniformly distributed smaller pores than those containing collagen II, thereby providing the final products with higher water holding capacity and better textural profiles. As such, the surimi gel fortification performance of collagen I and the well-elucidated collagen-myofibrillar protein interaction mechanism will guide the further exploitation of collagen as an effective additive in the food industry.


Asunto(s)
Proteínas de Peces , Manipulación de Alimentos , Manipulación de Alimentos/métodos , Proteínas de Peces/química , Productos Pesqueros/análisis , Geles/química , Colágeno , Agua
16.
Front Immunol ; 14: 1074242, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122728

RESUMEN

Breast cancer (BC) is the most common malignant tumor in women worldwide. Emerging evidence indicates the significance of fatty acid metabolism in BC. Fatty acid desaturase (FADS) is closely associated with cancer occurrence and development. Here, bioinformatic analysis and experimental validation were applied to investigate the potential functions of FADS in BC. Several public databases, including TCGA, GEO, HPA, Kaplan-Meier plotter, STRING, DAVID, cBioPortal, TIMER, TRRUST, and LinkedOmics were used to determine mRNA/protein expression levels, prognostic significance, functional enrichment, genetic alterations, association with tumor-infiltrating immune cells, and related transcription factors and kinases. BC tissues showed higher and lower mRNA expression of FADS2/6/8 and FADS3/4/5, respectively. FADS1/2/6 and FADS3/4/5 showed higher and lower protein expression levels, respectively, in BC tissues. Moreover, FADS1/7 up- and FADS3/8 down-regulation predicted poor overall and recurrence-free survival, while FADS2/5 up- and FADS4 down-regulation were associated with poor recurrence-free survival. Receiver operating characteristic curves revealed that FADS2/3/4/8 were indicative diagnostic markers. FADS family members showing differential expression levels were associated with various clinical subtypes, clinical stages, lymph node metastasis status, copy number variants, DNA methylation, and miRNA regulation in BC. The mRNA expression level of FADS1/2/3/4/5/7/8 was observed to be significantly negatively correlated with DNA methylation. FADS1/2 upregulation was significantly correlated with clinical stages. FADS1/4 expression was obviously lower in BC patients with higher lymph node metastasis than lower lymph node metastasis, while FADS7/8 expression was obviously higher in BC patients with higher lymph node metastasis than lower lymph node metastasis. FADS family members showed varying degrees of genetic alterations, and Gene Ontology and KEGG pathway enrichment analyses suggested their involvement in lipid metabolism. Their expression level was correlated with immune cell infiltration levels. FADS2 was chosen for further validation analyses. We found FADS2 to be significantly over-expressed in clinical BC tissue samples. The proliferation, migration, and invasion abilities of MDA-MB-231 and BT474 cells were significantly reduced after FADS2 knockdown. Furthermore, FADS2 may promote the occurrence and development of BC cells via regulating the epithelial-mesenchymal transition (EMT) pathway. Altogether, our results suggest that FADS1/2/3/4 can serve as potential therapeutic targets, prognostic indicators, and diagnostic markers in patients with BC.


Asunto(s)
Neoplasias de la Mama , Ácido Graso Desaturasas , Humanos , Femenino , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Neoplasias de la Mama/genética , Metástasis Linfática , Biología Computacional , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Front Immunol ; 14: 1264206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152394

RESUMEN

Introduction: Breast cancer is a common malignant tumor associated with high morbidity and mortality. The role of ferroptosis, a regulated form of cell death, in breast cancer development and prognosis remains unclear. This study aims to investigate the relationship between ferroptosis-related genes and breast cancer and develop a prognostic model. Methods: RNA-seq expression datasets and clinical samples of breast cancer patients were obtained from public databases. Immunity- and drug resistance-related data were integrated. A preliminary screening was performed, resulting in the identification of 73 candidate ferroptosis factors. Univariate Cox regression analysis was conducted to select 12 genes, followed by LASSO Cox regression analysis to construct a prognostic risk prediction model consisting of 10 ferroptosis-related genes. The model was further characterized by immune cell infiltration. The expression levels of ferroptosis-related genes were validated in human breast cancer cell lines, and immunohistochemical (IHC) analysis was conducted on cancer specimens to assess ferroptosis-related protein expression. Results: The study identified 10 ferroptosis-related genes that were significantly associated with breast cancer prognosis. The constructed prognostic risk prediction model showed potential for predicting the prognostic value of these genes. In addition, the infiltration of immune cells was observed to be a characteristic of the model. The expression levels of ferroptosis-related genes were confirmed in human breast cancer cell lines, and IHC analysis provided evidence of ferroptosis-related protein expression in cancer specimens. Discussion: This study provides a novel prognostic model for breast cancer, incorporating 10 ferroptosis-related genes. The model demonstrates the potential for predicting breast cancer prognosis and highlights the involvement of immune cell infiltration. The expression levels of ferroptosis-related genes and proteins further support the association between ferroptosis and breast cancer development.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Humanos , Femenino , Pronóstico , Neoplasias de la Mama/genética , Ferroptosis/genética , Mama , Muerte Celular
18.
Immunol Lett ; 263: 70-77, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797724

RESUMEN

Recently, the incidence of autoimmune hepatitis (AIH) has gradually increased, and the disease can eventually develop into cirrhosis or even hepatoma if left untreated. AIH patients are often characterized by gut microbiota dysbiosis, but whether gut microbiota dysbiosis contributes to the progression of AIH remains unclear. In this study, we investigate the role of gut microbiota dysbiosis in the occurrence and development of AIH in mice with dextran sulfate sodium salt (DSS) induced colitis. C57BL/6J mice were randomly divided into normal group, S100-induced AIH group, and DSS+S100 group (1 % DSS in the drinking water), and the experimental cycle lasted for four weeks. We demonstrate that DSS administration aggravates hepatic inflammation and disruption of the intestinal barrier, and significantly changes the composition of gut microbiota in S100-induced AIH mice, which are mainly characterized by increased abundance of pathogenic bacteria and decreased abundance of beneficial bacteria. These results suggest that DSS administration aggravates liver injury of S100-induced AIH, which may be due to DSS induced gut microbiota dysbiosis, leading to disruption of the intestinal barrier, and then, the microbiota translocate to the liver, aggravating hepatic inflammation.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Hepatitis Autoinmune , Humanos , Ratones , Animales , Sulfato de Dextran/efectos adversos , Hepatitis Autoinmune/etiología , Hepatitis Autoinmune/patología , Disbiosis/microbiología , Ratones Endogámicos C57BL , Inflamación/patología , Modelos Animales de Enfermedad , Colon/patología
19.
Front Microbiol ; 13: 845837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633724

RESUMEN

Non-Saccharomyces (NS) yeasts with high ß-glucosidase activity play a vital role in improving the aroma complexity of wines by releasing aroma compounds from glycosidic precursors during fermentation. In this study, the effect of sequential inoculation fermentation of Meyerozyma guilliermondii NM218 and Hanseniaspora uvarum BF345 with two Saccharomyces cerevisiae strains [Vintage Red™ (VR) and Aroma White™ (AW)] on volatile compounds and sensory characteristics of wines was investigated. Prior to winemaking trials, the sequential inoculation times of the two NS yeasts were evaluated in synthetic must, based on changes in strain population and enzyme activity. The intervals for inoculation of NM218 and BF345 with the S. cerevisiae strains were 48 and 24 h, respectively. In the main experiment, sequential inoculation fermentations of the two strains with S. cerevisiae were carried out in Cabernet Sauvignon (CS) and Chardonnay (CH) grape must. The oenological parameters, volatile composition, and sensory characteristics of the final wines were assessed. No clear differences were observed in the oenological parameters of the sequentially fermented CH wines compared with the control, except for residual sugar and alcohol. However, in CS wines, the total acid contents were significantly lower in the wines fermented by sequential inoculation compared to the control. Both NM218 and BF345 improved the aroma complexity of wines by increasing esters and terpenes when inoculated with S. cerevisiae strains compared to inoculation with S. cerevisiae strains alone. NM218 resulted in a more positive effect on CS wine aroma, with higher levels of citronellol and trans-nerolidol. BF345 significantly enhanced the floral and fruity aromas of CH wine by producing higher concentrations of geranyl acetone, ß-damascenone, trans-nerolidol, and nerol. Both NM218 and BF345 yeasts could potentially be used to improve wine aroma and overall quality, especially wine floral and fruity aromas, when used in sequential inoculation with S. cerevisiae.

20.
Front Public Health ; 10: 894129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757636

RESUMEN

Acute myocardial infarction (AMI) has a high mortality. The single-cell RNA sequencing (scRNA-seq) method was used to analyze disease heterogeneity at the single-cell level. From the Gene Expression Omnibus (GEO) database (GSE180678), AMI scRNA-seq were downloaded and preprocessed by the Seurat package. Gene expression data came from GSE182923. Cell cluster analysis was conducted. Cell types were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed on hub genes. Drugs were predicted by protein-protein interaction (PPI) and molecular docking. In total, 7 cell clusters were defined based on the scRNA-seq dataset, and the clusters were labeled as 5 cell types by marker genes. Hematopoietic stem cell types as a differential subgroups were higher in AMI than in healthy tissues. From available databases and PPI analysis, 52 common genets were identified. Based on 52 genes, 5 clusters were obtained using the MCODE algorithm, and genes in these 5 clusters involved in immune and inflammatory pathways were determined. Correlation analysis showed that hematopoietic stem cell types were negatively correlated with ATM, CARM1, and CASP8 but positively correlated with CASP3 and PPARG. This was reversed with immune cells. Molecular docking analysis showed that DB05490 had the lowest docking score with PPARG. We identified 5 hub genes (ATM, CARM1, CASP8, CASP3, and PPARG) involved in AMI progression. Compound DB05490 was a potential inhibitor of PPAG.


Asunto(s)
Infarto del Miocardio , Mapas de Interacción de Proteínas , Caspasa 3/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Humanos , Simulación del Acoplamiento Molecular , Infarto del Miocardio/genética , Farmacología en Red , PPAR gamma/genética , Mapas de Interacción de Proteínas/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA