Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Infect Dis ; 73(3): e531-e539, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-32745196

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a global pandemic with no licensed vaccine or specific antiviral agents for therapy. Little is known about the longitudinal dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) in patients with COVID-19. METHODS: Blood samples (n = 173) were collected from 30 patients with COVID-19 over a 3-month period after symptom onset and analyzed for SARS-CoV-2-specific NAbs using the lentiviral pseudotype assay, coincident with the levels of IgG and proinflammatory cytokines. RESULTS: SARS-CoV-2-specific NAb titers were low for the first 7-10 days after symptom onset and increased after 2-3 weeks. The median peak time for NAbs was 33 days (interquartile range [IQR], 24-59 days) after symptom onset. NAb titers in 93.3% (28/30) of the patients declined gradually over the 3-month study period, with a median decrease of 34.8% (IQR, 19.6-42.4%). NAb titers increased over time in parallel with the rise in immunoglobulin G (IgG) antibody levels, correlating well at week 3 (r = 0.41, P < .05). The NAb titers also demonstrated a significant positive correlation with levels of plasma proinflammatory cytokines, including stem cell factor (SCF), TNF-related apoptosis-inducing ligand (TRAIL), and macrophage colony-stimulating factor (M-CSF). CONCLUSIONS: These data provide useful information regarding dynamic changes in NAbs in patients with COVID-19 during the acute and convalescent phases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Pandemias
2.
J Environ Manage ; 281: 111875, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33378737

RESUMEN

Alpine grasslands on the Qinghai-Tibetan Plateau are sensitive and vulnerable to climate change and human activities. Climate warming and overgrazing have already caused degradation in a large fraction of alpine grasslands on this plateau. However, it remains unclear how human activities (mainly livestock grazing) regulates vegetation dynamics under climate change. Here, alpine grassland productivity (substituted with the normalized difference vegetation index, NDVI) is hypothesized to vary in a nonlinear trajectory to follow climate fluctuations and human disturbances. With generalized additive mixed modelling (GAMM) and residual-trend (RESTREND) analysis together, both magnitude and direction of climatic (in terms of temperature, precipitation, and radiation) and anthropogenic impacts on NDVI variation were examined across alpine meadows, steppes, and desert-steppes on the Qinghai-Tibetan Plateau. The results revealed that accelerating warming and greening, respectively, took place in 76.2% and 78.8% of alpine grasslands on the Qinghai-Tibetan Plateau. The relative importance of temperature, precipitation, and radiation impacts was comparable, between 20.4% and 24.8%, and combined to explain 66.2% of NDVI variance at the pixel scale. The human influence was strengthening and weakening, respectively, in 15.5% and 14.3% of grassland pixels, being slightly larger than any sole climatic variable across the entire plateau. Anthropogenic and climatic factors can be in opposite ways to affect alpine grasslands, even within the same grassland type, likely regulated by plant community assembly and species functional traits. Therefore, the underlying mechanisms of how plant functional diversity regulates nonlinear ecosystem response to climatic and anthropogenic stresses should be carefully explored in the future.


Asunto(s)
Ecosistema , Pradera , Animales , Cambio Climático , Humanos , Dinámicas no Lineales , Tibet
3.
J Infect Dis ; 222(2): 189-193, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32382737

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel ß-coronavirus, causes severe pneumonia and has spread throughout the globe rapidly. The disease associated with SARS-CoV-2 infection is named coronavirus disease 2019 (COVID-19). To date, real-time reverse-transcription polymerase chain reaction (RT-PCR) is the only test able to confirm this infection. However, the accuracy of RT-PCR depends on several factors; variations in these factors might significantly lower the sensitivity of detection. METHODS: In this study, we developed a peptide-based luminescent immunoassay that detected immunoglobulin (Ig)G and IgM. The assay cutoff value was determined by evaluating the sera from healthy and infected patients for pathogens other than SARS-CoV-2. RESULTS: To evaluate assay performance, we detected IgG and IgM in the sera from confirmed patients. The positive rate of IgG and IgM was 71.4% and 57.2%, respectively. CONCLUSIONS: Therefore, combining our immunoassay with real-time RT-PCR might enhance the diagnostic accuracy of COVID-19.


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Técnicas para Inmunoenzimas/métodos , Neumonía Viral/diagnóstico , Pruebas Serológicas/métodos , Adulto , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Mediciones Luminiscentes , Masculino , Persona de Mediana Edad , Pandemias , Péptidos/inmunología , Neumonía Viral/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Sensibilidad y Especificidad , Proteínas Virales/inmunología
4.
Environ Sci Technol ; 53(18): 10781-10791, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31438664

RESUMEN

Assessment of indirect emission factors (EF5r) of nitrous oxide (N2O) from agricultural river networks remains challenging, and results are uncertain due to limited data availability. This study compared two methods of assessing EF5r using data from long-term observations at high temporal resolution in a typical agricultural catchment in subtropical central China. The concentration method (method 1) and the Intergovernmental Panel on Climate Change (IPCC) 2006 method (method 2) were employed to evaluate the emission factor. EF5r estimated using method 1 (i.e., EF5r1) was 0.00077 ± 0.00025 (0.00038-0.00097). EF5r calculated using method 2 (i.e., EF5r2) was lower than EF5r1, with a mean value of 0.00004 (0.000015-0.00012). Both EF5r1 and EF5r2 were significantly lower than the IPCC 2006 default value of 0.0025, suggesting that N2O emissions from China and world river networks may be grossly overestimated. A complex N2O production pathway and diffusion mechanism were responsible for the transfer of N2O from the sediment to river water and then to the atmosphere. These findings provide essential data for refining national greenhouse gas inventories and contribute evidence for downward revision of indirect emission factors adopted by the IPCC.


Asunto(s)
Monitoreo del Ambiente , Ríos , Agricultura , China , Óxido Nitroso
5.
J Environ Manage ; 251: 109579, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31563601

RESUMEN

Ecosystem stability is one of the main factors maintaining ecosystem functioning and is closely related to temporal variability in productivity. Resistance and resilience reflect tolerance and recovering ability, respectively, of a plant community under perturbation, which are important for maintaining the stability of ecosystems. Generally, heavy grazing reduces the stability of grassland ecosystems, causing grassland degradation. However, how livestock grazing affects ecosystem stability is unclear in alpine steppe ecosystems. We conducted a five-year grazing experiment with Tibetan sheep in a semi-arid alpine steppe on the Qinghai-Tibetan Plateau, China. The experimental treatments included no grazing (NG), light grazing (LG, 2.4 sheep per ha), moderate grazing (MG, 3.6 sheep per ha) and heavy grazing (HG, 6.0 sheep ha). We calculated resistance and resilience of three plant functional groups and ecosystem stability under the three grazing intensities using aboveground primary productivity. The results showed that with increasing grazing intensity, aboveground biomass of each functional group significantly decreased. As grazing intensity increased, the resistance of forbs first increased then decreased. The resilience of graminoids in HG was significantly lower than in LG plots, but the resilience of legumes in HG was higher than in LG and MG plots. The resilience of graminoids was significantly higher than legume and forbs under LG and MG treatments. In HG treatments, resilience of legumes was higher than graminoids and forbs. Ecosystem stability did not change under different grazing intensities, because of dissimilar performance of the resilience and resistance of functional groups. Our results highlight how the differential resistance and resilience of different function groups facilitate the tolerance of alpine steppe to grazing under even a heavy intensity. However, the degradation risk of alpine steppe under heavy grazing still needs to be considered in grassland management due to sharp decreases of productivity.


Asunto(s)
Ecosistema , Ganado , Animales , China , Pradera , Ovinos , Tibet
6.
Environ Monit Assess ; 190(10): 585, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209621

RESUMEN

In most grassland ecosystems, the effects of mean temperature increase on plant communities have been investigated; however, the effects of climate fluctuations on local plant community metrics are much less well understood. We conducted a nine-year survey in alpine meadow and alpine steppe to investigate the effects of inter-annual temperature and precipitation variation on plant community composition, species richness, and species diversity on the central Qinghai-Tibetan Plateau, China. We unexpectedly found that annual variability of growing season temperature, and not precipitation, is a driver of plant composition and species diversity in both habitats. Generally, increasing temperature had a negative effect on species diversity in meadow (r2 = 0.94) and steppe (r2 = 0.95). In the meadow habitat, the proportion of grass decreased with increasing temperature and ultimately had positive impacts on the proportion of sedges. In steppe habitat, legumes increased and forbs decreased with the increase of growing season temperature; both legumes and forbs negatively affected proportion of grass and resulted in grass remaining stable under temperature change. Our results provide evidence that responses of functional group composition and species richness to temporal change of temperature are very different from those responses to mean temperature increase on the central Qinghai-Tibetan Plateau. In our results, temperature is a main regulator for annual variation of functional group composition and species richness, while soil water content is a dominant regulator for community responses in other experimental warming studies.


Asunto(s)
Altitud , Clima , Procesos Climáticos , Pradera , Plantas , Poaceae/crecimiento & desarrollo , Temperatura , Biodiversidad , Biomasa , China , Cambio Climático , Ecosistema , Monitoreo del Ambiente , Fabaceae/crecimiento & desarrollo , Lluvia , Estaciones del Año , Suelo , Tibet , Agua
7.
Cancer Sci ; 108(7): 1328-1337, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28498550

RESUMEN

Hepatitis B virus X protein plays a crucial role in the pathogenesis of hepatocellular carcinoma. We previously showed that the tumor suppressor ARID2 inhibits hepatoma cell cycle progression and tumor growth. Here, we evaluated whether hepatitis B virus X protein was involved in the modulation of ARID2 expression and hepatocarcinogenesis associated with hepatitis B virus infection. ARID2 expression was downregulated in HBV-replicative hepatoma cells, HBV transgenic mice, and HBV-related clinical HCC tissues. The expression levels of HBx were negatively associated with those of ARID2 in hepatocellular carcinoma tissues. Furthermore, HBx suppressed ARID2 at transcriptional level. Mechanistically, the promoter region of ARID2 gene inhibited by HBx was located at nt-1040/nt-601 and contained potential ATOH1 binding elements. In addition, ectopic expression of ATOH1 or mutation of ATOH1 binding sites within ARID2 promoter partially abolished HBx-triggered ARID2 transcriptional repression. Functionally, ARID2 abrogated HBx-enhanced migration and proliferation of hepatoma cells, whereas depletion of ATOH1 enhanced tumorigenecity of HCC cells. Therefore, our findings suggested that deregulation of ARID2 by HBx through ATOH1 may be involved in HBV-related hepatocellular carcinoma development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Carcinoma Hepatocelular/virología , Neoplasias Hepáticas/virología , Transactivadores/metabolismo , Factores de Transcripción/biosíntesis , Animales , Western Blotting , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Inmunoprecipitación de Cromatina , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Inmunohistoquímica , Inmunoprecipitación , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa , Proteínas Reguladoras y Accesorias Virales
8.
Cancer Sci ; 107(10): 1380-1389, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27420729

RESUMEN

HBx mutations (T1753V, A1762T, G1764A, and T1768A) are frequently observed in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Aberrant activation of the Wnt/ß-catenin signaling pathway is involved in the development of HCC. However, activation of the Wnt/ß-catenin signaling pathway by HBx mutants has not been studied in hepatoma cells or HBV-associated HCC samples. In this study, we examined the effects of HBx mutants on the migration and proliferation of HCC cells and evaluated the activation of Wnt/ß-catenin signaling in HBx-transfected HCC cells and HBV-related HCC tissues. We found that HBx mutants (T, A, TA, and Combo) promoted the migration and proliferation of hepatoma cells. The HBx Combo mutant potentiated TOP-luc activity and increased nuclear translocation of ß-catenin. Moreover, the HBx Combo mutant increased and stabilized ß-catenin levels through inactivation of glycogen synthase kinase-3ß, resulting in upregulation of downstream target genes such as c-Myc, CTGF, and WISP2. Enhanced activation of Wnt/ß-catenin was found in HCC tissues with HBx TA and Combo mutations. Knockdown of ß-catenin effectively abrogated cell migration and proliferation stimulated by the HBx TA and Combo mutants. Our results indicate that HBx mutants, especially the Combo mutant, allow constitutive activation of the Wnt signaling pathway and may play a pivotal role in HBV-associated hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Mutación , Transactivadores/genética , Vía de Señalización Wnt , Alelos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Neoplasias Hepáticas/patología , Transactivadores/metabolismo , Proteínas Reguladoras y Accesorias Virales , beta Catenina/genética , beta Catenina/metabolismo
9.
Nat Neurosci ; 27(2): 232-248, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38168932

RESUMEN

Neurovascular coupling (NVC) is important for brain function and its dysfunction underlies many neuropathologies. Although cell-type specificity has been implicated in NVC, how active neural information is conveyed to the targeted arterioles in the brain remains poorly understood. Here, using two-photon focal optogenetics in the mouse cerebral cortex, we demonstrate that single glutamatergic axons dilate their innervating arterioles via synaptic-like transmission between neural-arteriolar smooth muscle cell junctions (NsMJs). The presynaptic parental-daughter bouton makes dual innervations on postsynaptic dendrites and on arteriolar smooth muscle cells (aSMCs), which express many types of neuromediator receptors, including a low level of glutamate NMDA receptor subunit 1 (Grin1). Disruption of NsMJ transmission by aSMC-specific knockout of GluN1 diminished optogenetic and whisker stimulation-caused functional hyperemia. Notably, the absence of GluN1 subunit in aSMCs reduced brain atrophy following cerebral ischemia by preventing Ca2+ overload in aSMCs during arteriolar constriction caused by the ischemia-induced spreading depolarization. Our findings reveal that NsMJ transmission drives NVC and open up a new avenue for studying stroke.


Asunto(s)
Acoplamiento Neurovascular , Ratones , Animales , Acoplamiento Neurovascular/fisiología , Vasodilatación/fisiología , Axones , Transmisión Sináptica , Arteriolas/metabolismo , Miocitos del Músculo Liso
10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(1): 215-9, 2013 Jan.
Artículo en Zh | MEDLINE | ID: mdl-23586259

RESUMEN

Global warming has become a fact of life, and the night temperature increase higher than during the day. In the present research, to explore the effects of climate warming on element contents of plants, ICP-AES was used for the direct determination of nine kinds of element contents of reproductive branches and vegetative branches of the Mongolian drug Agi, which grew in the day, night and diurnal warming field. The results of the study show that the responses of reproductive branches and vegetative branches to day, night and diurnal warming were not significant different, but the negative response was greater than the positive response. The effects of day warming on the element contents were not significant, but night warming lower the contents of Al, Fe and Mn significantly. There was interaction between day warming and night warming.


Asunto(s)
Artemisia/química , Calentamiento Global , Minerales/análisis , Plantas Medicinales/química , Espectrofotometría Atómica/métodos , Aluminio/análisis , Calcio/análisis , Hierro/análisis , Mongolia , Tallos de la Planta/química
11.
Psychol Res Behav Manag ; 16: 3199-3217, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37588249

RESUMEN

Purpose: During recent years, there has been a growing interest in CSR across disciplines. Various scholars document that Chief Executive Officer (CEO) narcissism is an important factor that should not be overlooked when analyzing CSR. Research on the relationship between CEO narcissism and CSR has treated CSR as a whole construct. However, little attention has been paid to its effect on different dimensions of CSR, especially the same psychological trait may have effects on charitable donations and employee welfare. The purpose of the study is to explore the relationship between CEO narcissism and charitable donations and employee welfare, while taking into account the moderating role of the legal environment. Methods: This study used the video survey method to measure CEO narcissism, the video information was obtained from Baidu.com and hao.360.com search engines. Other data were collected from Chinese Stock Market Research (CSMAR) database. We used OLS regression for data analysis and also used Tobit regression model to check the robustness of the estimation results. Meanwhile, all analyses will be performed with Stata 16.0 software. Results: Empirical analysis reveals that CEO narcissism has a positive and significant impact on charitable donations and has a negative and significant impact on employee welfare. Moreover, the legal environment will reduce the effect of CEO narcissism on charitable donations and employee welfare, indicating that a stronger legal environment could attenuate the effect of CEO personality traits, especially narcissism on charity donations and employee welfare. Conclusion: This study contributes to the behavioral finance theory and stakeholder theory to better understand the relationship between CEO narcissism and charitable donations and employee welfare. Meanwhile, this study is one of the few studies to investigate the patterns of CSR activities in China, an important emerging economy.

12.
Behav Sci (Basel) ; 13(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36975270

RESUMEN

Chairman narcissism has received extensive attention in social psychology and organizational behavior, but the relationship between chairman narcissism and social responsibility has not yet received much attention. The purpose of this study is to investigate the effect of chairman narcissism on various dimensions of CSR and the moderating roles of analyst coverages. Based on upper echelons theory and stakeholder theory, we distinguished internal corporate social responsibility (internal CSR) and external corporate social responsibility (external CSR) according to whether there was a formal contractual relationship. This study used a narcissism index of chairmen of Chinese listed companies to examine the relationship between chairman narcissism and internal CSR, external CSR, and the data were analyzed using Stata16.0. The results showed that there was a positive correlation between chairman narcissism and external CSR, and there was a negative correlation between chairman narcissism and internal CSR. That is, the higher the Chairman's narcissism degree is, the more external CSR and less internal CSR the firm makes. Further research showed that analyst coverage has weakened the impact of chairman narcissism on internal and external CSR. This paper enriches and expands the research on chairman narcissism and CSR and provides new ideas for selecting corporate managers and improving corporate governance.

13.
Signal Transduct Target Ther ; 8(1): 63, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765030

RESUMEN

Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC), but its pathogenic mechanism remains to be explored. The RNA N6-methyladenosine (m6A) reader, YTH (YT521-B homology) domain 2 (YTHDF2), plays a critical role in the HCC progression. However, the function and regulatory mechanisms of YTHDF2 in HBV-related HCC remain largely elusive. Here, we discovered that YTHDF2 O-GlcNAcylation was markedly increased upon HBV infection. O-GlcNAc transferase (OGT)-mediated O-GlcNAcylation of YTHDF2 on serine 263 enhanced its protein stability and oncogenic activity by inhibiting its ubiquitination. Mechanistically, YTHDF2 stabilized minichromosome maintenance protein 2 (MCM2) and MCM5 transcripts in an m6A-dependent manner, thus promoting cell cycle progression and HBV-related HCC tumorigenesis. Moreover, targeting YTHDF2 O-GlcNAcylation by the OGT inhibitor OSMI-1 significantly suppressed HCC progression. Taken together, our findings reveal a new regulatory mechanism for YTHDF2 and highlight an essential role of YTHDF2 O-GlcNAcylation in RNA m6A methylation and HCC progression. Further description of the molecular pathway has the potential to yield therapeutic targets for suppression of HCC progression due to HBV infection.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
14.
J Clin Invest ; 133(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37166978

RESUMEN

Deciphering the crosstalk between metabolic reprogramming and epigenetic regulation is a promising strategy for cancer therapy. In this study, we discovered that the gluconeogenic enzyme PCK1 fueled the generation of S-adenosylmethionine (SAM) through the serine synthesis pathway. The methyltransferase SUV39H1 catalyzed SAM, which served as a methyl donor to support H3K9me3 modification, leading to the suppression of the oncogene S100A11. Mechanistically, PCK1 deficiency-induced oncogenic activation of S100A11 was due to its interaction with AKT1, which upregulated PI3K/AKT signaling. Intriguingly, the progression of hepatocellular carcinoma (HCC) driven by PCK1 deficiency was suppressed by SAM supplement or S100A11 KO in vivo and in vitro. These findings reveal the availability of the key metabolite SAM as a bridge connecting the gluconeogenic enzyme PCK1 and H3K9 trimethylation in attenuating HCC progression, thus suggesting a potential therapeutic strategy against HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , S-Adenosilmetionina/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Epigénesis Genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
15.
Front Plant Sci ; 14: 1162160, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056506

RESUMEN

Climatic warming can alter grassland nitrous oxide (N2O) emissions due to soil property alterations. However, how the reclamation affect grassland N2O flux under warming conditions remains unclear in alpine meadow ecosystems. We conducted a long-term manipulative warming experiment in a natural alpine meadow and a cultivated grassland on the Qinghai-Tibetan Plateau to explore the separate and interactive effects of warming and reclamation on the soil N2O emission flux. N2O fluxes were measured under four treatments including control (CK), warming (W), reclamation (R) and warming under reclamation (WR) from August 2018 to July 2019. We measured the content of soil C, N nutrients and 5 enzymatic activities in 2018 and 2019. Correlation analysis and structural equation modeling were used to clarify how soil N availability and soil enzyme activities affect N2O emission. Our results indicated that compared to the ambient conditions for the growing and non-growing seasons, soil N2O flux was significantly increased 59.1% and 152.0% by warming and 28.4% and 142.4% by reclamation, respectively. Compared with W, WR significantly increased N2O flux by 18.9% and 81.1% during the growing and non-growing seasons, respectively. Soil moisture was negatively correlated to enzymatic activity and N2O flux. Both warming and reclamation promoted soil nitrification by increasing related enzymatic activities that acted to increase the N2O flux. Reclamation resulted in a greater sensitivity of the activity of ammonia monooxygenase and hydroxylamine oxidoreductase to warming, thus enhancing the effects of warming on increasing the N2O flux. Our research indicated that reclamation can additionally increase the effects of warming on N2O emissions for alpine meadows. Therefore, excessive expansion of arable land should be avoided, and new reclamation sites should be planned scientifically, as warming is expected to intensify in the future.

16.
J Hepatocell Carcinoma ; 10: 1609-1628, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781718

RESUMEN

Purpose: The accurate prediction of non-cirrhotic hepatocellular carcinoma (NCHCC) risk facilitates improved surveillance strategy and decreases cancer-related mortality. This study aimed to explore the correlation between immunogenic cell death (ICD) and NCHCC prognosis using The Cancer Genome Atlas (TCGA) datasets, and the potential prognostic value of ICD-related genes in NCHCC. Methods: Clinical and transcriptomic data of patients with NCHCC patients were retrieved from TCGA database. Weighted gene co-expression network analysis was performed to obtain the NCHCC phenotype-related module genes. Consensus clustering analysis was performed to classify the patients into two clusters based on intersection genes among differentially expressed genes (DEGs) between cancer and adjacent tissues, NCHCC phenotype-related genes, and ICD-related genes. NCHCC-derived tissue microarray was used to evaluate the correlation of the expression levels of key genes with NCHCC prognosis using immunohistochemical staining. Results: Cox regression analyses were performed to construct a prognostic risk score model comprising three genes (TMC7, GRAMD1C, and GNPDA1) based on DEGs between two clusters. The model stratified patients with NCHCC into two risk groups. The overall survival (OS) of the high-risk group was significantly lower than that of the low-risk group. Univariable and multivariable Cox regression analyses revealed that these signature genes are independent predictors of OS. Functional analysis revealed differential immune status between the two risk groups. Next, a nomogram was constructed, which demonstrated the potent distinguishing ability of the developed model based on receiver operating characteristic curves. In vitro functional validation revealed that the migration and invasion abilities of HepG2 and Huh7 cells were upregulated upon GRAMD1C knockdown but downregulated upon TMC7 knockdown. Conclusion: This study developed a prognostic model comprising three genes, which can aid in predicting the survival of patients with NCHCC and guide the selection of drugs and molecular markers for NCHCC.

17.
JCI Insight ; 8(23)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906252

RESUMEN

Aberrant angiogenesis in hepatocellular carcinoma (HCC) is associated with tumor growth, progression, and local or distant metastasis. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor that plays a major role in regulating angiogenesis during adaptation of tumor cells to nutrient-deprived microenvironments. Genetic defects in Krebs cycle enzymes, such as succinate dehydrogenase and fumarate hydratase, result in elevation of oncometabolites succinate and fumarate, thereby increasing HIF-1α stability and activating the HIF-1α signaling pathway. However, whether other metabolites regulate HIF-1α stability remains unclear. Here, we reported that deficiency of the enzyme in phenylalanine/tyrosine catabolism, glutathione S-transferase zeta 1 (GSTZ1), led to accumulation of succinylacetone, which was structurally similar to α-ketoglutarate. Succinylacetone competed with α-ketoglutarate for prolyl hydroxylase domain 2 (PHD2) binding and inhibited PHD2 activity, preventing hydroxylation of HIF-1α, thus resulting in its stabilization and consequent expression of vascular endothelial growth factor (VEGF). Our findings suggest that GSTZ1 may serve as an important tumor suppressor owing to its ability to inhibit the HIF-1α/VEGFA axis in HCC. Moreover, we explored the therapeutic potential of HIF-1α inhibitor combined with anti-programmed cell death ligand 1 therapy to effectively prevent HCC angiogenesis and tumorigenesis in Gstz1-knockout mice, suggesting a potentially actionable strategy for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ácidos Cetoglutáricos , Angiogénesis , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Microambiente Tumoral
18.
Sci Bull (Beijing) ; 68(17): 1928-1937, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517987

RESUMEN

Structural information of grassland changes on the Tibetan Plateau is essential for understanding alterations in critical ecosystem functioning and their underlying drivers that may reflect environmental changes. However, such information at the regional scale is still lacking due to methodological limitations. Beyond remote sensing indicators only recognizing vegetation productivity, we utilized multivariate data fusion and deep learning to characterize formation-based plant community structure in alpine grasslands at the regional scale of the Tibetan Plateau for the first time and compared it with the earlier version of Vegetation Map of China for historical changes. Over the past 40 years, we revealed that (1) the proportion of alpine meadows in alpine grasslands increased from 50% to 69%, well-reflecting the warming and wetting trend; (2) dominances of Kobresia pygmaea and Stipa purpurea formations in alpine meadows and steppes were strengthened to 76% and 92%, respectively; (3) the climate factor mainly drove the distribution of Stipa purpurea formation, but not the recent distribution of Kobresia pygmaea formation that was likely shaped by human activities. Therefore, the underlying mechanisms of grassland changes over the past 40 years were considered to be formation dependent. Overall, the first exploration for structural information of plant community changes in this study not only provides a new perspective to understand drivers of grassland changes and their spatial heterogeneity at the regional scale of the Tibetan Plateau, but also innovates large-scale vegetation study paradigm.


Asunto(s)
Ecosistema , Pradera , Humanos , Tibet , Cambio Climático , China
19.
Front Plant Sci ; 13: 864085, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677251

RESUMEN

Grazing is a substantial threat to the sustainability of grassland ecosystems, while it is uncertain about the variety of plant and soil microbial community and the linkages between them limit the comprehensive understanding of grazing ecology. We conducted an experiment on the effects of the grazing regimes rotational grazing (RG), continuous grazing (CG), and grazing exclusion (GE) on an alpine meadow in Qinghai-Tibetan Plateau. The differences of plant community composition, soil microbial community assembly mechanism, and taxonomic and functional composition between grazing regimes were examined, and the relationship between plant species and the soil microbes was assessed by constructing a co-occurrence network. The results showed that the plant community composition varied with the grazing regimes, while the soil microbial community composition did not vary with the grazing regimes. The soil bacterial functional composition was similar under RG and CG, while the soil fungal functional composition was similar under GE and RG. The soil microbial community under all grazing regimes was assembled mainly according to stochastic rather than deterministic mechanisms, and RG and CG reduced the relative importance of the stochastic ratio. At the microbial phylum level, CG and GE increased the relative abundance of Acidobacteria and Armatimonadetes and CG and RG increased the relative abundance of Elusimicrobia. In the network of plant species and soil microbial classes, plants and bacteria themselves were mainly positively linked (symbiosis and promotion), while plants and soil microbes were mainly negatively linked (competition). There were five microbial generalists in the network, which connected with many microbes, and four showed no difference in their abundance among the grazing regimes. Overall, the stable key microbes in the network and the fact that many of the plants are unconnected with microbes weakened the impact of grazing-induced changes in the plant community on soil microbes, probably resulting in the stable soil microbial community composition. Moreover, there was still a dominant and tolerant plant species, Kobresia pygmaea, that connected the plant and microbial communities, implying that the dominant plant species not only played a crucial role in the plant community but also acted as a bridge between the plants and soil microbes; thus, its tolerance and dominance might stabilize the soil microbial community.

20.
Sci Total Environ ; 841: 156712, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35709997

RESUMEN

Gross ecosystem productivity (GEP) plays an important role in global carbon cycling. However, how plant phenology and growth rate regulate GEP under climate change is unclear. Based on an in situ manipulative experiment using open top chambers from 2015 to 2018, we measured whole year warming and spring precipitation addition effects on plant phenology, plant growth rate and GEP. Our results showed that warming delayed plant green up (4 days) and withering (5 days), while spring precipitation addition advanced green up 13 days and did not change withering. Warming delayed the timing of the fast-growing phase 7 days, shortened length of the fast-growing phase 7 days and marginally increased the growth rate. Spring precipitation addition advanced the timing of the fast-growing phase 6 days, but did not change the length of the fast-growing phase or the growth rate. Both whole year warming and spring precipitation addition have not significantly affected growing season mean GEP. GEP is positively correlated with plant growth rate and negatively correlated with the length of the fast-growing phase. We provide an evidence that although warming did not change growing season mean productivity, it delayed plant fast-growing phase. Our findings suggest that management approaches for increasing water availability before the fast-growing phase should be intensified to increase ecosystem carbon uptake and grass supply for animal husbandry in spring.


Asunto(s)
Ecosistema , Pradera , Animales , Carbono , Cambio Climático , Desarrollo de la Planta , Plantas , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA