Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plant J ; 118(6): 1991-2002, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38549549

RESUMEN

As a major worldwide root crop, the mechanism underlying storage root yield formation has always been a hot topic in sweet potato [Ipomoea batatas (L.) Lam.]. Previously, we conducted the transcriptome database of differentially expressed genes between the cultivated sweet potato cultivar "Xushu18," its diploid wild relative Ipomoea triloba without storage root, and their interspecific somatic hybrid XT1 with medium-sized storage root. We selected one of these candidate genes, IbNF-YA1, for subsequent analysis. IbNF-YA1 encodes a nuclear transcription factor Y subunit alpha (NF-YA) gene, which is significantly induced by the natural auxin indole-3-acetic acid (IAA). The storage root yield of the IbNF-YA1 overexpression (OE) plant decreased by 29.15-40.22% compared with the wild type, while that of the RNAi plant increased by 10.16-21.58%. Additionally, IAA content increased significantly in OE plants. Conversely, the content of IAA decreased significantly in RNAi plants. Furthermore, real-time quantitative reverse transcription-PCR (qRT-PCR) analysis demonstrated that the expressions of the key genes IbYUCCA2, IbYUCCA4, and IbYUCCA8 in the IAA biosynthetic pathway were significantly changed in transgenic plants. The results indicated that IbNF-YA1 could directly target IbYUCCA4 and activate IbYUCCA4 transcription. The IAA content of IbYUCCA4 OE plants increased by 71.77-98.31%. Correspondingly, the storage root yield of the IbYUCCA4 OE plant decreased by 77.91-80.52%. These findings indicate that downregulating the IbNF-YA1 gene could improve the storage root yield in sweet potato.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ipomoea batatas , Proteínas de Plantas , Raíces de Plantas , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Ácidos Indolacéticos/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Ipomoea batatas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente
2.
Plant Physiol ; 194(2): 787-804, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815230

RESUMEN

Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.


Asunto(s)
Ácido Abscísico , Ipomoea batatas , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Estrés Fisiológico/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Physiol ; 191(1): 496-514, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377782

RESUMEN

Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37%-70.94% increase in leaf biomass, a 12.08%-21.85% increase in IAA levels, and a 31.33%-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the IAA signaling and flavonoid biosynthesis pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay indicated that IbBBX29 targets key genes of IAA signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as AGAMOUS-LIKE 21 protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.


Asunto(s)
Arabidopsis , Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396773

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors extensively affect various physiological processes in plant metabolism, growth, and abiotic stress. However, the regulation mechanism of bHLH transcription factors in balancing anthocyanin biosynthesis and abiotic stress in sweet potato (Ipomoea batata (L.) Lam.) remains unclear. Previously, transcriptome analysis revealed the genes that were differentially expressed among the purple-fleshed sweet potato cultivar 'Jingshu 6' and its anthocyanin-rich mutant 'JS6-5'. Here, we selected one of these potential genes, IbMYC2, which belongs to the bHLH transcription factor family, for subsequent analyses. The expression of IbMYC2 in the JS6-5 storage roots is almost four-fold higher than Jingshu 6 and significantly induced by hydrogen peroxide (H2O2), methyl jasmonate (MeJA), NaCl, and polyethylene glycol (PEG)6000. Overexpression of IbMYC2 significantly enhances anthocyanin production and exhibits a certain antioxidant capacity, thereby improving salt and drought tolerance. In contrast, reducing IbMYC2 expression increases its susceptibility. Our data showed that IbMYC2 could elevate the expression of anthocyanin synthesis pathway genes by binding to IbCHI and IbDFR promoters. Additionally, overexpressing IbMYC2 activates genes encoding reactive oxygen species (ROS)-scavenging and proline synthesis enzymes under salt and drought conditions. Taken together, these results demonstrate that the IbMYC2 gene exercises a significant impact on crop quality and stress resistance.


Asunto(s)
Antocianinas , Ipomoea batatas , Antocianinas/metabolismo , Cloruro de Sodio/farmacología , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sequías , Resistencia a la Sequía , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Cloruro de Sodio Dietético/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
5.
J Integr Plant Biol ; 66(2): 176-195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38294064

RESUMEN

Sweet potato (Ipomoea batatas [L.] Lam.) is a crucial staple and bioenergy crop. Its abiotic stress tolerance holds significant importance in fully utilizing marginal lands. Transcriptional processes regulate abiotic stress responses, yet the molecular regulatory mechanisms in sweet potato remain unclear. In this study, a NAC (NAM, ATAF1/2, and CUC2) transcription factor, IbNAC087, was identified, which is commonly upregulated in salt- and drought-tolerant germplasms. Overexpression of IbNAC087 increased salt and drought tolerance by increasing jasmonic acid (JA) accumulation and activating reactive oxygen species (ROS) scavenging, whereas silencing this gene resulted in opposite phenotypes. JA-rich IbNAC087-OE (overexpression) plants exhibited more stomatal closure than wild-type (WT) and IbNAC087-Ri plants under NaCl, polyethylene glycol, and methyl jasmonate treatments. IbNAC087 functions as a nuclear transcriptional activator and directly activates the expression of the key JA biosynthesis-related genes lipoxygenase (IbLOX) and allene oxide synthase (IbAOS). Moreover, IbNAC087 physically interacted with a RING-type E3 ubiquitin ligase NAC087-INTERACTING E3 LIGASE (IbNIEL), negatively regulating salt and drought tolerance in sweet potato. IbNIEL ubiquitinated IbNAC087 to promote 26S proteasome degradation, which weakened its activation on IbLOX and IbAOS. The findings provide insights into the mechanism underlying the IbNIEL-IbNAC087 module regulation of JA-dependent salt and drought response in sweet potato and provide candidate genes for improving abiotic stress tolerance in crops.


Asunto(s)
Ciclopentanos , Ipomoea batatas , Oxilipinas , Cloruro de Sodio , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Resistencia a la Sequía , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Cell ; 32(4): 1102-1123, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32034034

RESUMEN

Cultivated sweet potato (Ipomoea batatas) is an important source of food for both humans and domesticated animals. Here, we show that the B-box (BBX) family transcription factor IbBBX24 regulates the jasmonic acid (JA) pathway in sweet potato. When IbBBX24 was overexpressed in sweet potato, JA accumulation increased, whereas silencing this gene decreased JA levels. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes involved in the JA pathway. IbBBX24 regulates JA responses by antagonizing the JA signaling repressor IbJAZ10, which relieves IbJAZ10's repression of IbMYC2, a JA signaling activator. IbBBX24 binds to the IbJAZ10 promoter and activates its transcription, whereas it represses the transcription of IbMYC2 The interaction between IbBBX24 and IbJAZ10 interferes with IbJAZ10's repression of IbMYC2, thereby promoting the transcriptional activity of IbMYC2. Overexpressing IbBBX24 significantly increased Fusarium wilt disease resistance, suggesting that JA responses play a crucial role in regulating Fusarium wilt resistance in sweet potato. Finally, overexpressing IbBBX24 led to increased yields in sweet potato. Together, our findings indicate that IbBBX24 plays a pivotal role in regulating JA biosynthesis and signaling and increasing Fusarium wilt resistance and yield in sweet potato, thus providing a candidate gene for developing elite crop varieties with enhanced pathogen resistance but without yield penalty.


Asunto(s)
Ciclopentanos/metabolismo , Resistencia a la Enfermedad , Fusarium/fisiología , Ipomoea batatas/inmunología , Ipomoea batatas/microbiología , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Acetatos/farmacología , Secuencia de Bases , Ciclopentanos/farmacología , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genoma de Planta , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Modelos Biológicos , Oxilipinas/farmacología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Nicotiana/genética , Nicotiana/microbiología , Transcripción Genética/efectos de los fármacos
7.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37569874

RESUMEN

Sucrose synthases (SUS; EC 2.4.1.13) encoded by a small multigene family are the central system of sucrose metabolism and have important implications for carbon allocation and energy conservation in nonphotosynthetic cells of plants. Though the SUS family genes (SUSs) have been identified in several plants, they have not been explored in sweet potato. In this research, nine, seven and seven SUSs were identified in the cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) as well as its two diploid wild relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively, and divided into three subgroups according to their phylogenetic relationships. Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network and expression patterns were systematically analyzed. The results indicated that the SUS gene family underwent segmental and tandem duplications during its evolution. The SUSs were highly expressed in sink organs. The IbSUSs especially IbSUS2, IbSUS5 and IbSUS7 might play vital roles in storage root development and starch biosynthesis. The SUSs could also respond to drought and salt stress responses and take part in hormone crosstalk. This work provides new insights for further understanding the functions of SUSs and candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes.


Asunto(s)
Ipomoea batatas , Ipomoea batatas/metabolismo , Filogenia , Diploidia , Almidón/metabolismo , Sacarosa/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835500

RESUMEN

Phytochrome-interacting factors (PIFs) are essential for plant growth, development, and defense responses. However, research on the PIFs in sweet potato has been insufficient to date. In this study, we identified PIF genes in the cultivated hexaploid sweet potato (Ipomoea batatas) and its two wild relatives, Ipomoea triloba, and Ipomoea trifida. Phylogenetic analysis revealed that IbPIFs could be divided into four groups, showing the closest relationship with tomato and potato. Subsequently, the PIFs protein properties, chromosome location, gene structure, and protein interaction network were systematically analyzed. RNA-Seq and qRT-PCR analyses showed that IbPIFs were mainly expressed in stem, as well as had different gene expression patterns in response to various stresses. Among them, the expression of IbPIF3.1 was strongly induced by salt, drought, H2O2, cold, heat, Fusarium oxysporum f. sp. batatas (Fob), and stem nematodes, indicating that IbPIF3.1 might play an important role in response to abiotic and biotic stresses in sweet potato. Further research revealed that overexpression of IbPIF3.1 significantly enhanced drought and Fusarium wilt tolerance in transgenic tobacco plants. This study provides new insights for understanding PIF-mediated stress responses and lays a foundation for future investigation of sweet potato PIFs.


Asunto(s)
Fusarium , Ipomoea batatas , Ipomoea , Fitocromo , Ipomoea batatas/metabolismo , Fusarium/metabolismo , Filogenia , Fitocromo/metabolismo , Sequías , Peróxido de Hidrógeno/metabolismo , Ipomoea/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
9.
New Phytol ; 236(6): 2151-2171, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36128653

RESUMEN

Drought limits crop development and yields. bHLH (basic helix-loop-helix) transcription factors play critical roles in regulating the drought response in many plants, but their roles in this process in sweet potato are unknown. Here, we report that two bHLH proteins, IbbHLH118 and IbbHLH66, play opposite roles in the ABA-mediated drought response in sweet potato. ABA treatment repressed IbbHLH118 expression but induced IbbHLH66 expression in the drought-tolerant sweet potato line Xushu55-2. Overexpressing IbbHLH118 reduced drought tolerance, whereas overexpressing IbbHLH66 enhanced drought tolerance, in sweet potato. IbbHLH118 directly binds to the E-boxes in the promoters of ABA-insensitive 5 (IbABI5), ABA-responsive element binding factor 2 (IbABF2) and tonoplast intrinsic protein 1 (IbTIP1) to suppress their transcription. IbbHLH118 forms homodimers with itself or heterodimers with IbbHLH66. Both of the IbbHLHs interact with the ABA receptor IbPYL8. ABA accumulates under drought stress, promoting the formation of the IbPYL8-IbbHLH66-IbbHLH118 complex. This complex interferes with IbbHLH118's repression of ABA-responsive genes, thereby activating ABA responses and enhancing drought tolerance. These findings shed light on the role of the IbPYL8-IbbHLH66-IbbHLH118 complex in the ABA-dependent drought response of sweet potato and identify candidate genes for developing elite crop varieties with enhanced drought tolerance.


Asunto(s)
Ácido Abscísico , Ipomoea batatas , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Sequías , Ipomoea batatas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
New Phytol ; 233(3): 1133-1152, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34773641

RESUMEN

Soil salinity and drought limit sweet potato yield. Scavenging of reactive oxygen species (ROS) by peroxidases (PRXs) is essential during plant stress responses, but how PRX expression is regulated under abiotic stress is not well understood. Here, we report that the B-box (BBX) family transcription factor IbBBX24 activates the expression of the class III peroxidase gene IbPRX17 by binding to its promoter. Overexpression of IbBBX24 and IbPRX17 significantly improved the tolerance of sweet potato to salt and drought stresses, whereas reducing IbBBX24 expression increased their susceptibility. Under abiotic stress, IbBBX24- and IbPRX17-overexpression lines showed higher peroxidase activity and lower H2 O2 accumulation compared with the wild-type. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes encoding ROS scavenging enzymes, including PRXs. Moreover, interaction between IbBBX24 and the APETALA2 (AP2) protein IbTOE3 enhances the ability of IbBBX24 to activate IbPRX17 transcription. Overexpression of IbTOE3 improved the tolerance of tobacco plants to salt and drought stresses by scavenging ROS. Together, our findings elucidate the mechanism underlying the IbBBX24-IbTOE3-IbPRX17 module in response to abiotic stress in sweet potato and identify candidate genes for developing elite crop varieties with enhanced abiotic stress tolerance.


Asunto(s)
Ipomoea batatas , Sequías , Regulación de la Expresión Génica de las Plantas , Ipomoea batatas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética
11.
Plant Cell Rep ; 41(11): 2159-2171, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35943560

RESUMEN

KEY MESSAGE: A novel interspecific somatic hybrid combining drought tolerance and high quality of sweet potato and Ipomoea triloba L. was obtained and its genetic and epigenetic variations were studied. Somatic hybridization can be used to overcome the cross-incompatibility between sweet potato (Ipomoea batatas (L.) Lam.) and its wild relatives and transfer useful and desirable genes from wild relatives to cultivated plants. However, most of the interspecific somatic hybrids obtained to date cannot produce storage roots and do not exhibit agronomic characters. In the present study, a novel interspecific somatic hybrid, named XT1, was obtained through protoplast fusion between sweet potato cv. Xushu 18 and its wild relative I. triloba. This somatic hybrid produced storage roots and exhibited significantly higher drought tolerance and quality compared with its cultivated parent Xushu 18. Transcriptome and real-time quantitative PCR (qRT-PCR) analyses revealed that the well-known drought stress-responsive genes in XT1 and I. triloba were significantly up-regulated under drought stress. The genomic structural reconstructions between the two genomes of the fusion parents in XT1 were confirmed using genomic in situ hybridization (GISH) and specific nuclear and cytoplasmic DNA markers. The DNA methylation variations were characterized by methylation-sensitive amplified polymorphism (MSAP). This study not only reveals the significance of somatic hybridization in the genetic improvement of sweet potato but also provides valuable materials and knowledge for further investigating the mechanism of storage root formation in sweet potato.


Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea batatas/genética , Ipomoea/genética , Sequías , Transcriptoma
12.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328509

RESUMEN

Calcium-dependent protein kinase (CDPKs) is one of the calcium-sensing proteins in plants. They are likely to play important roles in growth and development and abiotic stress responses. However, these functions have not been explored in sweet potato. In this study, we identified 39 CDPKs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), 35 CDPKs in diploid relative Ipomoea trifida (2n = 2x = 30), and 35 CDPKs in Ipomoea triloba (2n = 2x = 30) via genome structure analysis and phylogenetic characterization, respectively. The protein physiological property, chromosome localization, phylogenetic relationship, gene structure, promoter cis-acting regulatory elements, and protein interaction network were systematically investigated to explore the possible roles of homologous CDPKs in the growth and development and abiotic stress responses of sweet potato. The expression profiles of the identified CDPKs in different tissues and treatments revealed tissue specificity and various expression patterns in sweet potato and its two diploid relatives, supporting the difference in the evolutionary trajectories of hexaploid sweet potato. These results are a critical first step in understanding the functions of sweet potato CDPK genes and provide more candidate genes for improving yield and abiotic stress tolerance in cultivated sweet potato.


Asunto(s)
Ipomoea batatas , Ipomoea , Diploidia , Regulación de la Expresión Génica de las Plantas , Crecimiento y Desarrollo , Ipomoea/genética , Ipomoea batatas/genética , Filogenia , Estrés Fisiológico/genética
13.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054868

RESUMEN

WRKY transcription factors are one of the important families in plants, and have important roles in plant growth, abiotic stress responses, and defense regulation. In this study, we isolated a WRKY gene, ItfWRKY70, from the wild relative of sweet potato Ipomoea trifida (H.B.K.) G. Don. This gene was highly expressed in leaf tissue and strongly induced by 20% PEG6000 and 100 µM abscisic acid (ABA). Subcellar localization analyses indicated that ItfWRKY70 was localized in the nucleus. Overexpression of ItfWRKY70 significantly increased drought tolerance in transgenic sweet potato plants. The content of ABA and proline, and the activity of SOD and POD were significantly increased, whereas the content of malondialdehyde (MDA) and H2O2 were decreased in transgenic plants under drought stress. Overexpression of ItfWRKY70 up-regulated the genes involved in ABA biosynthesis, stress-response, ROS-scavenging system, and stomatal aperture in transgenic plants under drought stress. Taken together, these results demonstrated that ItfWRKY70 plays a positive role in drought tolerance by accumulating the content of ABA, regulating stomatal aperture and activating the ROS scavenging system in sweet potato.


Asunto(s)
Adaptación Fisiológica , Sequías , Ipomoea batatas/metabolismo , Ipomoea batatas/fisiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ipomoea batatas/genética , Modelos Biológicos , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estomas de Plantas/citología , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Protoplastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Estrés Fisiológico/genética , Nicotiana/citología , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional/genética , Regulación hacia Arriba/genética
14.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555491

RESUMEN

Sugar Will Eventually be Exported Transporter (SWEET) proteins are key transporters in sugar transportation. They are involved in the regulation of plant growth and development, hormone crosstalk, and biotic and abiotic stress responses. However, SWEET family genes have not been explored in the sweet potato. In this study, we identified 27, 27, and 25 SWEETs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These SWEETs were divided into four subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationships, gene structures, promoter cis-elements, protein interaction networks, and expression patterns of these 79 SWEETs were systematically investigated. The results suggested that homologous SWEETs are differentiated in sweet potato and its two diploid relatives and play various vital roles in plant growth, tuberous root development, carotenoid accumulation, hormone crosstalk, and abiotic stress response. This work provides a comprehensive comparison and furthers our understanding of the SWEET genes in the sweet potato and its two diploid relatives, thereby supplying a theoretical foundation for their functional study and further facilitating the molecular breeding of sweet potato.


Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolismo , Filogenia , Diploidia , Ipomoea/genética , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Yi Chuan ; 44(12): 1128-1140, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36927558

RESUMEN

Oil bodies, also known as lipid droplets or oil droplets, are important organelles for oil storage in plant cells. The oil body is composed of a monolayer of phospholipid membrane encapsulating neutral fatty acids, and a variety of membrane proteins are embedded in the membrane, including oleosin, caleosin and steroleosin, of which oleosin accounts for 80%-90%. Oleosin plays important biological roles in various biological roles, such as affecting the size and stability of oil bodies, formation and degradation of oil bodies, lipid metabolism, and seed maturation and germination. In this review, we summarize the sequence and structural characteristics of oleosin and its important role in plant growth and development based on the research progress of plant oleosin gene families at home and abroad in recent years. Additionally, we discuss the application of oleosin in actual production and problems in the research and application, in order to provide a useful reference for people to further study the functions of oleosin-related molecules and their application in production practice.


Asunto(s)
Orgánulos , Proteínas de Plantas , Humanos , Proteínas de Plantas/metabolismo , Orgánulos/metabolismo , Proteínas de la Membrana/metabolismo , Semillas
16.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575953

RESUMEN

Jasmonate ZIM-domain (JAZ) proteins are key repressors of a jasmonic acid signaling pathway. They play essential roles in the regulation of plant growth and development, as well as environmental stress responses. However, this gene family has not been explored in sweet potato. In this study, we identified 14, 15, and 14 JAZs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), and its two diploid relatives Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These JAZs were divided into five subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network, and expression pattern of these 43 JAZs were systematically investigated. The results suggested that there was a differentiation between homologous JAZs, and each JAZ gene played different vital roles in growth and development, hormone crosstalk, and abiotic stress response between sweet potato and its two diploid relatives. Our work provided comprehensive comparison and understanding of the JAZ genes in sweet potato and its two diploid relatives, supplied a theoretical foundation for their functional study, and further facilitated the molecular breeding of sweet potato.


Asunto(s)
Ciclopentanos/metabolismo , Ipomoea batatas/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas Represoras/genética , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Ipomoea batatas/crecimiento & desarrollo , Filogenia , Estrés Fisiológico/genética , Factores de Transcripción/genética
17.
Plant J ; 100(5): 1036-1051, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31436865

RESUMEN

Pre-harvest sprouting (PHS) is one of the major problems in cereal production worldwide, which causes significant losses of both yield and quality; however, the molecular mechanism underlying PHS remains largely unknown. Here, we identified a dominant PHS mutant phs9-D. The corresponding gene PHS9 encodes a higher plant unique CC-type glutaredoxin and is specifically expressed in the embryo at the late embryogenesis stage, implying that PHS9 plays some roles in the late stage of seed development. Yeast two-hybrid screening showed that PHS9 could interact with OsGAP, which is an interaction partner of the abscicic acid (ABA) receptor OsRCAR1. PHS9- or OsGAP overexpression plants showed reduced ABA sensitivity in seed germination, whereas PHS9 or OsGAP knock-out mutant plants showed increased ABA sensitivity in seed germination, suggesting that PHS9 and OsGAP acted as negative regulators in ABA signaling during seed germination. Interestingly, the germination of PHS9 and OsGAP overexpression or knock-out plant seeds was weakly promoted by H2 O2 , implying that PHS9 and OsGAP could affect reactive oxygen species (ROS) signaling during seed germination. These results indicate that PHS9 plays an important role in the regulation of rice PHS through the integration of ROS signaling and ABA signaling.


Asunto(s)
Ácido Abscísico/farmacología , Germinación/genética , Glutarredoxinas/genética , Oryza/genética , Plantones/genética , Semillas/genética , Ácido Abscísico/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Germinación/efectos de los fármacos , Glutarredoxinas/metabolismo , Peróxido de Hidrógeno/farmacología , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Tiempo
18.
Plant Cell Physiol ; 61(11): 1902-1911, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-32761079

RESUMEN

Gibberellins (GAs) are a class of tetracyclic diterpenoid phytohormones that regulate many aspects of plant development, including seed germination, stem elongation, leaf expansion, pollen maturation, and the development of flowers, fruits and seeds. During the past decades, the primary objective of crop breeding programs has been to increase productivity or yields. 'Green Revolution' genes that can produce semidwarf, high-yielding crops were identified as GA synthesis or response genes, confirming the value of research on GAs in improving crop productivity. The manipulation of GA status either by genetic alteration or by exogenous application of GA or GA biosynthesis inhibitors is often used to optimize plant growth and yields. In this review, we summarize the roles of GAs in major aspects of crop growth and development and present the possible targets for the fine-tuning of GA metabolism and signaling as a promising strategy for crop improvement.


Asunto(s)
Producción de Cultivos/métodos , Productos Agrícolas/crecimiento & desarrollo , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Productos Agrícolas/metabolismo , Productos Agrícolas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal
19.
Theor Appl Genet ; 133(5): 1365-1384, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31919537

RESUMEN

Modern agriculture relies heavily on chemical fertilizers, especially in terms of cereal production. The excess application of fertilizers not only increases production cost, but also causes severe environmental problems. As one of the major cereal crops, rice (Oryza sativa L.) provides the staple food for nearly half of population worldwide, especially in developing countries. Therefore, improving rice yield is always the priority for rice breeding. Macronutrients, especially nitrogen (N) and phosphorus (P), are two most important players for the grain yield of rice. However, with economic development and improved living standard, improving nutritional quality such as micronutrient contents in grains has become a new goal in order to solve the "hidden hunger." Micronutrients, such as iron (Fe), zinc (Zn), and selenium (Se), are critical nutritional elements for human health. Therefore, breeding the rice varieties with improved nutrient use efficiency (NUE) is thought to be one of the most feasible ways to increase both grain yield and nutritional quality with limited fertilizer input. In this review, we summarized the progresses in molecular dissection of genes for NUE by reverse genetics on macronutrients (N and P) and micronutrients (Fe, Zn, and Se), exploring natural variations for improving NUE in rice; and also, the current genetic toolbox and future perspectives for improving rice NUE are discussed.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nutrientes/análisis , Nutrientes/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética
20.
Plant J ; 95(3): 545-556, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29775500

RESUMEN

Pre-harvest sprouting (PHS) is an unfavorable trait in cereal crops that could seriously decrease grain yield and quality. Although some PHS-associated quantitative trait loci or genes in cereals have been reported, the molecular mechanism underlying PHS remains largely elusive. Here, we characterized a rice mutant, phs8, which exhibits PHS phenotype accompanied by sugary endosperm. Map-based cloning revealed that PHS8 encodes a starch debranching enzyme named isoamylase1. Mutation in PHS8 resulted in the phytoglycogen breakdown and sugar accumulation in the endosperm. Intriguingly, with increase of sugar contents, decreased expression of OsABI3 and OsABI5 as well as reduced sensitivity to abscisic acid (ABA) were found in the phs8 mutant. Using rice suspension cell system, we confirmed that exogenous sugar is sufficient to suppress the expression of both OsABI3 and OsABI5. Furthermore, overexpression of OsABI3 or OsABI5 could partially rescue the PHS phenotype of phs8. Therefore, our study presents important evidence supporting that endosperm sugar not only acts as an essential energy source for seed germination but also determines seed dormancy and germination by affecting ABA signaling.


Asunto(s)
Endospermo/metabolismo , Germinación , Oryza/metabolismo , Azúcares/metabolismo , Ácido Abscísico/fisiología , Endospermo/crecimiento & desarrollo , Genes de Plantas/genética , Genes de Plantas/fisiología , Germinación/genética , Germinación/fisiología , Glucógeno/metabolismo , Isoamilasa/genética , Isoamilasa/metabolismo , Mutación , Oryza/enzimología , Oryza/genética , Oryza/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA