Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci (China) ; 139: 1-11, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105037

RESUMEN

The lack of understanding of heavy metal speciation and solubility control mechanisms in smelting soils limits the effective pollution control. In this study smelting soils were investigated by an advanced mineralogical analysis (AMICS), leaching tests and thermodynamic modelling. The aims were to identify the partitioning and release behaviour of Pb, Zn, Cd and As. The integration of multiple techniques was necessary and displayed coherent results. In addition to the residual fraction, Pb and Zn were predominantly associated with reducible fractions, and As primarily existed as the crystalline iron oxide-bound fractions. AMICS quantitative analysis further confirmed that Fe oxyhydroxides were the common dominant phase for As, Cd, Pb and Zn. In addition, a metal arsenate (paulmooreite) was an important mineral host for Pb and As. The pH-stat leaching indicted that the release of Pb, Zn and Cd increased towards low pH values while release of As increased towards high pH values. The separate leaching schemes were associated with the geochemical behaviour under the control of minerals and were confirmed by thermodynamic modelling. PHREEQC calculations suggested that the formation of arsenate minerals (schultenite, mimetite and koritnigite) and the binding to Fe oxyhydroxides synchronously controlled the release of Pb, Zn, Cd and As. Our results emphasized the governing role of Fe oxyhydroxides and secondary insoluble minerals in natural attenuation of heavy metals, which provides a novelty strategy for the stabilization of multi-metals in smelting sites.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Zinc/análisis , Arseniatos , Plomo/análisis , Cadmio/análisis , Suelo/química , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Minerales , China
2.
J Transl Med ; 21(1): 492, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480074

RESUMEN

BACKGROUND: Diet may influence biological aging and the discrepancy (∆age) between a subject's biological age (BA) and chronological age (CA). We aimed to investigate the correlation of dietary flavonoids with the ∆age of organs (heart, kidney, liver) and the whole body. METHOD: A total of 3193 United States adults were extracted from the National Health and Nutrition Examination Survey (NHANES) in 2007-2008 and 2017-2018. Dietary flavonoids intake was assessed using 24-h dietary recall method. Multiple linear regression analysis was performed to evaluate the association of dietary flavonoids intake with the ∆age of organs (heart, kidney, liver) and the whole body. BA was computed based on circulating biomarkers, and the resulting ∆age was tested as an outcome in linear regression analysis. RESULTS: The ∆age of the whole body, heart, and liver was inversely associated with higher flavonoids intake (the whole body ∆age ß = - 0.58, cardiovascular ∆age ß = - 0.96, liver ∆age ß = - 3.19) after adjustment for variables. However, higher flavonoids intake positively related to renal ∆age (ß = 0.40) in participants with chronic kidney disease (CKD). Associations were influenced by population characteristics, such as age, health behavior, or chronic diseases. Anthocyanidins, isoflavones and flavones had the strongest inverse associations between the whole body ∆age and cardiovascular ∆age among all the flavonoids subclasses. CONCLUSION: Flavonoids intake positively contributes to delaying the biological aging process, especially in the heart, and liver organ, which may be beneficial for reducing the long-term risk of cardiovascular or liver disease.


Asunto(s)
Flavonoides , Corazón , Adulto , Humanos , Encuestas Nutricionales , Hígado , Envejecimiento
3.
J Cell Mol Med ; 26(6): 1826-1841, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33738906

RESUMEN

Pre-eclampsia (PE) is a worldwide pregnancy-related disorder. It is mainly characterized by defect migration and invasion of trophoblast cells. Recently, circular RNAs (circRNAs) have been believed to play a vital role in PE. The expression patterns and the biological functions of circRNAs in PE remain elusive. Here, we performed a circRNA microarray to identify putative PE-related circRNAs. Bioinformatics analyses were used to screen the circRNAs which have potential relationships with pre-eclampsia, and we identified a novel circRNA (circVRK1) that was up-regulated in PE placenta tissues. By using HTR-8/SVneo cells, circVRK1 knockdown significantly enhanced cell migration and invasion abilities, as well as epithelial-mesenchymal transition (EMT). Mechanistically, we found that circVRK1 and PTEN could function as the ceRNAs to miR-221-3p. Overexpression of miR-221-3p promoted cell migration, invasion and EMT via regulating PTEN. The cotransfection of miR-221-3p inhibitor or PTEN reversed the effect from circVRK1 knockdown. Moreover, the circVRK1/miR-221-3p/PTEN axis greatly regulated Akt phosphorylation. In general, circVRK1 suppresses trophoblast cell migration, invasion and EMT, by acting as a ceRNA to miR-221-3p to regulate PTEN, and further inhibit PI3K/Akt activation. The purpose of this paper is to open wide insights to investigate the onset of PE and provide new potential therapeutic targets in PE.


Asunto(s)
MicroARNs , Preeclampsia , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular , MicroARNs/genética , MicroARNs/metabolismo , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética
4.
Brief Bioinform ; 21(3): 762-776, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30868167

RESUMEN

The spatial position and interaction of drugs and their targets is the most important characteristics for understanding a drug's pharmacological effect, and it could help both in finding new and more precise treatment targets for diseases and in exploring the targeting effects of the new drugs. In this work, we develop a computational pipeline to confirm the spatial interaction relationship of the drugs and their targets and compare the drugs' efficacies based on the interaction centers. First, we produce a 100-sample set to reconstruct a stable docking model of the confirmed drug-target pairs. Second, we set 5.5 Å as the maximum distance threshold for the drug-amino acid residue atom interaction and construct 3-dimensional interaction surface models. Third, by calculating the spatial position of the 3-dimensional interaction surface center, we develop a comparison strategy for estimating the efficacy of different drug-target pairs. For the 1199 drug-target interactions of the 649 drugs and 355 targets, the drugs that have similar interaction center positions tend to have similar efficacies in disease treatment, especially in the analysis of the 37 targeted relationships between the 15 known anti-cancer drugs and 10 target molecules. Furthermore, the analysis of the unpaired anti-cancer drug and target molecules suggests that there is a potential application for discovering new drug actions using the sampling molecular docking and analyzing method. The comparison of the drug-target interaction center spatial position method better reflect the drug-target interaction situations and could support the discovery of new efficacies among the known anti-cancer drugs.


Asunto(s)
Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Antineoplásicos/química , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular
5.
J Am Chem Soc ; 143(15): 5727-5736, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33847495

RESUMEN

Photocatalytic nitrogen fixation reaction can harvest the solar energy to convert the abundant but inert N2 into NH3. Here, utilizing metal-organic framework (MOF) membranes as the ideal assembly of nanoreactors to disperse and confine gold nanoparticles (AuNPs), we realize the direct plasmonic photocatalytic nitrogen fixation under ambient conditions. Upon visible irradiation, the hot electrons generated on the AuNPs can be directly injected into the N2 molecules adsorbed on Au surfaces. Such N2 molecules can be additionally activated by the strong but evanescently localized surface plasmon resonance field, resulting in a supralinear intensity dependence of the ammonia evolution rate with much higher apparent quantum efficiency and lower apparent activation energy under stronger irradiation. Moreover, the gas-permeable Au@MOF membranes, consisting of numerous interconnected nanoreactors, can ensure the dispersity and stability of AuNPs, further facilitate the mass transfer of N2 molecules and (hydrated) protons, and boost the plasmonic photocatalytic reactions at the designed gas-membrane-solution interface. As a result, an ammonia evolution rate of 18.9 mmol gAu-1 h-1 was achieved under visible light (>400 nm, 100 mW cm-2) with an apparent quantum efficiency of 1.54% at 520 nm.

6.
Curr Microbiol ; 76(5): 545-551, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30899986

RESUMEN

Autophagy is a highly conserved mechanism to overcome various stresses and recycle cytoplasmic components and organelles. Ubiquitin-like (UBL) protein Atg12 is a key protein involved in autophagosome formation through stimulation of Atg8 conjugation to phosphatidylethanolamine. Here, we describe the identification of the autophagy-related gene Acatg12, encoding an Atg12 homologous protein in the cephalosporin C producing fungus Acremonium chrysogenum. Disruption of Acatg12 impaired the delivery and degradation of eGFP-Atg8, indicating that the autophagic process was blocked. Meanwhile, conidiation was dramatically reduced in the Acatg12 disruption mutant (∆Acatg12). In contrast, cephalosporin C production was increased twofold in ∆Acatg12, but fungal growth was reduced after 6 days fermentation. Consistent with these results, the transcriptional level of the cephalosporin biosynthetic genes was increased in ∆Acatg12. The results extend our understanding of autophagy in filamentous fungi.


Asunto(s)
Acremonium/genética , Proteína 7 Relacionada con la Autofagia/genética , Autofagia/genética , Proteínas Fúngicas/genética , Acremonium/metabolismo , Cefalosporinas/biosíntesis , Fermentación , Regulación Fúngica de la Expresión Génica , Mutación , Esporas Fúngicas/crecimiento & desarrollo
7.
Biochem Cell Biol ; 96(5): 636-645, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29671340

RESUMEN

Indirubin and isatin have been used in the treatment of inflammatory diseases due to their anti-inflammatory properties. This study aimed to evaluate the combined effect of indirubin and isatin on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). UC was induced by the administration of 3% (w/v) DSS solution, and then the model mice were administered indirubin (10 mg/kg body mass) and (or) isatin (10 mg/kg body mass) by gavage once daily for 7 days. The results showed that indirubin and isatin, individually or combined, significantly inhibited weight loss, lowered disease activity index (DAI), ameliorated pathological changes, decreased the levels of pro-inflammatory mediators and myeloperoxidase (MPO) activity, increased the expression of anti-inflammatory cytokines and Foxp3, suppressed CD4+ T cell infiltration, and inhibited oxidative stress and epithelial cell apoptosis. Additionally, indirubin and isatin, both individually and combined, can also inhibit activation of the NF-κB and MAPK pathways induced by DSS. The protective effect of combination therapy against UC was superior to that of single-agent treatment. These results suggest that indirubin combined with isatin attenuates DSS-induced UC, and changes to the NF-κB and MAPK signaling pathways may mediate the protective effects of indirubin and isatin in UC.


Asunto(s)
Linfocitos T CD4-Positivos , Colitis Ulcerosa , Sulfato de Dextran/toxicidad , Isatina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Relación Dosis-Respuesta a Droga , Células Epiteliales/inmunología , Células Epiteliales/patología , Indoles/farmacología , Sistema de Señalización de MAP Quinasas/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/inmunología
8.
Microb Cell Fact ; 17(1): 87, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29879990

RESUMEN

BACKGROUND: Cephalosporin C (CPC) produced by Acremonium chrysogenum is one of the most important drugs for treatment of bacterial infectious diseases. As the major stimulant, methionine is widely used in the industrial production of CPC. In this study, we found methionine stimulated CPC production through enhancing the accumulation of endogenous S-adenosylmethionine (SAM). To overcome the methionine dependent stimulation of CPC production, the methionine cycle of A. chrysogenum was reconstructed by metabolic engineering. RESULTS: Three engineered strains were obtained by overexpressing the SAM synthetase gene AcsamS and the cystathionine-γ-lyase gene mecB, and disrupting a SAM dependent methyltransferase gene Acppm1, respectively. Overexpression of AcsamS resulted in fourfold increase of CPC production which reached to 129.7 µg/mL. Disruption of Acppm1 also increased CPC production (up to 135.5 µg/mL) through enhancing the accumulation of intracellular SAM. Finally, an optimum recombinant strain (Acppm1DM-mecBOE) was constructed through overexpressing mecB in the Acppm1 disruption mutant. In this strain, CPC production reached to the maximum value (142.7 µg/mL) which was 5.5-fold of the wild-type level and its improvement was totally independent of methionine stimulation. CONCLUSIONS: In this study, we constructed a recombinant strain in which the improvement of CPC production was totally independent of methionine stimulation. This work provides an economic route for improving CPC production in A. chrysogenum through metabolic engineering.


Asunto(s)
Acremonium/patogenicidad , Cefalosporinas/metabolismo , Ingeniería Metabólica/métodos , Metionina/metabolismo
9.
Clin Exp Pharmacol Physiol ; 44 Suppl 1: 30-37, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28602041

RESUMEN

The aging process directly impacts bodily functions on multiple levels, including a reduced ability to resist stress, damage and disease. Besides changes in metabolic control, the aging process coincides with the altered long non-coding RNAs (lncRNAs) expression, which are ≥200nt long class of non-protein coding RNAs. The majority of non-coding transcripts of mammalian organs and tissues are expressed in developmentally regulated and cell-type specific manners. Specific altered lncRNA level has been involved in induction and maintenance of the whole human body aging with highly specific spatial andtemporal expression patterns. Furthermore, many lncRNAs are transcribed in sense, antisense and bidirectional manners in the mammalian genome. They play a vital role in regulating organ or tissue differentiation during aging by binding with miRNA or proteins to act as a decoy. Recently, the correlation between lncRNAs and aging has been studied intensely. Here, we have summarized some examples of known and novel lncRNAs that have been implicated in the aging process in the whole mammalian body and we discuss these patterns, conservation and characters during aging. This may further promote the development of research on lncRNAs and the aging process.


Asunto(s)
Envejecimiento/genética , ARN Largo no Codificante/genética , Factores de Edad , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , ARN Largo no Codificante/metabolismo , Transducción de Señal , Transcriptoma
10.
Microbiology (Reading) ; 162(3): 537-551, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26744083

RESUMEN

SCO6256 belongs to the GntR family and shows 74% identity with SCO6974, which is the repressor of myo-inositol catabolism in Streptomyces coelicolor A3(2). Disruption of SCO6256 significantly enhanced the transcription of myo-inositol catabolic genes in R2YE medium. The purified recombinant SCO6256 directly bound to the upstream regions of SCO2727, SCO6978 and SCO6985, as well as its encoding gene. Footprinting assays demonstrated that SCO6256 bound to the same sites in the myo-inositol catabolic gene cluster as SCO6974. The expression of SCO6256 was repressed by SCO6974 in minimal medium with myo-inositol as the carbon source, but not in R2YE medium. Glutathione-S-transferase pull-down assays demonstrated that SCO6974 and SCO6256 interacted with each other; and both of the proteins controlled the transcription of myo-inositol catabolic genes in R2YE medium. These results indicated SCO6256 regulates the transcription of myo-inositol catabolic genes in coordination with SCO6974 in R2YE medium. In addition, SCO6256 negatively regulated the production of actinorhodin and calcium-dependent antibiotic via control of the transcription of actII-ORF4 and cdaR. SCO6256 bound to the upstream region of cdaR and the binding sequence was proved to be TTTCGGCACGCAGACAT, which was further confirmed through base substitution. Four putative targets (SCO2652, SCO4034, SCO4237 and SCO6377) of SCO6256 were found by screening the genome sequence of Strep. coelicolor A3(2) based on the conserved binding motif, and confirmed by transcriptional analysis and electrophoretic mobility shift assays. These results revealed that SCO6256 is involved in the regulation of myo-inositol catabolic gene transcription and antibiotic production in Strep. coelicolor A3(2).


Asunto(s)
Antibacterianos/biosíntesis , Regulación Bacteriana de la Expresión Génica , Inositol/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Sitios de Unión , Huella de ADN , Técnicas de Inactivación de Genes , Unión Proteica , Mapeo de Interacción de Proteínas , Factores de Transcripción/genética
11.
Appl Microbiol Biotechnol ; 99(7): 3141-53, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25575890

RESUMEN

Myo-inositol is important for Streptomyces growth and morphological differentiation. Genomic sequence analysis revealed a myo-inositol catabolic gene cluster in Streptomyces coelicolor. Disruption of the corresponding genes in this cluster abolished the bacterial growth on myo-inositol as a single carbon source. The transcriptions of these genes were remarkably enhanced by addition of myo-inositol in minimal medium. A putative regulatory gene SCO6974, encoding a GntR family protein, is situated in the cluster. Disruption of SCO6974 significantly enhanced the transcription of myo-inositol catabolic genes. SCO6974 was shown to interact with the promoter regions of myo-inositol catabolic genes using electrophoretic mobility shift assays. DNase I footprinting assays demonstrated that SCO6974 recognized a conserved palindromic sequence (A/T)TGT(A/C)N(G/T)(G/T)ACA(A/T). Base substitution of the conserved sequence completely abolished the binding of SCO6974 to the targets demonstrating that SCO6974 directly represses the transcriptions of myo-inositol catabolic genes. Furthermore, the disruption of SCO6974 was correlated with a reduced sporulation of S. coelicolor in mannitol soya flour medium and with the overproduction of actinorhodin and calcium-dependent antibiotic. The addition of myo-inositol suppressed the sporulation deficiency of the mutant, indicating that the effect could be related to a shortage in myo-inositol due to its enhanced catabolism in this strain. This enhanced myo-inositol catabolism likely yields dihydroxyacetone phosphate and acetyl-CoA that are indirect or direct precursors of the overproduced antibiotics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Inositol/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Carbono/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Inositol/genética , Familia de Multigenes , Mutación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Esporas Bacterianas/genética , Streptomyces coelicolor/crecimiento & desarrollo , Streptomyces coelicolor/fisiología
12.
Molecules ; 19(6): 8503-17, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24959678

RESUMEN

Commiphora opobalsamum is a Traditional Chinese Medicine used to treat traumatic injury, mainly by relaxing blood vessels. In this study, two diterpenes, dehydroabietic acid (DA) and sandaracopimaric acid (SA) were obtained from it by a bioassay-guided approach using isolated rat pulmonary artery rings. The structures of the two compounds were elucidated by spectroscopic methods (IR, 1H- and 13C-NMR, HR-ESI-MS). Both DA and SA reduced the contraction of phenylephrine-induced pulmonary arteries in a concentration-dependent manner, and endothelium contributed greatly to the vasodilatory effect of DA. This effect of DA was attenuated by NG-Nitro-L-arginine methyl ester (L-NAME, an eNOS inhibitor). Meanwhile, DA increased nitric oxide (NO) production, along with the increase of phosphorylation level of eNOS and Akt in endothelial cells. LY294002 (a PI3K inhibitor) could reverse this effect, which suggested the endothelial PI3K/Akt pathway involved in the mechanism underlying DA-induced relaxation of pulmonary artery. This work provided evidence of vasorelaxant substances in Commiphora opobalsamum and validated that PI3K/Akt-eNOS pathway was associated with DA-induced pulmonary artery vasodilation.


Asunto(s)
Abietanos/farmacología , Diterpenos/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Arteria Pulmonar/fisiología , Vasodilatación/efectos de los fármacos , Abietanos/química , Animales , Células Cultivadas , Cromonas/farmacología , Commiphora/metabolismo , Diterpenos/química , Evaluación Preclínica de Medicamentos , Células Endoteliales/fisiología , Inhibidores Enzimáticos/farmacología , Masculino , Medicina Tradicional China , Morfolinas/farmacología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Arteria Pulmonar/citología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
13.
Environ Pollut ; 341: 122939, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37981182

RESUMEN

Groundwater pollution is a recurrent problem in abandoned non-ferrous metal smelting sites, and its severity is influenced by topsoil contamination, hydrogeological characteristics, and hydrogeochemical conditions. In such unique areas, traditional methods for evaluating groundwater pollution risk are biased, as the long production history of these sites have led to highly polluted and heterogeneous soil and groundwater. Herein, based on a typical lead-zinc smelting site, As, Pb, Zn, Cd, Mn, and Ni were found to be the predominant heavy metal (loid)s in groundwater, with respective exceedance rates of 44.4%, 50.0%, 72.2%, 88.9%, 88.9%, and 61.1%. Combined with the groundwater pollution characteristics, the representative hydrogeochemical factors were screened out to optimize the following aquifer vulnerability evaluation using the AHP-DRASTICH method. A comprehensive evaluation model (DI-NCPI) for groundwater pollution risk was established by combining the DRASTICH index (DI) obtained after optimization and the Nemerow comprehensive contamination index (NCPI) of topsoil. The fit between DI-NCPI and groundwater heavy metal (loid) pollution index reached 0.956, which laterally confirms that the model has some reference value. In terms of distribution, the high-risk and very high-risk zones were mainly concentrated in the zinc smelting system, located in the southeastern and central-western parts of the site. These areas have relatively high levels of topsoil contamination and aquifer vulnerability and require focused attention in site remediation. This research highlights the importance of combining topsoil contamination and aquifer vulnerability to evaluate groundwater pollution risk in smelting areas. It provides a more targeted reference for groundwater remediation strategies in abandoned smelting sites, as well as severely polluted industrial areas.


Asunto(s)
Agua Subterránea , Metales Pesados , Contaminantes del Suelo , Zinc/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Medición de Riesgo , Metales Pesados/análisis , Suelo , China
14.
Drug Deliv Transl Res ; 14(6): 1432-1457, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38117405

RESUMEN

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common clinical critical diseases with high morbidity and mortality. Especially since the COVID-19 outbreak, the mortality rates of critically ill patients with ARDS can be as high as 60%. Therefore, this problem has become a matter of concern to respiratory critical care. To date, the main clinical measures for ALI/ARDS are mechanical ventilation and drug therapy. Although ventilation treatment reduces mortality, it increases the risk of hyperxemia, and drug treatment lacks safe and effective delivery methods. Therefore, novel therapeutic strategies for ALI/ARDS are urgently needed. Developments in nanotechnology have allowed the construction of a safe, efficient, precise, and controllable drug delivery system. However, problems still encounter in the treatment of ALI/ARDS, such as the toxicity, poor targeting ability, and immunogenicity of nanomaterials. Cell-derived biomimetic nanodelivery drug systems have the advantages of low toxicity, long circulation, high targeting, and high bioavailability and show great therapeutic promises for ALI/ARDS owing to their acquired cellular biological features and some functions. This paper reviews ALI/ARDS treatments based on cell membrane biomimetic technology and extracellular vesicle biomimetic technology, aiming to achieve a significant breakthrough in ALI/ARDS treatments.


Asunto(s)
Lesión Pulmonar Aguda , Nanopartículas , Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Nanopartículas/administración & dosificación , Lesión Pulmonar Aguda/tratamiento farmacológico , Materiales Biomiméticos/química , Materiales Biomiméticos/administración & dosificación , Sistemas de Liberación de Medicamentos , COVID-19 , Biomimética , Tratamiento Farmacológico de COVID-19 , Animales
15.
Huan Jing Ke Xue ; 45(5): 2939-2951, 2024 May 08.
Artículo en Zh | MEDLINE | ID: mdl-38629555

RESUMEN

Heavy metal pollution in soils of smelting sites is an important environmental problem to be solved urgently. Solidification technology has become one of the mainstream technologies for heavy metal remediation in contaminated sites owing to its shorter remediation time, low cost, and high treatment efficiency. On the basis of summarizing the latest research progress on the remediation of heavy metal pollution in sites by solidification in the past 10 years, this study focused on the mechanisms of solidification technology and analyzed the advantages and disadvantages of different mechanisms (mechanism of inorganic materials, mechanism of organic materials, mechanism of mechanical ball milling, and mechanism of microbial-induced carbonate mineralization (MICP)) and their scope of application. Then, according to the research focus and development trend presented by CiteSpace, the application prospects and limiting factors of MICP technology for the solidification and remediation of heavy metal pollution in sites were summarized from three aspects:the application of MICP in multi-metal remediation, the application of MICP composites in contaminated sites, and the influencing factors of MICP technology application. Finally, the prospects and challenges in solidification technology were put forward in order to provide reference for the future development.

16.
Oncogene ; 43(6): 420-433, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092960

RESUMEN

Dysregulated expression of long-stranded non-coding RNAs is strongly associated with carcinogenesis. However, the precise mechanisms underlying their involvement in ovarian cancer pathogenesis remain poorly defined. Here, we found that lncRNA RUNX1-IT1 plays a crucial role in the progression of ovarian cancer. Patients with high RUNX1-IT1 expression had shorter survival and poorer outcomes. Notably, knockdown of RUNX1-IT1 suppressed the proliferation, migration and invasion of ovarian cancer cells in vitro, and reduced the formation of peritoneum metastasis in vivo. Mechanistically, RUNX1-IT1 bound to HDAC1, the core component of the NuRD complex, and STAT1, acting as a molecular scaffold of the STAT1 and NuRD complex to regulate intracellular reactive oxygen homeostasis by altering the histone modification status of downstream targets including GPX1. Consequently, RUNX1-IT1 activated NF-κB signaling and altered the biology of ovarian cancer cells. In conclusion, our findings demonstrate that RUNX1-IT1 promotes ovarian malignancy and suggest that targeting RUNX1-IT1 represents a promising therapeutic strategy for ovarian cancer treatment.


Asunto(s)
Neoplasias Ováricas , ARN Largo no Codificante , Humanos , Femenino , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Histona Desacetilasas/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
17.
Adv Healthc Mater ; 13(16): e2400381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467587

RESUMEN

Cancer stem cells (CSCs) are essential for tumor initiation, recurrence, metastasis, and resistance. However, targeting CSCs as a therapeutic approach remains challenging. Here, a stemness signature based on 22-gene is developed to predict prognosis in esophageal squamous cell carcinoma (ESCC). Staurosporine (STS) is identified as a radioresistance suppressor by high-throughput screening of a library of 2131 natural compounds, leading to dramatically improved radiotherapy efficacy in subcutaneous tumor models. Mechanistically, STS inhibits cell proliferation through the mTOR/AKT signaling pathway and suppressed stemness by targeting ATP-binding cassette A1 (ABCA1), which is transcriptionally regulated by liver X receptor alpha (LXRα). STS can selectively bind to the nucleotide-binding domain (NBD) of ABCA1 and compete for ATP, blocking ABCA1-mediated drug efflux and facilitating intracellular accumulation of STS. Considering the cytotoxicity of STS, an extracellular vesicle-encapsulated STS system (EV-STS) is established for effective STS delivery. EV-STS shows remarkable tumor growth inhibition, even at half the dose of STS, with superior safety and efficacy. These findings indicate that ABCA1 may serve as a predictor of response to neoadjuvant chemotherapy and/or radiotherapy in ESCC patients. EV-STS has shown improved antitumor efficacy and low systemic toxicity, offering a promising therapeutic approach for ESCC.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Vesículas Extracelulares , Tolerancia a Radiación , Estaurosporina , Humanos , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Estaurosporina/farmacología , Estaurosporina/análogos & derivados , Animales , Vesículas Extracelulares/metabolismo , Tolerancia a Radiación/efectos de los fármacos , Línea Celular Tumoral , Ratones , Proliferación Celular/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/terapia , Ratones Desnudos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Ratones Endogámicos BALB C
18.
J Hazard Mater ; 471: 134408, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678716

RESUMEN

The occurrence and migration of colloids at smelting sites are crucial for the formation of multi-metal(loid)s pollution in groundwater. In this study, the behavior of natural colloids (1 nm-0.45 µm) at an abandoned smelting site was investigated by analyzing groundwater samples filtered through progressively decreasing pore sizes. Smelting activities in this site had negatively impacted the groundwater quality, leading to elevated concentrations of zinc (Zn), lead (Pb), arsenic (As), and cadmium (Cd). The results showed that heavy metal(loid)-bearing colloids were ubiquitous in the groundwater with the larger colloidal fractions (∼75 -450 nm) containing higher abundances of pollutants. It was also observed that the predominant colloids consisted of Zn-Al layered double hydroxide (LDH), sphalerite, kaolinite, and hematite. By employing multiple analytical techniques, including leaching experiments, soil colloid characterization, and Pb stable isotope measurements, the origin of groundwater colloids was successfully traced to the topsoil colloids. Most notably, our findings highlighted the increased risk of heavy metal(loid)s migration from polluted soils into adjacent sites through the groundwater because of colloid-mediated transport of contaminants. This field-scale investigation provides valuable insights into the geochemical processes governing heavy metal(loid) behavior as well as offering pollution remediation strategies specifically tailored for contaminated groundwater.

19.
EBioMedicine ; 105: 105177, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924839

RESUMEN

BACKGROUND: The 5-year survival rate of oesophageal squamous cell carcinoma (ESCC) is approximately 20%. The prognosis and drug response exhibit substantial heterogeneity in ESCC, impeding progress in survival outcomes. Our goal is to identify a signature for tumour subtype classification, enabling precise clinical treatments. METHODS: Utilising pre-treatment multi-omics data from an ESCC dataset (n = 310), an enhancer methylation-eRNA-target gene regulation network was constructed and validated by in vitro experiments. Four machine learning methods collectively identified core target genes, establishing an Enhancer Demethylation-Regulated Gene Score (EDRGS) model for classification. The molecular function of EDRGS subtyping was explored in scRNA-seq (n = 60) and bulk-seq (n = 310), and the EDRGS's potential to predict treatment response was assessed in datasets of various cancer types. FINDINGS: EDRGS stratified ESCCs into EDRGS-high/low subtypes, with EDRGS-high signifying a less favourable prognosis in ESCC and nine additional cancer types. EDRGS-high exhibited an immune-hot but immune-suppressive phenotype with elevated immune checkpoint expression, increased T cell infiltration, and IFNγ signalling in ESCC, suggesting a better response to immunotherapy. Notably, EDRGS outperformed PD-L1 in predicting anti-PD-1/L1 therapy effectiveness in ESCC (n = 42), kidney renal clear cell carcinoma (KIRC, n = 181), and bladder urothelial carcinoma (BLCA, n = 348) cohorts. EDRGS-low showed a cell cycle-activated phenotype with higher CDK4 and/or CDK6 expression, demonstrating a superior response to the CDK4/6 inhibitor palbociclib, validated in ESCC (n = 26), melanoma (n = 18), prostate cancer (n = 15) cells, and PDX models derived from patients with pancreatic cancer (n = 30). INTERPRETATION: Identification of EDRGS subtypes enlightens ESCC categorisation, offering clinical insights for patient management in immunotherapy (anti-PD-1/L1) and CDK4/6 inhibitor therapy across cancer types. FUNDING: This study was supported by funding from the National Key R&D Program of China (2021YFC2501000, 2020YFA0803300), the National Natural Science Foundation of China (82030089, 82188102), the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-018, 2022-I2M-2-001, 2021-I2M-1-067), the Fundamental Research Funds for the Central Universities (3332021091).

20.
Cancer Lett ; 587: 216731, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38369005

RESUMEN

Therapy resistance and metastatic progression jointly determine the fatal outcome of cancer, therefore, elucidating their crosstalk may provide new opportunities to improve therapeutic efficacy and prevent recurrence and metastasis in esophageal squamous cell carcinoma (ESCC). Here, we have established radioresistant ESCC cells with the remarkable metastatic capacity, and identified miR-494-3p (miR494) as a radioresistant activator. Mechanistically, we demonstrated that cullin 3 (CUL3) is a direct target of miR494, which is transcriptionally regulated by JunD, and highlighted that JunD-miR494-CUL3 axis promotes radioresistance and metastasis by facilitating epithelial-mesenchymal transition (EMT) and restraining programmed cell death 1 ligand 1 (PD-L1) degradation. In clinical specimens, miR494 is significantly up-regulated and positively associated with T stage and lymph node metastasis in ESCC tissues and serum. Notably, patients with higher serum miR494 expression have poor prognosis, and patients with higher CUL3 expression have more conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs), less cancer-associated fibroblasts (CAF2/4), and tumor endothelial cells (TEC2/3) infiltration than patients with lower CUL3 expression, suggesting that CUL3 may be involved in tumor microenvironment (TME). Overall, miR494 may serve as a potential prognostic predictor and therapeutic target, providing a promising strategy for ESCC treatment.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/radioterapia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Células Endoteliales/metabolismo , Pronóstico , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Microambiente Tumoral , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Cullin/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA