Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 20(24): 4806-4815, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38855884

RESUMEN

Hydrogels are widely utilized in the sensor field, but their inadequate adhesion presents a significant obstacle. Herein, a new multifunctional BNMFs/PAA composite hydrogel was prepared via the incorporation of one-dimensional porous boron nitride microfibers (BNMFs) and polyacrylic acid (PAA) hydrogels. BNMFs, as a reinforcing filler, play a very important role in enhancing the properties of the composite hydrogels. In particular, the porous micrometer structure plays a unique role in improving the adhesion properties of PAA hydrogels. The steric hindrance and the rich hydroxyl functional groups coming from BNMFs are key factors for the excellent adhesion of the composite hydrogels. The composite hydrogels show strong adhesion to various substrate materials. For iron plates and biological tissues, the adhesion energy can reach 1377 J m-2 and 317 J m-2, respectively. In addition, the developed BNMFs/PAA composite hydrogels exhibit excellent mechanical properties. The fracture strain of the composite hydrogels is increased by 2.4 times compared to pure PAA hydrogels. The hydrogen bonds formed between BNMFs and PAA are conducive to the mechanical properties of the BNMFs/PAA composite hydrogels. Meanwhile, BNMFs as fillers play a role in carrying and dissipating force. Furthermore, the BNMFs/PAA composite hydrogels have excellent strain and pH response characteristics. This is because the crosslinking network of the composite hydrogels becomes loose after the addition of BNMFs, resulting in rapid ion transport pathways. Therefore, the developed BNMFs/PAA composite hydrogels will have broad application prospects in the fields of motion monitoring, intelligent skin and biological adhesives.

2.
Pediatr Surg Int ; 40(1): 141, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811418

RESUMEN

OBJECTIVE: Heterotopic pancreas, an uncommon condition in children, can present with diagnostic and treatment challenges. This study aimed to evaluate the clinical features and treatment options for this disorder in pediatric patients. METHODS: We conducted a retrospective analysis, including patients diagnosed with heterotopic pancreas at four tertiary hospitals between January 2000 and June 2022. Patients were categorized into symptomatic and asymptomatic groups based on clinical presentation. Clinical parameters, including age at surgery, lesion size and site, surgical or endoscopic approach, pathological findings, and outcome, were statistically analyzed. RESULTS: The study included 88 patients with heterotopic pancreas. Among them, 22 were symptomatic, and 41 were aged one year or younger. The heterotopic pancreas was commonly located in Meckel's diverticulum (46.59%), jejunum (20.45%), umbilicus (10.23%),ileum (7.95%), and stomach (6.82%). Sixty-six patients had concomitant diseases. Thirty-three patients had heterotopic pancreas located in the Meckel's diverticulum, with 80.49% of cases accompanied by gastric mucosa heterotopia (GMH). Patients without accompanying GMH had a higher prevalence of heterotopic pancreas-related symptoms (75%). Treatment modalities included removal of the lesions by open surgery, laparoscopic or laparoscopic assisted surgery, or endoscopic surgery based on patient's age, the lesion site and size, and coexisting diseases. CONCLUSIONS: Only one-fourth of the patients with heterotopic pancreas presented with symptoms. Those located in the Meckel's diverticulum have commonly accompanying GMH. Open surgical, laparoscopic surgical or endoscopic resection of the heterotopic pancreas is recommended due to potential complications. Future prospective multicenter studies are warranted to establish rational treatment options.


Asunto(s)
Coristoma , Páncreas , Humanos , Estudios Retrospectivos , Coristoma/cirugía , Coristoma/diagnóstico , Masculino , Femenino , Páncreas/cirugía , Niño , Preescolar , Lactante , Adolescente , Divertículo Ileal/cirugía , Divertículo Ileal/diagnóstico
3.
Soft Matter ; 19(5): 973-982, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36636922

RESUMEN

A new composite hydrogel adsorbent for adsorption of Pb2+ has been prepared by combining porous boron nitride nanofibers (BNNFs) and the acrylamide and sodium acrylate copolymer (P(AANa-co-AM)) via a chemical crosslinking method. Porous BNNFs with abundant hydroxyl functional groups can form hydrogen bond interactions with carboxyl and amino functional groups of the copolymer in the composite hydrogel and carry and dissipate forces for the composite hydrogels. So the mechanical performances of the copolymer hydrogels can be effectively improved, which is very valuable for the practical application of the composite hydrogel to remove Pb2+ from waste water. The thermal stability and swelling performance of the pure copolymer hydrogels were also greatly improved. This is not only because of the strong hydrogen bond interactions but also the good thermal stability and flexibility of BNNFs. The composite hydrogel adsorbent shows superior adsorption capacity for Pb2+ (490.2 mg g-1) to most of the reported hydrogel adsorbents. The chemisorption dominates the whole adsorption process according to the pseudo-second-order kinetic and the Langmuir models. The composite hydrogel adsorbent also shows good reusability. Therefore, we believe that the prepared composite hydrogels will play an important role in removing Pb2+ from wastewater.

4.
Cardiovasc Drugs Ther ; 37(1): 181-198, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34269929

RESUMEN

Circular RNA (circRNA) has a closed-loop structure, and its 3' and 5' ends are directly covalently connected by reverse splicing, which is more stable than linear RNA. CircRNAs usually possess microRNA (miRNA) binding sites, which can bind miRNAs and inhibit miRNA function. Many studies have shown that circRNAs are involved in the processes of cell senescence, proliferation and apoptosis and a series of signalling pathways, playing an important role in the prevention and treatment of diseases. CircRNAs are potential biological diagnostic markers and therapeutic targets for cardiovascular diseases (CVDs). To identify biomarkers and potential effective therapeutic targets without toxicity for heart disease, we summarize the biogenesis, biology, characterization and functions of circRNAs in CVDs, hoping that this information will shed new light on the prevention and treatment of CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , MicroARNs , Humanos , ARN Circular/genética , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , ARN/genética , MicroARNs/genética , MicroARNs/uso terapéutico , Biomarcadores
5.
Soft Matter ; 18(4): 859-866, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34985488

RESUMEN

New composite hydrogels with excellent self-healing properties were prepared by combining poly(vinyl alcohol) (PVA) and boron nitride nanofibers (BNNFs) via a facile one-pot assembly method. One-dimensional porous BNNFs with high aspect ratio, abundant hydroxyl functional groups, especially excellent flexibility which has been first demonstrated in experiments, can act as a decent inorganic nanofillers to effectively improve the mechanical and self-healing properties of PVA hydrogels. Both the tensile and compression performances of hydrogels have been greatly improved by the trace addition of BNNFs (only ∼1.25 wt%). Compared with other BN nanofillers with spherical particles and lamellar morphologies, BNNFs with high aspect ratios and good flexibility play a unique role in the preparation of PVA composite hydrogels with cross-linked three-dimensional polymeric networks. This can be explained by the different topological structures of composite hydrogels formed. The abundant hydroxyl functional groups can form a lot of reversible hydrogen bonds with the molecular chains of PVA, so the as-prepared hydrogels have a high self-healing efficiency. The best healing efficiency of the composite hydrogels with 2.25 wt% BNNFs reaches as high as 97.31% after self-healing for 30 minutes. The good flexibility of BNNFs is beneficial to the movement of the PVA chain, which is beneficial to the self-healing process of composite hydrogels. The outstanding self-healing performance is very important for the application of composite hydrogels in the biomedical field and wearable flexible devices.

6.
J Cell Mol Med ; 25(11): 4893-4901, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33942984

RESUMEN

PIWI-interacting RNAs (piRNAs) are recently discovered small non-coding RNAs consisting of 24-35 nucleotides, usually including a characteristic 5-terminal uridine and an adenosine at position 10. PIWI proteins can specifically bind to the unique structure of the 3' end of piRNAs. In the past, it was thought that piRNAs existed only in the reproductive system, but recently, it was reported that piRNAs are also expressed in several other human tissues with tissue specificity. Growing evidence shows that piRNAs and PIWI proteins are abnormally expressed in various diseases, including cancers, neurodegenerative diseases and ageing, and may be potential biomarkers and therapeutic targets. This review aims to discuss the current research status regarding piRNA biogenetic processes, functions, mechanisms and emerging roles in various diseases.


Asunto(s)
Envejecimiento , Neoplasias/patología , Enfermedades Neurodegenerativas/patología , ARN Interferente Pequeño/genética , Animales , Epigénesis Genética , Humanos , Neoplasias/genética , Enfermedades Neurodegenerativas/genética
7.
Ecotoxicol Environ Saf ; 228: 112945, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34737155

RESUMEN

Juglans regia is a world-famous woody oil plant, whose yield and quality are affected by drought stress. Ethylene-responsive factors (ERFs) play vital role in plant stress response. In current study, to comprehend the walnut molecular mechanism of drought stress response, an ERF transcription factor was clarified from J. regia (JrERF2-2) and its potential function mechanism to drought was clarified. The results showed that JrERF2-2 could be induced significantly by drought. The transgenic Arabidopsis over-expression of JrERF2-2 displayed enhanced growth, antioxidant enzyme vitalities, reactive oxygen species scavenging and proline produce under drought stress. Especial the glutathione-S-transferase (GST) activity and most GST genes' transcription were elevated obviously. Yeast one-hybrid (Y1H) and co-transient expression (CTE) methods revealed that JrERF2-2 could recognize JrGST4, JrGST6, JrGST7, JrGST8, and JrGSTF8 by binding to GCC-box, and recognize JrGST11, JrGST12, and JrGSTN2 by binding to DRE motif. Meanwhile, the binding activity was strengthened by drought stress. Moreover, JrERF2-2 could interact with JrWRKY7 to promote plant drought tolerance; JrWRKY7 could also distinguish JrGST4, JrGST7, JrGST8, JrGST11, JrGST12, and JrGSTF8 via binding to W-Box motif. These results suggested that JrERF2-2 could effectively improve plant drought tolerance through interacting with JrWRKY7 to control the expression of GSTs. JrERF2-2 is a useful plant representative gene for drought response in molecular breeding.

8.
Anal Chem ; 91(2): 1507-1515, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30575377

RESUMEN

The abnormal expression of epidermal growth factor receptors HER1(EGFR) and HER2 is strongly associated with cancer invasion, metastasis, and angiogenesis. Their molecular detection is mainly executed using genetically encoded or antibody-based diagnostic tracers, but no dual-targeting small-molecule bioprobe has been achieved. Here, we report the novel small-molecule fluorescent probes Cy3-AFTN and Cy5-AFTN as potent dual-targeting inhibitors for efficient detection of HER1/HER2 expression in cancer cells and in vivo tumor diagnostic imaging. Unlike the irreversible HER1/HER2 inhibitors, Cy3-AFTN and Cy5-AFTN were designed as reversible/noncovalent probes based on the clinical drug afatinib, by making the molecule structurally impossible for receptor-mediated Michael additions. The synthesized probes were validated with live cell fluorescence imaging, flow cytometry and confocal-mediated competitive binding inhibition, molecular docking study, and in vivo xenograft tumor detection. The probes are competitively replaceable by other HER1/HER2 inhibitors; thus, they are potentially useful in fluorometric high-throughput screening for drug discovery.


Asunto(s)
Colorantes Fluorescentes/farmacología , Rayos Infrarrojos , Imagen Óptica/métodos , Receptor ErbB-2/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Evaluación Preclínica de Medicamentos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Colorantes Fluorescentes/metabolismo , Masculino , Ratones , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo
9.
Physiol Plant ; 166(3): 748-761, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30187482

RESUMEN

Glutathione S-transferases (GSTs) are important plant proteins involved in biotic and abiotic stress responses. A gene from Juglans regia, JrGSTTau1 was previously cloned and functionally characterized as an enzyme involved in improving cold tolerance in plants. To clarify the functional mechanism of JrGSTTau1 and its role in stress response, here, the JrGSTTau1 promoter including the up-stream regulators was examined using yeast one-hybrid together with transient expression assays, and the osmotic stress response ability was confirmed by comparing with wild-type plants. The 1500 bp JrGSTTau1 promoter displayed high GUS expression activity and was enhanced by mannitol stress. The promoter is composed of abundant cis-elements, some of which were osmotic stress response-related motifs, such as ABRE, DRE and MYB, indicating that the expression of JrGSTTau1 is regulated by potential up-stream regulators under abiotic stress. The transcription factors (TFs) of JrDREB2A, JrMYC2, JrMYB44, JrDof1 and JrWRKY7 were identified, which shared a similar response with JrGSTTau1 when exposed to PEG6000 in walnut leaf and root. These results implied that JrDREB2A, JrMYC2, JrMYB44, JrDof1 and JrWRKY7 may act as up-stream regulators of JrGSTTau1 to regulate or combine functionality with JrGSTTau1 in osmotic stress response. Furthermore, compared with the WT plants, the transgenic tobacco plants that overexpress JrGSTTau1 showed improved tolerance to drought induced by osmotic stress, in which antioxidant enzymes, proline and reactive oxygen species (ROS) are involved. Our results demonstrated the positive role played by JrGSTTau1 in osmotic tolerance, which is regulated by multiple up-stream regulators.


Asunto(s)
Juglans/metabolismo , Presión Osmótica/fisiología , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Juglans/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
BMC Plant Biol ; 18(1): 367, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30572834

RESUMEN

BACKGROUND: GRAS transcription factor (TF) family is unique and numerous in higher plants with diverse functions that involving in plant growth and development processes, such as gibberellin (GA) signal transduction, root development, root nodule formation, and mycorrhiza formation. Walnut tree is exposed to various environmental stimulus that causing concern about its resistance mechanism. In order to understand the molecular mechanism of walnut to adversity response, a GRAS TF (JrGRAS2) was cloned and characterized from Juglans regia in this study. RESULTS: A 1500 bp promoter fragment of JrGRAS2 was identified from the genome of J. regia, in which the cis-elements were screened. This JrGRAS2 promoter displayed expression activity that was enhanced significantly by high temperature (HT) stress. Yeast one-hybrid assay, transient expression and chromatin immunoprecipitation (Chip)-PCR analysis revealed that JrDof3 could specifically bind to the DOFCOREZM motif and share similar expression patterns with JrGRAS2 under HT stress. The transcription of JrGRAS2 was induced by HT stress and up-regulated to 6.73-~11.96-fold in the leaf and 2.53-~4.50-fold in the root to control, respectively. JrGRAS2 was overexpressed in Arabidopsis, three lines with much high expression level of JrGRAS2 (S3, S7, and S8) were selected for HT stress tolerance analysis. Compared to the wild type (WT) Arabidopsis, S3, S7, and S8 exhibited enhanced seed germination rate, fresh weight accumulation, and activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and glutathione-S-transferase (GST) under HT stress. In contrast, the Evans blue staining, electrolyte leakage (EL) rates, hydrogen dioxide (H2O2) and malondialdehyde (MDA) content of transgenic seedlings were all lower than those of WT exposed to HT stress. Furthermore, the expression of heat shock proteins (HSPs) in S3, S7, and S8 was significant higher than those in WT plants. The similar results were obtained in JrGRAS2 transient overexpression walnut lines under normal and HT stress conditions. CONCLUSIONS: Our results suggested that JrDof3 TF contributes to improve the HT stress response of JrGRAS2, which could effectively control the expression of HSPs to enhance HT stress tolerance. JrGRAS2 is an useful candidate gene for heat response in plant molecular breeding.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Juglans/fisiología , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Antioxidantes/metabolismo , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Respuesta al Choque Térmico , Juglans/genética , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Termotolerancia , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
11.
Biochem Biophys Res Commun ; 487(1): 34-40, 2017 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-28385528

RESUMEN

Despite numerous studies that report the glucose derived glycoconjugates as antitumor candidates, using mannose as sugar motif for specific tumor targeting remains less studied. In this research, two novel mannose-conjugated platinum complexes 4a and 4b that target the Warburg effect were designed, synthesized and evaluated for their antitumor activities in vitro and in vivo. Compared with oxaliplatin, both complexes exhibited substantial enhancement in water solubility as well as excellent or comparative cytotoxicity in six human cancer cell lines. Cytotoxicity assessments on Glucose transporter 1 (GLUT1) down-regulated or overexpressed cells and platinum accumulation study demonstrated that cellular uptake of compound 4a was regulated by GLUT1. In particular, 4a induced apoptosis in HT29 cells by suppressing expression of Bcl-2 and Bcl-XL, which preliminary explained the mechanism origin of antitumor effect. As indicated by its maximum tolerated dose-finding assay and in vivo anticancer activity, compound 4a exhibits better safety and efficacy profile than oxaliplatin. The findings of this study indicate the possibility of subjecting mannose-conjugated platinum complexes as lead compounds for further preclinical evaluation.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 2 de Aminoácidos Excitadores/metabolismo , Manosa/química , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Compuestos de Platino/administración & dosificación , Antineoplásicos/administración & dosificación , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Diseño de Fármacos , Células HT29 , Humanos , Células MCF-7 , Terapia Molecular Dirigida/métodos , Neoplasias Experimentales/patología , Compuestos de Platino/química
12.
Tumour Biol ; 37(7): 8799-809, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26747178

RESUMEN

Colorectal carcinoma (CRC) is the second most common and frequent cause of cancer-related deaths for men and women in the world. PIK3CA and PIK3CB that reverse multidrug resistance (MDR) can serve as predictive and prognostic markers as well as therapeutic targets for CRC treatment. In the present study, we showed that PIK3CA and PIK3CB are upregulated in CRCs and positively correlated with MDR-1, LRP, and GST-π. Long-term monitoring of 316 CRC patients showed that PIK3CA and PIK3CB were associated with poor survival time as shown by Kaplan-Meier analysis. Furthermore, we found that the downregulation of PIK3CA and PIK3CB reversed MDR; inhibited the capability of proliferation, migration, and invasion of CRC cells; and slowed down the CRC tumor growth in nude mice. Consistent with clinical observations, PIK3CA and PIK3CB significantly increase multidrug resistance of CRC cells in vivo. Together, these results suggest that PIK3CA and PIK3CB may be used as potential therapeutic drug targets for colorectal cancer.


Asunto(s)
Carcinogénesis/genética , Neoplasias Colorrectales/genética , Resistencia a Múltiples Medicamentos/genética , Silenciador del Gen/fisiología , Fosfatidilinositol 3-Quinasas/genética , Interferencia de ARN/fisiología , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Fosfatidilinositol 3-Quinasa Clase I , Regulación hacia Abajo/genética , Femenino , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/genética , Regulación hacia Arriba/genética
13.
Diabetes Metab Syndr Obes ; 17: 533-543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318446

RESUMEN

Context: Metrnl is a novel adipokine mainly produced by white adipose tissue, which plays important roles in insulin sensitization, and energy homeostasis. However, information about the function of Metrnl in Metabolic dysfunction-associated fatty liver disease (MAFLD) remains unclear. Methods: This is a control study, which enrolled 176 adults with MAFLD and 176 normal controls. They were matched in body mass index (BMI), age, and sex. Serum Metrnl was determined by ELISA. Other biochemical data were also collected. Results: Compared to the controls, circulating Metrnl was prominently decreased in the MAFLD adults (P<0.001). Next, binary logistic regression model indicated that sex, waist circumference (WC), triglyceride, γ-gamma glutamyl transferase(γ-GGT), and Metrnl was independently associated with MAFLD. Further, as Metrnl levels elevated across its tertiles, the rate of MAFLD decreased (67.52, 66.95, and 15.38%; P value for trend<0.001). Data from multivariate logistic regression models evidenced that compared with the lowest tertile of Metrnl, the odds ratio of MAFLD was 0.023(95% CI 0.006-0.086, P<0.001) for the highest tertile after adjusting for potential confounders. Besides, area under ROC curve of Metrnl for diagnosis MAFLD was 0.755(95% CI 0.705-0.805). Metrnl was positively correlated with diastolic blood pressure, WC, BMI, systolic blood pressure, γ-GGT, and Creatinine in MAFLD. Finally, we found systolic blood pressure and Creatinine were independently related to serum Metrnl in MAFLD. Conclusion: Serum Metrnl is reduced in adult with MAFLD. The results suggest that Metrnl may be a protective factor associated with the pathogenesis of MAFLD.

14.
Adv Sci (Weinh) ; 10(34): e2304329, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37870216

RESUMEN

PIWI-interacting RNAs (piRNAs) are highly expressed in various cardiovascular diseases. However, their role in cardiomyocyte death caused by ischemia/reperfusion (I/R) injury, especially necroptosis, remains elusive. In this study, a heart necroptosis-associated piRNA (HNEAP) is found that regulates cardiomyocyte necroptosis by targeting DNA methyltransferase 1 (DNMT1)-mediated 5-methylcytosine (m5 C) methylation of the activating transcription factor 7 (Atf7) mRNA transcript. HNEAP expression level is significantly elevated in hypoxia/reoxygenation (H/R)-exposed cardiomyocytes and I/R-injured mouse hearts. Loss of HNEAP inhibited cardiomyocyte necroptosis and ameliorated cardiac function in mice. Mechanistically, HNEAP directly interacts with DNMT1 and attenuates m5 C methylation of the Atf7 mRNA transcript, which increases Atf7 expression level. ATF7 can further downregulate the transcription of Chmp2a, an inhibitor of necroptosis, resulting in the reduction of Chmp2a level and the progression of cardiomyocyte necroptosis. The findings reveal that piRNA-mediated m5 C methylation is involved in the regulation of cardiomyocyte necroptosis. Thus, the HNEAP-DNMT1-ATF7-CHMP2A axis may be a potential target for attenuating cardiac injury caused by necroptosis in ischemic heart disease.


Asunto(s)
Miocitos Cardíacos , Daño por Reperfusión , Ratones , Animales , Miocitos Cardíacos/metabolismo , ARN Mensajero/metabolismo , ARN de Interacción con Piwi , Necroptosis/genética , Metilación , Daño por Reperfusión/metabolismo , Factores de Transcripción Activadores/metabolismo
15.
Cell Death Differ ; 29(3): 527-539, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34588633

RESUMEN

Circular RNAs (circRNAs) are differentially expressed in various cardiovascular disease including myocardial ischemia-reperfusion (I/R) injury. However, their functional impact on cardiomyocyte cell death, in particular, in necrotic forms of death remains elusive. In this study, we found that the level of mmu_circ_000338, a cardiac- necroptosis-associated circRNA (CNEACR), was reduced in hypoxia-reoxygenation (H/R) exposed cardiomyocytes and I/R-injured mice hearts. The enforced expression of CNEACR attenuated the necrotic form of cardiomyocyte death caused by H/R and suppressed of myocardial necrosis in I/R injured mouse heart, which was accompanied by a marked reduction of myocardial infarction size and improved cardiac function. Mechanistically, CNEACR directly binds to histone deacetylase (HDAC7) in the cytoplasm and interferes its nuclear entry. This leads to attenuation of HDAC7-dependent suppression of forkhead box protein A2 (Foxa2) transcription, which can repress receptor-interacting protein kinase 3 (Ripk3) gene by binding to its promoter region. In addition, CNEACR-mediated upregulation of FOXA2 inhibited RIPK3-dependent necrotic/necroptotic death of cardiomyocytes. Our study reveals that circRNAs such as CNEACR can regulate the cardiomyocyte necroptosis associated activity of HDACs, promotes cell survival and improves cardiac function in I/R-injured heart. Hence, the CNEACR/HDAC7/Foxa2/ RIPK3 axis could be an efficient target for alleviating myocardial damage caused by necroptotic death in ischemia heart diseases.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Animales , Factor Nuclear 3-beta del Hepatocito/metabolismo , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Necroptosis , ARN Circular/genética
16.
PeerJ ; 9: e12429, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820183

RESUMEN

BACKGROUND: Walnut is an important economic tree species with prominent economic value and ecological functions. However, in recent years, walnuts have become susceptible to drought stress, resulting in a decline in comprehensive benefits. Therefore, it is necessary to identify the regulatory molecular mechanism associated with walnut response to drought. In many plants, ethylene responsive factor (ERF) gene family plays important roles in response to biotic and abiotic stress, especial drought. Therefore, the identification and characterisation of walnut ERF genes will benefit walnut with regard to the clarification of drought response mechanism as well as the management, production, and quality of plantations. METHODS: 'ERF' was compared against the walnut transcriptome, and the JrERFs with a complete open reading frame (ORF) were identified by ORF Finder. The molecular weights, amino acid residues, and theoretical isoelectric point (pI) were predicted by ExPASy. The distribution of JrERFs in chromosome locations was determined based on walnut genome data from NCBI. The intron-exon structures and conserved domains were analysed using Gene Structure Display Server 2.0 and CD-Search, accordingly. Multi-sequence alignment and a phylogenetic tree were constructed by ClustalX2.1 and MEGA7, respectively. The conserved motifs were acquired using MEME. Total RNA was isolated using the cetyltrimethylammonium ammonium bromide (CTAB) method (Yang et al., 2018). Gene expression was determined by using real-time quantitative polymerase chain reaction (qRT-PCR) analysis and calculated according to the 2-ΔΔCT method (Livak & Schmittgen, 2001). RESULTS: A total of 44 JrERFs were identified from the walnut transcriptome, whose ORFs were 450-1,239 bp in length. The molecular weights of the JrERF proteins (consisting 149-412 amino acids) were 16.81-43.71 kDa, with pI ranging from 4.8 (JrERF11) to 9.89 (JrERF03). The JrERFs can be divided into six groups (B1-B6), and among the groups, B6 contained the most number of members. Each JrERF contained 1-6 motifs and each motif comprised 9-50 amino acids. Among the motifs, motif1, motif2, and motif3 were the most abundant. More than 40% of JrERFs were up-regulated continuously when subjected to ethephon (ETH), PEG6000, and PEG6000+ETH treatments. Of all the JrERFs, JrERF11 showed the highest expression. Therefore, we conclude that walnut ERF genes are highly conserved and involved in the regulation of drought response in the presence of ETH. JrERFs are possibly important candidate genes for molecular breeding; hence, the findings of this study provides the theoretical basis for further investigation of ERF genes in walnut and other species.

17.
Oxid Med Cell Longev ; 2020: 5860356, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282111

RESUMEN

Reduction oxidation (REDOX) reaction is crucial in life activities, and its dynamic balance is regulated by ROS. Reactive oxygen species (ROS) is associated with a variety of metabolic diseases involving in multiple cellular signalling in pathologic and physiological signal transduction. ROS are the by-products of numerous enzymatic reactions in various cell compartments, including the cytoplasm, cell membrane, endoplasmic reticulum (ER), mitochondria, and peroxisome. ROS signalling is not only involved in normal physiological processes but also causes metabolic dysfunction and maladaptive responses to inflammatory signals, which depends on the cell type or tissue environment. Excess oxidants are able to alter the normal structure and function of DNA, lipids, and proteins, leading to mutations or oxidative damage. Therefore, excessive oxidative stress is usually regarded as the cause of various pathological conditions, such as cancer, neurodegeneration, cardiovascular diseases (CVDs), diabetes, and kidney diseases. Currently, it has been possible to detect diabetes and other cardiac diseases by detecting derivatives accompanied by oxidative stress in vivo as biomarkers, but there is no effective method to treat these diseases. In consequence, it is essential for us to seek new therapy targeting these diseases through understanding the role of ROS signalling in regulating metabolic activity, inflammatory activation, and cardiac diseases related to metabolic dysfunction. In this review, we summarize the current literature on REDOX and its role in the regulation of cardiac metabolism and inflammation, focusing on ROS, local REDOX signalling pathways, and other mechanisms.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Mitocondrias/efectos de los fármacos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos
18.
Theranostics ; 10(2): 553-566, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31903137

RESUMEN

Mitochondrial dysfunction is involved in the pathogenesis of various cardiovascular disorders. Although mitochondrial dynamics, including changes in mitochondrial fission and fusion, have been implicated in the development of cardiac hypertrophy, the underlying molecular mechanisms remain mostly unknown. Here, we show that NFATc3, miR-153-3p, and mitofusion-1 (Mfn1) constitute a signaling axis that mediates mitochondrial fragmentation and cardiomyocyte hypertrophy. Methods: Isoprenaline (ISO) was used to stimulate the hypertrophic response and mitochondrial fragmentation in cultured cardiomyocytes and in vivo. We performed immunoblotting, immunofluorescence, and quantitative real-time PCR to validate the function of Mfn1 in cardiomyocyte hypertrophy. Bioinformatic analyses, a luciferase reporter assay, and gain- and loss-of-function studies were used to demonstrate the biological function of miR-153-3p, which regulates mitochondrial fragmentation and hypertrophy by targeting Mfn1. Moreover, ChIP-qPCR and a luciferase reporter assay were performed to identify transcription factor NFATc3 as an upstream regulator to control the expression of miR-153-3p. Results: Our results show that ISO promoted mitochondrial fission and enhanced the expression of miR-153-3p in cardiomyocytes. Knockdown of miR-153-3p attenuated ISO-induced mitochondrial fission and hypertrophy in cultured primary cardiomyocytes. miR-153-3p suppression inhibited mitochondrial fragmentation in ISO-induced cardiac hypertrophy in a mouse model. We identified direct targeting of Mfn1, a key protein of the mitochondrial fusion process, by miR-153-3p. Also, miR-153-3p promoted ISO-induced mitochondrial fission by suppressing the translation of Mfn1. We further found that NFATc3 activated miR-153-3p expression. Knockdown of NFATc3 inhibited miR-153-3p expression and blocked mitochondrial fission and hypertrophic response in cardiomyocytes. Conclusions: Our data revealed a novel signaling pathway, involving NFATc3, miR-153-3p, and Mfn1, which could be a therapeutic target for the prevention and treatment of cardiac hypertrophy.


Asunto(s)
Cardiomegalia/patología , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Mitocondrias/patología , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiotónicos/farmacología , GTP Fosfohidrolasas/genética , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/genética , Transducción de Señal
19.
Nat Cell Biol ; 22(11): 1319-1331, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33020597

RESUMEN

PIWI-interacting RNAs (piRNAs) are abundantly expressed during cardiac hypertrophy. However, their functions and molecular mechanisms remain unknown. Here, we identified a cardiac-hypertrophy-associated piRNA (CHAPIR) that promotes pathological hypertrophy and cardiac remodelling by targeting METTL3-mediated N6-methyladenosine (m6A) methylation of Parp10 mRNA transcripts. CHAPIR deletion markedly attenuates cardiac hypertrophy and restores heart function, while administration of a CHAPIR mimic enhances the pathological hypertrophic response in pressure-overloaded mice. Mechanistically, CHAPIR-PIWIL4 complexes directly interact with METTL3 and block the m6A methylation of Parp10 mRNA transcripts, which upregulates PARP10 expression. The CHAPIR-dependent increase in PARP10 promotes the mono-ADP-ribosylation of GSK3ß and inhibits its kinase activity, which results in the accumulation of nuclear NFATC4 and the progression of pathological hypertrophy. Hence, our findings reveal that a piRNA-mediated RNA epigenetic mechanism is involved in the regulation of cardiac hypertrophy and that the CHAPIR-METTL3-PARP10-NFATC4 signalling axis could be therapeutically targeted for treating pathological hypertrophy and maladaptive cardiac remodelling.


Asunto(s)
Adenosina/análogos & derivados , Ventrículos Cardíacos/enzimología , Hipertrofia Ventricular Izquierda/enzimología , Metiltransferasas/metabolismo , Miocitos Cardíacos/enzimología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Función Ventricular Izquierda , Adenosina/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ventrículos Cardíacos/patología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Metilación , Metiltransferasas/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Proto-Oncogénicas/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Transducción de Señal , Remodelación Ventricular
20.
Int J Clin Exp Pathol ; 12(8): 2909-2919, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31934127

RESUMEN

PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) belongs to the phosphokinase family, that has been reported to play an important role in several cancers. However, the expression of PHLPP2 and its correlation with clinicopathologic characteristics in colorectal cancer (CRC) have yet to be determined. The aim of this study is to investigate the expression of PHLPP2 and explore its role in CRC. The expression of PHLPP2, PTEN, PI3KCA, and PI3KCB in 130 cases of CRC and normal tissues was assessed by immunohistochemistry. In addition, the expression of PHLPP2, PTEN, PI3KCA, and PI3KCB in 32 pairs of CRC tissues and their corresponding normal tissues was determined by RT-PCR and western blotting, respectively. PHLPP2 expression in CRC was significantly lower than that of normal tissues. However, PHLPP2 mRNA shows no significant difference between CRC and normal tissue. PTEN expression in left colorectal cancer (LCC) was absent, while PI3KCA and PI3KCB in right colorectal cancer (RCC) were significantly higher than those in LCC. PHLPP2 was negatively correlated with p-Akt1 in CRC. The expression of p-Akt1 in PHLPP2 (+)/PTEN (+) in CRC tissues was significantly lower than that in other groups. PHLPP2 expression was correlated with differentiation, invasion, and lymph node metastasis. Kaplan-Meier analysis and multivariate analysis reveal that PHLPP2 is closely related to prognosis; more importantly, it is an independent prognostic factor for CRC. In conclusion, PHLPP2 may play a major role in the development, metastasis, and prognosis of CRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA