Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 101(1): 480-490, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29103714

RESUMEN

The periparturient period is the most critical phase in the productive cycle of dairy cows and is characterized by impairment of the immune system. Our objective was to evaluate the effect of feeding ethyl-cellulose rumen-protected methionine (RPM) starting at d -28 from expected parturition through 60 d in milk on biomarkers of inflammation, oxidative stress, and liver function as well as leukocyte function. Sixty multiparous Holstein cows were used in a block design and assigned to either a control or the control plus ethyl-cellulose RPM (Mepron, Evonik Nutrition & Care GmbH). Mepron was supplied from -28 to 60 d in milk at a rate of 0.09% and 0.10% dry matter during the prepartum and postpartum period. That rate ensured that the ratio of Lys to Met in the metabolizable protein was close to 2.8:1. Blood samples from 15 clinically healthy cows per treatment were collected at d -30, -14, 1, 7, 21, 30, and 60 and analyzed for biomarkers of liver function, inflammation, and oxidative stress. Neutrophil and monocyte function in whole blood was measured in vitro at -14, 1, 7, 21, and 30 d in milk. The statistical model included the random effect of block and fixed effect of treatment, time, and its interaction. Compared with control, ethyl-cellulose RPM increased plasma cholesterol and paraoxonase after parturition. Among the inflammation biomarkers measured, ethyl-cellulose RPM led to greater albumin (negative acute-phase protein) and lower haptoglobin than control cows. Although concentration of IL-1ß was not affected by treatments, greater IL-6 concentration was detected in response to ethyl-cellulose RPM. Cows supplemented with ethyl-cellulose RPM had greater plasma concentration of ferric-reducing antioxidant power, ß-carotene, tocopherol, and total and reduced glutathione, whereas reactive oxygen metabolites were lower compared with control cows. Compared with control, ethyl-cellulose RPM enhanced neutrophil phagocytosis and oxidative burst. Overall, the results indicate that ethyl-cellulose RPM supply to obtain a Lys-to-Met ratio of 2.8:1 in the metabolizable protein during the periparturient period and early lactation is an effective approach to help mitigate oxidative stress and inflammation as well as enhance liver and neutrophil function in dairy cows.


Asunto(s)
Antioxidantes/farmacología , Suplementos Dietéticos , Inflamación/veterinaria , Metionina/farmacología , Leche/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Biomarcadores/análisis , Bovinos , Celulosa/análogos & derivados , Celulosa/farmacología , Femenino , Inflamación/prevención & control , Lactancia , Hígado/efectos de los fármacos , Hígado/metabolismo , Modelos Estadísticos , Neutrófilos/efectos de los fármacos , Periodo Periparto , Embarazo , Rumen/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA