Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 9(7): eadf3700, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791198

RESUMEN

T cell engineering has changed the landscape of cancer immunotherapy. Chimeric antigen receptor T cells have demonstrated a remarkable efficacy in the treatment of B cell malignancies in hematology. However, their clinical impact on solid tumors has been modest so far. T cells expressing an engineered T cell receptor (TCR-T cells) represent a promising therapeutic alternative. The target repertoire is not limited to membrane proteins, and intrinsic features of TCRs such as high antigen sensitivity and near-to-physiological signaling may improve tumor cell detection and killing while improving T cell persistence. In this review, we present the clinical results obtained with TCR-T cells targeting different tumor antigen families. We detail the different methods that have been developed to identify and optimize a TCR candidate. We also discuss the challenges of TCR-T cell therapies, including toxicity assessment and resistance mechanisms. Last, we share some perspectives and highlight future directions in the field.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos de Neoplasias , Tratamiento Basado en Trasplante de Células y Tejidos
2.
Front Cell Dev Biol ; 10: 760248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399538

RESUMEN

Regulation of hematopoietic stem cell (HSC) self-renewal and differentiation is essential for their maintenance, and HSC polarity has been shown to play an important role in this regulation. Vangl2, a key component of the Wnt/polarity pathway, is expressed by fetal and adult HSCs, but its role in hematopoiesis and HSC function is unknown. Here we show the deletion of Vangl2 in mouse hematopoietic cells impairs HSC expansion and hematopoietic recovery post-transplant. Old Vangl2-deficient mice showed increased expansion of myeloid-biased multipotent progenitor cells concomitant with splenomegaly. Moreover, Vangl2-deficient cells were not able to effectively reconstitute the recipient bone marrow in serial transplants, or when coming from slightly older donors, demonstrating impaired self-renewal or expansion. Aged Vangl2-deficient HSCs displayed increased levels of cell cycle inhibitor p16INK4a and active ß-catenin, which could contribute to their impaired function. Overall, our findings identify Vangl2 as a new regulator of hematopoiesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA