Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309258

RESUMEN

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Asunto(s)
Encéfalo , Microglía , Axones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Macrófagos/fisiología , Microglía/patología , Morfogénesis
2.
Cell ; 181(3): 557-573.e18, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259484

RESUMEN

Central nervous system (CNS) macrophages comprise microglia and border-associated macrophages (BAMs) residing in the meninges, the choroid plexus, and the perivascular spaces. Most CNS macrophages emerge during development, with the exception of choroid plexus and dural macrophages, which are replaced by monocytes in adulthood. Whether microglia and BAMs share a developmental program or arise from separate lineages remains unknown. Here, we identified two phenotypically, transcriptionally, and locally distinct brain macrophages throughout development, giving rise to either microglia or BAMs. Two macrophage populations were already present in the yolk sac suggesting an early segregation. Fate-mapping models revealed that BAMs mostly derived from early erythro-myeloid progenitors in the yolk sac. The development of microglia was dependent on TGF-ß, whereas the genesis of BAMs occurred independently of this cytokine. Collectively, our data show that developing parenchymal and non-parenchymal brain macrophages are separate entities in terms of ontogeny, gene signature, and requirement for TGF-ß.


Asunto(s)
Encéfalo/citología , Macrófagos/citología , Microglía/citología , Animales , Encéfalo/metabolismo , Linaje de la Célula , Ratones , Monocitos , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
3.
Cell ; 172(3): 500-516.e16, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29275859

RESUMEN

Microglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females. Remarkably, the absence of microbiome in germ-free mice had a time and sexually dimorphic impact both prenatally and postnatally: microglia were more profoundly perturbed in male embryos and female adults. Antibiotic treatment of adult mice triggered sexually biased microglial responses revealing both acute and long-term effects of microbiota depletion. Finally, human fetal microglia exhibited significant overlap with the murine transcriptomic signature. Our study shows that microglia respond to environmental challenges in a sex- and time-dependent manner from prenatal stages, with major implications for our understanding of microglial contributions to health and disease.


Asunto(s)
Vida Libre de Gérmenes , Microbiota , Microglía/citología , Efectos Tardíos de la Exposición Prenatal/microbiología , Transcriptoma , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Células Cultivadas , Ensamble y Desensamble de Cromatina , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Embarazo , Factores Sexuales
4.
Immunity ; 55(8): 1448-1465.e6, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931085

RESUMEN

Brain macrophage populations include parenchymal microglia, border-associated macrophages, and recruited monocyte-derived cells; together, they control brain development and homeostasis but are also implicated in aging pathogenesis and neurodegeneration. The phenotypes, localization, and functions of each population in different contexts have yet to be resolved. We generated a murine brain myeloid scRNA-seq integration to systematically delineate brain macrophage populations. We show that the previously identified disease-associated microglia (DAM) population detected in murine Alzheimer's disease models actually comprises two ontogenetically and functionally distinct cell lineages: embryonically derived triggering receptor expressed on myeloid cells 2 (TREM2)-dependent DAM expressing a neuroprotective signature and monocyte-derived TREM2-expressing disease inflammatory macrophages (DIMs) accumulating in the brain during aging. These two distinct populations appear to also be conserved in the human brain. Herein, we generate an ontogeny-resolved model of brain myeloid cell heterogeneity in development, homeostasis, and disease and identify cellular targets for the treatment of neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Envejecimiento , Enfermedad de Alzheimer/genética , Animales , Encéfalo/patología , Humanos , Macrófagos/patología , Glicoproteínas de Membrana , Ratones , Microglía/patología , Receptores Inmunológicos
5.
Nat Rev Neurosci ; 23(7): 395-410, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35422526

RESUMEN

It is often thought that the construction of cortical circuits occurs as the result of an elegantly designed process that unfolds sequentially as an animal develops until adult functional networks emerge. In reality, cortical circuits are shaped by evolutionary mechanisms, changes in developmental programmes driven by neuronal activity or epigenetic mechanisms and the need to adapt to the external world, and must pass through several important phases and timely checkpoints as they form. Some cortical cell types serve multiple functions during this developmental journey and are then reused (or 'recycled') to perform different functions in the adult cortex. Understanding the different stages of the cortical construction process and taking into account the ways in which cellular functions change across time and space is therefore essential if we are to build a comprehensive framework of cortical wiring in both health and disease.


Asunto(s)
Neuronas , Animales , Humanos
6.
Immunity ; 47(1): 183-198.e6, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28723550

RESUMEN

Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hematopoyesis , Macrófagos/fisiología , Neuronas/fisiología , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis
7.
Proc Natl Acad Sci U S A ; 120(33): e2301644120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549297

RESUMEN

Sensory inputs are conveyed to distinct primary areas of the neocortex through specific thalamocortical axons (TCA). While TCA have the ability to reorient postnatally to rescue embryonic mistargeting and target proper modality-specific areas, how this remarkable adaptive process is regulated remains largely unknown. Here, using a mutant mouse model with a shifted TCA trajectory during embryogenesis, we demonstrated that TCA rewiring occurs during a short postnatal time window, preceded by a prenatal apoptosis of thalamic neurons-two processes that together lead to the formation of properly innervated albeit reduced primary sensory areas. We furthermore showed that preterm birth, through serotonin modulation, impairs early postnatal TCA plasticity, as well as the subsequent delineation of cortical area boundary. Our study defines a birth and serotonin-sensitive period that enables concerted adaptations of TCA to primary cortical areas with major implications for our understanding of brain wiring in physiological and preterm conditions.


Asunto(s)
Neocórtex , Nacimiento Prematuro , Recién Nacido , Ratones , Animales , Humanos , Embarazo , Femenino , Neuronas/fisiología , Serotonina , Corteza Cerebral/fisiología , Recien Nacido Prematuro , Axones/fisiología , Tálamo/fisiología
9.
Development ; 145(19)2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30177526

RESUMEN

Trio, a member of the Dbl family of guanine nucleotide exchange factors, activates Rac1 downstream of netrin 1/DCC signalling in axon outgrowth and guidance. Although it has been proposed that Trio also activates RhoA, the putative upstream factors remain unknown. Here, we show that Slit2 induces Trio-dependent RhoA activation, revealing a crosstalk between Slit and Trio/RhoA signalling. Consistently, we found that RhoA activity is hindered in vivo in Trio mutant mouse embryos. We next studied the development of the ventral telencephalon and thalamocortical axons, which have been previously shown to be controlled by Slit2. Remarkably, this analysis revealed that Trio knockout (KO) mice show phenotypes that bear strong similarities to the ones that have been reported in Slit2 KO mice in both guidepost corridor cells and thalamocortical axon pathfinding in the ventral telencephalon. Taken together, our results show that Trio induces RhoA activation downstream of Slit2, and support a functional role in ensuring the proper positioning of both guidepost cells and a major axonal tract. Our study indicates a novel role for Trio in Slit2 signalling and forebrain wiring, highlighting its role in multiple guidance pathways as well as in biological functions of importance for a factor involved in human brain disorders.


Asunto(s)
Tipificación del Cuerpo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Orientación del Axón , Axones/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones Noqueados , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tálamo/embriología , Tálamo/metabolismo
10.
Semin Cell Dev Biol ; 35: 147-55, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25020201

RESUMEN

Sensory perception relies on the formation of stereotyped maps inside the brain. This feature is particularly well illustrated in the mammalian neocortex, which is subdivided into distinct cortical sensory areas that comprise topological maps, such as the somatosensory homunculus in humans or the barrel field of the large whiskers in rodents. How somatosensory maps are formed and relayed into the neocortex remain essential questions in developmental neuroscience. Here, we will present our current knowledge on whisker map transfer in the mouse model, with the goal of linking embryonic and postnatal studies into a comprehensive framework.


Asunto(s)
Modelos Neurológicos , Neocórtex/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Animales , Mapeo Encefálico , Ratones , Neocórtex/anatomía & histología , Neocórtex/embriología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/embriología , Vías Nerviosas/fisiología , Corteza Somatosensorial/anatomía & histología , Corteza Somatosensorial/embriología , Tálamo/anatomía & histología , Tálamo/embriología , Vibrisas/inervación , Vibrisas/fisiología
11.
Development ; 137(2): 293-302, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20040495

RESUMEN

Cajal-Retzius (CR) cells play a key role in the formation of the cerebral cortex. These pioneer neurons are distributed throughout the cortical marginal zone in distinct graded distributions. Fate mapping and cell lineage tracing studies have recently shown that CR cells arise from restricted domains of the pallial ventricular zone, which are associated with signalling centres involved in the early regionalisation of the telencephalic vesicles. In this study, we identified a subpopulation of CR cells in the rostral telencephalon that expresses Er81, a downstream target of Fgf8 signalling. We investigated the role of the rostral telencephalic patterning centre, which secretes FGF molecules, in the specification of these cells. Using pharmacological inhibitors and genetic inactivation of Fgf8, we showed that production of Fgf8 by the rostral telencephalic signalling centre is required for the specification of the Er81+ CR cell population. Moreover, the analysis of Fgf8 gain-of-function in cultivated mouse embryos and of Emx2 and Gli3 mutant embryos revealed that ectopic Fgf8 signalling promotes the generation of CR cells with a rostral phenotype from the dorsal pallium. These data showed that Fgf8 signalling is both required and sufficient to induce rostral CR cells. Together, our results shed light on the mechanisms specifying rostral CR cells and further emphasise the crucial role of telencephalic signalling centres in the generation of distinct CR cell populations.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Telencéfalo/citología , Telencéfalo/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Gli3 con Dedos de Zinc
12.
Eur J Neurosci ; 35(10): 1573-85, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22607003

RESUMEN

Thalamocortical axons must cross a complex cellular terrain through the developing forebrain, and this terrain has to be understood for us to learn how thalamocortical axons reach their destinations. Selective fasciculation, guidepost cells and various diencephalic and telencephalic gradients have been implicated in thalamocortical guidance. As our understanding of the relevant forebrain patterns has increased, so has our knowledge of the guidance mechanisms. Our aim here is to review recent observations of cellular and molecular mechanisms related to: the growth of thalamofugal projections to the ventral telencephalon, thalamic axon avoidance of the hypothalamus and extension into the telencephalon to form the internal capsule, the crossing of the pallial-subpallial boundary, and the growth towards the cerebral cortex. We shall review current theories for the explanation of the maintenance and alteration of topographic order in the thalamocortical projections to the cortex. It is now increasingly clear that several mechanisms are involved at different stages of thalamocortical development, and each contributes substantially to the eventual outcome. Revealing the molecular and cellular mechanisms can help to link specific genes to details of actual developmental mechanisms.


Asunto(s)
Axones/fisiología , Tipificación del Cuerpo/fisiología , Corteza Cerebral/embriología , Neuronas/citología , Tálamo/embriología , Animales , Corteza Cerebral/citología , Regulación del Desarrollo de la Expresión Génica , Humanos , Modelos Biológicos , Vías Nerviosas/fisiología , Tálamo/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
PLoS Biol ; 7(10): e1000230, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19859539

RESUMEN

The corpus callosum (CC) is the main pathway responsible for interhemispheric communication. CC agenesis is associated with numerous human pathologies, suggesting that a range of developmental defects can result in abnormalities in this structure. Midline glial cells are known to play a role in CC development, but we here show that two transient populations of midline neurons also make major contributions to the formation of this commissure. We report that these two neuronal populations enter the CC midline prior to the arrival of callosal pioneer axons. Using a combination of mutant analysis and in vitro assays, we demonstrate that CC neurons are necessary for normal callosal axon navigation. They exert an attractive influence on callosal axons, in part via Semaphorin 3C and its receptor Neuropilin-1. By revealing a novel and essential role for these neuronal populations in the pathfinding of a major cerebral commissure, our study brings new perspectives to pathophysiological mechanisms altering CC formation.


Asunto(s)
Axones/metabolismo , Cuerpo Calloso/embriología , Neuronas/metabolismo , Semaforinas/metabolismo , Síndrome Acrocallosal/metabolismo , Síndrome Acrocallosal/patología , Animales , Axones/patología , Línea Celular , Movimiento Celular , Técnicas de Cocultivo , Cuerpo Calloso/citología , Cuerpo Calloso/metabolismo , Humanos , Ratones , Vías Nerviosas/citología , Vías Nerviosas/embriología , Neuronas/citología , Neuropilina-1/metabolismo
14.
BMC Biol ; 9: 1, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21214944

RESUMEN

Thalamocortical projections convey visual, somatosensory and auditory information to the cerebral cortex. A recent report in Neural Development shows how a forward genetic screen has enabled the identification of novel mutations affecting specific decision points of thalamocortical axon pathfinding.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Genes del Desarrollo , Mutación , Animales , Axones/fisiología , Ratones , Ratones Transgénicos , Tálamo/fisiología
15.
Cell Rep ; 39(2): 110667, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417707

RESUMEN

Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development.


Asunto(s)
Interneuronas , Células Piramidales , Dendritas/fisiología , Interneuronas/fisiología , Neuronas/fisiología , Tálamo
16.
Neuron ; 110(21): 3458-3483, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36327895

RESUMEN

Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.


Asunto(s)
Microglía
17.
Curr Opin Neurobiol ; 66: 125-134, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33186879

RESUMEN

Functioning of the neocortex relies on a complex architecture of circuits, as illustrated by the causal link between neocortical excitation/inhibition imbalance and the etiology of several neurodevelopmental disorders. An important entry point to cortical circuits is located in the superficial layer 1 (L1), which contains mostly local and long-range inputs and sparse inhibitory interneurons that collectively regulate cerebral functions. While increasing evidence indicates that L1 has important physiological roles, our understanding of how it wires up during development remains limited. Here, we provide an integrated overview of L1 anatomy, function and development, with a focus on transient early born Cajal-Retzius neurons, and highlight open questions key for progressing our understanding of this essential yet understudied layer of the cerebral cortex.


Asunto(s)
Neocórtex , Interneuronas , Neuronas
18.
Curr Opin Genet Dev ; 65: 186-194, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32823206

RESUMEN

Microglia are instrumental to the development, function, homeostasis and pathologies of the central nervous system. These brain-resident macrophages arise early in embryogenesis and seed the developing brain, where they differentiate in response to cues provided by their neural niche. Throughout life, microglia regulate the neural tissue through a variety of cellular functions influenced by intrinsic and extrinsic factors. Despite their importance, we are only starting to uncover how microglia colonize the brain, adopt distinct functional states during development and the long-term impact of early alteration of their functions. This review highlights the latest knowledge on the ontogeny of microglia, their developmental trajectory and emerging roles. Characterizing these processes will be critical for our understanding of both brain physiology and pathologies.


Asunto(s)
Encéfalo/fisiología , Homeostasis , Microglía/fisiología , Trastornos del Neurodesarrollo/patología , Neurogénesis , Animales , Encéfalo/citología , Humanos , Macrófagos/citología , Macrófagos/fisiología , Microglía/citología
19.
Cell Rep ; 28(5): 1119-1126.e4, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31365857

RESUMEN

The etiology of neurodevelopmental disorders is linked to defects in parvalbumin (PV)-expressing cortical interneurons and to prenatal immune challenges. Mouse models of maternal immune activation (MIA) and microglia deficits increase the postnatal density of PV interneurons, raising the question of their functional integration. Here, we show that MIA and embryonic depletion of macrophages including microglia have a two-step impact on PV interneurons wiring onto their excitatory target neurons in the barrel cortex. In adults, both challenges reduced the inhibitory drive from PV interneurons, as reported in neurodevelopmental disorders. In juveniles, however, we found an increased density of PV neurons, an enhanced strength of unitary connections onto excitatory cells, and an aberrant horizontal inhibition with a reduced lateral propagation of sensory inputs in vivo. Our results provide a comprehensive framework for understanding the impact of prenatal immune challenges onto the developmental trajectory of inhibitory circuits that leads to pathological brain wiring.


Asunto(s)
Interneuronas/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Neocórtex/embriología , Animales , Inflamación/embriología , Inflamación/patología , Interneuronas/patología , Macrófagos/patología , Ratones , Ratones Transgénicos , Microglía/patología , Neocórtex/patología , Parvalbúminas/metabolismo
20.
Elife ; 82019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31891351

RESUMEN

Programmed cell death and early activity contribute to the emergence of functional cortical circuits. While most neuronal populations are scaled-down by death, some subpopulations are entirely eliminated, raising the question of the importance of such demise for cortical wiring. Here, we addressed this issue by focusing on Cajal-Retzius neurons (CRs), key players in cortical development that are eliminated in postnatal mice in part via Bax-dependent apoptosis. Using Bax-conditional mutants and CR hyperpolarization, we show that the survival of electrically active subsets of CRs triggers an increase in both dendrite complexity and spine density of upper layer pyramidal neurons, leading to an excitation/inhibition imbalance. The survival of these CRs is induced by hyperpolarization, highlighting an interplay between early activity and neuronal elimination. Taken together, our study reveals a novel activity-dependent programmed cell death process required for the removal of transient immature neurons and the proper wiring of functional cortical circuits.


Asunto(s)
Apoptosis/genética , Neurogénesis/genética , Células Piramidales/metabolismo , Proteína X Asociada a bcl-2/genética , Animales , Animales Recién Nacidos , Polaridad Celular/genética , Corteza Cerebral/metabolismo , Estimulación Eléctrica , Células Intersticiales de Cajal/metabolismo , Ratones , Proteínas Mutantes/genética , Células Piramidales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA