Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Microbiol ; 122: 104532, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839238

RESUMEN

Penicillium spp. produce a great variety of secondary metabolites, including several mycotoxins, on food substrates. Chestnuts represent a favorable substrate for Penicillium spp. development. In this study, the genomes of ten Penicillium species, virulent on chestnuts, were sequenced and annotated: P. bialowiezense. P. pancosmium, P. manginii, P. discolor, P. crustosum, P. palitans, P. viridicatum, P. glandicola, P. taurinense and P. terrarumae. Assembly size ranges from 27.5 to 36.8 Mb and the number of encoded genes ranges from 9,867 to 12,520. The total number of predicted biosynthetic gene clusters (BGCs) in the ten species is 551. The most represented families of BGCs are non ribosomal peptide synthase (191) and polyketide synthase (175), followed by terpene synthases (87). Genome-wide collections of gene phylogenies (phylomes) were reconstructed for each of the newly sequenced Penicillium species allowing for the prediction of orthologous relationships among our species, as well as other 20 annotated Penicillium species available in the public domain. We investigated in silico the presence of BGCs for 10 secondary metabolites, including 5 mycotoxins, whose production was validated in vivo through chemical analyses. Among the clusters present in this set of species we found andrastin A and its related cluster atlantinone A, mycophenolic acid, patulin, penitrem A and the cluster responsible for the synthesis of roquefortine C/glandicoline A/glandicoline B/meleagrin. We confirmed the presence of these clusters in several of the Penicillium species conforming our dataset and verified their capacity to synthesize them in a chestnut-based medium with chemical analysis. Interestingly, we identified mycotoxin clusters in some species for the first time, such as the andrastin A cluster in P. flavigenum and P. taurinense, and the roquefortine C cluster in P. nalgiovense and P. taurinense. Chestnuts proved to be an optimal substrate for species of Penicillium with different mycotoxigenic potential, opening the door to risks related to the occurrence of multiple mycotoxins in the same food matrix.


Asunto(s)
Genoma Fúngico , Familia de Multigenes , Micotoxinas , Penicillium , Filogenia , Metabolismo Secundario , Penicillium/genética , Penicillium/metabolismo , Micotoxinas/metabolismo , Micotoxinas/genética , Contaminación de Alimentos/análisis , Patulina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nueces/microbiología , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Microbiología de Alimentos , Corylus/microbiología , Compuestos Heterocíclicos de 4 o más Anillos , Indoles , Piperazinas
2.
J Fungi (Basel) ; 10(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38786695

RESUMEN

Nectarines can be affected by many diseases, resulting in significant production losses. Natural products, such as essential oils (EOs), are promising alternatives to pesticides to control storage rots. This work aimed to test the efficacy of biofumigation with EOs in the control of nectarine postharvest diseases while also evaluating the effect on the quality parameters (firmness, total soluble solids, and titratable acidity) and on the fruit fungal microbiome. Basil, fennel, lemon, oregano, and thyme EOs were first tested in vitro at 0.1, 0.5, and 1.0% concentrations to evaluate their inhibition activity against Monilinia fructicola. Subsequently, an in vivo screening trial was performed by treating nectarines inoculated with M. fructicola, with the five EOs at 2.0% concentration by biofumigation, performed using slow-release diffusers placed inside the storage cabinets. Fennel, lemon, and basil EOs were the most effective after storage and were selected to be tested in efficacy trials using naturally infected nectarines. After 28 days of storage, all treatments showed a significant rot reduction compared to the untreated control. Additionally, no evident phytotoxic effects were observed on the treated fruits. EO vapors did not affect the overall quality of the fruits but showed a positive effect in reducing firmness loss. Metabarcoding analysis showed a significant impact of tissue, treatment, and sampling time on the fruit microbiome composition. Treatments were able to reduce the abundance of Monilinia spp., but basil EO favored a significant increase in Penicillium spp. Moreover, the abundance of other fungal genera was found to be modified.

3.
Front Microbiol ; 15: 1330865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577679

RESUMEN

Kiwifruit vine decline syndrome (KVDS) is characterized by severe root system impairment, which leads to irreversible wilting of the canopy. Plants usually collapse rapidly from the appearance of the first aboveground symptoms, without recovery even in the following seasons. The syndrome has been negatively impacting kiwifruit yield in different areas of Italy, the main producing European country, since its first outbreak in 2012. To date, a unique, common causal factor has yet to be found, and the syndrome is referred to as multifactorial. In this article, we investigated the whole biotic community (fungi, bacteria, and oomycetes) associated with the development of KVDS in three different belowground matrices/compartments (soil, rhizosphere, and root). Sampling was performed at both healthy and affected sites located in the main kiwifruit-producing area of Northwestern Italy. To address the multifactorial nature of the syndrome and to investigate the potential roles of abiotic factors in shaping these communities, a physicochemical analysis of soils was also performed. This study investigates the associations among taxonomic groups composing the microbiome and also between biotic and abiotic factors. Dysbiosis was considered as a driving event in shaping KVDS microbial communities. The results obtained from this study highlight the role of the oomycete genus Phytopythium, which resulted predominantly in the oomycete community composition of diseased matrices, though it was also present in healthy ones. Both bacterial and fungal communities resulted in a high richness of genera and were highly correlated to the sampling site and matrix, underlining the importance of multiple location sampling both geographically and spatially. The rhizosphere community associated with KVDS was driven by a dysbiotic process. In addition, analysis of the association network in the diseased rhizosphere revealed the presence of potential cross-kingdom competition for plant-derived carbon between saprobes, oomycetes, and bacteria.

4.
J Fungi (Basel) ; 9(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36675843

RESUMEN

Botrytis cinerea is the causal agent of grey mould rot of apples. The efficacy of biofumigation with thyme (Thymus vulgaris), savoury (Satureja montana), and basil (Ocimum basilicum) essential oils (EOs) at 1%, 0.5%, and 0.1% concentrations were tested against B. cinerea. In vitro, the results showed 100% growth inhibition at 1% concentration for all oils. Subsequent biofumigation experiments on apples of cultivar 'Opal' with 1% EOs showed that, after 60 d storage, thyme and savoury EOs significantly reduced grey mould rot incidence (average incidence 2% for both treatments) compared to the control (7%). Analyses of quality indicated slightly higher fruit firmness for 1% thyme at 30 d and slightly higher titratable acidity for 1% thyme and savoury at 60 d. Sampling of the atmosphere inside the cabinets was performed to characterize and quantify the volatile components of EOs released through biofumigation. Though thymol and p-cymene were the main components of thyme EO, the antimicrobial activity was mainly due to the presence of thymol and, to a lower extent, of carvacrol. In savoury EO, carvacrol and p-cymene were the main components, whereas in basil EO, linalool and estragole were mainly present. Metabarcoding analyses showed that the epiphytic microbiome had higher richness and evenness compared to their endophytic counterpart. By the end of shelf-life, treatments with thyme EO reduced B. cinerea abundance compared to the inoculated control for both endophytes (from 36.5% to 1.5%) and epiphytes (from 7.0% to 0.7%), while favouring a significant increase in Penicillium species both in endophytes (from 0.2% to 21.5%) and epiphytes (from 0.5% to 18.6%). Results indicate that thyme EO (1%) and savoury EO (1%) are equally effective in hampering grey mould rot development in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA