Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 135(2): 280-297, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38847080

RESUMEN

BACKGROUND: Heart failure (HF) is one of the leading causes of mortality worldwide. Extracellular vesicles, including small extracellular vesicles or exosomes, and their molecular cargo are known to modulate cell-to-cell communication during multiple cardiac diseases. However, the role of systemic extracellular vesicle biogenesis inhibition in HF models is not well documented and remains unclear. METHODS: We investigated the role of circulating exosomes during cardiac dysfunction and remodeling in a mouse transverse aortic constriction (TAC) model of HF. Importantly, we investigate the efficacy of tipifarnib, a recently identified exosome biogenesis inhibitor that targets the critical proteins (Rab27a [Ras associated binding protein 27a], nSMase2 [neutral sphingomyelinase 2], and Alix [ALG-2-interacting protein X]) involved in exosome biogenesis for this mouse model of HF. In this study, 10-week-old male mice underwent TAC surgery were randomly assigned to groups with and without tipifarnib treatment (10 mg/kg 3 times/wk) and monitored for 8 weeks, and a comprehensive assessment was conducted through performed echocardiographic, histological, and biochemical studies. RESULTS: TAC significantly elevated circulating plasma exosomes and markedly increased cardiac left ventricular dysfunction, cardiac hypertrophy, and fibrosis. Furthermore, injection of plasma exosomes from TAC mice induced left ventricular dysfunction and cardiomyocyte hypertrophy in uninjured mice without TAC. On the contrary, treatment of tipifarnib in TAC mice reduced circulating exosomes to baseline and remarkably improved left ventricular functions, hypertrophy, and fibrosis. Tipifarnib treatment also drastically altered the miRNA profile of circulating post-TAC exosomes, including miR 331-5p, which was highly downregulated both in TAC circulating exosomes and in TAC cardiac tissue. Mechanistically, miR 331-5p is crucial for inhibiting the fibroblast-to-myofibroblast transition by targeting HOXC8, a critical regulator of fibrosis. Tipifarnib treatment in TAC mice upregulated the expression of miR 331-5p that acts as a potent repressor for one of the fibrotic mechanisms mediated by HOXC8. CONCLUSIONS: Our study underscores the pathological role of exosomes in HF and fibrosis in response to pressure overload. Tipifarnib-mediated inhibition of exosome biogenesis and cargo sorting may serve as a viable strategy to prevent progressive cardiac remodeling in HF.


Asunto(s)
Vesículas Extracelulares , Insuficiencia Cardíaca , Ratones Endogámicos C57BL , Animales , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control , Masculino , Ratones , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Exosomas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Modelos Animales de Enfermedad , MicroARNs/metabolismo , MicroARNs/genética
2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982525

RESUMEN

The lifetime effects of space irradiation (IR) on left ventricular (LV) function are unknown. The cardiac effects induced by space-type IR, specifically 5-ion simplified galactic cosmic ray simulation (simGCRsim), are yet to be discovered. Three-month-old, age-matched, male C57BL/6J mice were irradiated with 137Cs gamma (γ; 100, 200 cGy) and simGCRsim (50 and 100 cGy). LV function was assessed via transthoracic echocardiography at 14 and 28 days (early), and at 365, 440, and 660 (late) days post IR. We measured the endothelial function marker brain natriuretic peptide in plasma at three late timepoints. We assessed the mRNA expression of the genes involved in cardiac remodeling, fibrosis, inflammation, and calcium handling in LVs harvested at 660 days post IR. All IR groups had impaired global LV systolic function at 14, 28, and 365 days. At 660 days, 50 cGy simGCRsim-IR mice exhibited preserved LV systolic function with altered LV size and mass. At this timepoint, the simGCRsim-IR mice had elevated levels of cardiac fibrosis, inflammation, and hypertrophy markers Tgfß1, Mcp1, Mmp9, and ßmhc, suggesting that space-type IR may induce the cardiac remodeling processes that are commonly associated with diastolic dysfunction. IR groups showing statistical significance were modeled to calculate the Relative Biological Effectiveness (RBE) and Radiation Effects Ratio (RER). The observed dose-response shape did not indicate a lower threshold at these IR doses. A single full-body IR at doses of 100-200 cGy for γ-IR, and 50-100 cGy for simGCRsim-IR decreases the global LV systolic function in WT mice as early as 14 and 28 days after exposure, and at 660 days post IR. Interestingly, there is an intermediate time point (365 days) where the impairment in LV function is observed. These findings do not exclude the possibility of increased acute or degenerative cardiovascular disease risks at lower doses of space-type IR, and/or when combined with other space travel-associated stressors such as microgravity.


Asunto(s)
Cardiomiopatías , Exposición a la Radiación , Masculino , Ratones , Animales , Ratones Endogámicos C57BL , Remodelación Ventricular , Viaje , Función Ventricular Izquierda , Fibrosis , Inflamación
3.
Circ Res ; 126(3): 315-329, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31815595

RESUMEN

Rationale: Systemic inflammation compromises the reparative properties of endothelial progenitor cell (EPC) and their exosomes on myocardial repair, although the underlying mechanism of loss of function of exosomes from inflamed EPCs is still obscure. Objective: To determine the mechanisms of IL-10 (interleukin-10) deficient-EPC-derived exosome dysfunction in myocardial repair and to investigate if modification of specific exosome cargo can rescue reparative activity. Methods and Results: Using IL-10 knockout mice mimicking systemic inflammation condition, we compared therapeutic effect and protein cargo of exosomes isolated from wild-type EPC and IL-10 knockout EPC. In a mouse model of myocardial infarction (MI), wild-type EPC-derived exosome treatment significantly improved left ventricle cardiac function, inhibited cell apoptosis, reduced MI scar size, and promoted post-MI neovascularization, whereas IL-10 knockout EPC-derived exosome treatment showed diminished and opposite effects. Mass spectrometry analysis revealed wild-type EPC-derived exosome and IL-10 knockout EPC-derived exosome contain different protein expression pattern. Among differentially expressed proteins, ILK (integrin-linked kinase) was highly enriched in both IL-10 knockout EPC-derived exosome as well as TNFα (tumor necrosis factor-α)-treated mouse cardiac endothelial cell-derived exosomes (TNFα inflamed mouse cardiac endothelial cell-derived exosome). ILK-enriched exosomes activated NF-κB (nuclear factor κB) pathway and NF-κB-dependent gene transcription in recipient endothelial cells and this effect was partly attenuated through ILK knockdown in exosomes. Intriguingly, ILK knockdown in IL-10 knockout EPC-derived exosome significantly rescued their reparative dysfunction in myocardial repair, improved left ventricle cardiac function, reduced MI scar size, and enhanced post-MI neovascularization in MI mouse model. Conclusions: IL-10 deficiency/inflammation alters EPC-derived exosome function, content and therapeutic effect on myocardial repair by upregulating ILK enrichment in exosomes, and ILK-mediated activation of NF-κB pathway in recipient cells, whereas ILK knockdown in exosomes attenuates NF-κB activation and reduces inflammatory response. Our study provides new understanding of how inflammation may alter stem cell-exosome-mediated cardiac repair and identifies ILK as a target kinase for improving progenitor cell exosome-based cardiac therapies.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Exosomas/trasplante , Interleucina-10/genética , Infarto del Miocardio/terapia , Proteínas Serina-Treonina Quinasas/metabolismo , Cicatrización de Heridas , Animales , Células Cultivadas , Exosomas/metabolismo , Interleucina-10/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Función Ventricular Izquierda
4.
Subcell Biochem ; 97: 437-453, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33779927

RESUMEN

Cardiovascular disease is the leading cause of morbidity and mortality all over the world. Emerging evidence emphasize the importance of extracellular vesicles (EVs) in the cell to cell communication in the cardiovascular system which is majorly mediated through non-coding RNA cargo. Advancement in sequencing technologies revealed a major proportion of human genome is composed of non-coding RNAs viz., miRNAs, lncRNAs, tRNAs, snoRNAs, piRNAs and rRNAs. However, our understanding of the role of ncRNAs-containing EVs in cardiovascular health and disease is still in its infancy. This book chapter provides a comprehensive update on our understanding on the role of EVs derived ncRNAs in the cardiovascular pathophysiology and their therapeutic potential.


Asunto(s)
Sistema Cardiovascular , Vesículas Extracelulares , MicroARNs , Humanos , MicroARNs/genética , ARN no Traducido/genética
5.
J Mol Cell Cardiol ; 152: 40-51, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33279505

RESUMEN

Post-transcriptional RNA modification has been observed in all kingdoms of life and more than a hundred different types of RNA modifications decorate the chemical and topological properties of these ribose nucleotides. These RNA modifications can potentially alter the RNA structure and also affect the binding affinity of proteins, thus regulating the mRNA stability as well as translation. Emerging evidence suggest that these modifications are not static, but are dynamic; vary upon different cues and are cell-type or tissue-specific. The cardiac transcriptome is not exceptional to such RNA modifications and is enriched with the abundant base methylation such as N6-methyladenosine (m6A) and also 2'-O-Methylation (Nm). In this review we will focus on the technologies available to map these modifications and as well as the contribution of these post-transcriptional modifications during various pathological conditions of the heart.


Asunto(s)
Enfermedades Cardiovasculares/patología , Metilación de ADN , Epigénesis Genética , Epigenoma , Regulación de la Expresión Génica , Corazón/fisiopatología , Procesamiento Postranscripcional del ARN , Animales , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Humanos , Transcriptoma
6.
FASEB J ; 34(2): 2238-2251, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907992

RESUMEN

RNA-binding proteins like human antigen R (HuR) are key regulators in post-transcriptional control of gene expression in several pathophysiological conditions. Diabetes adversely affects monocyte/macrophage biology and function. It is not known whether diabetic milieu affects cellular/exosome-HuR and its implications on cardiac inflammation and fibrosis. Here, we evaluate in vitro and in vivo effects of diabetic milieu on macrophage cellular/exosome-HuR, alterations in intercellular cross talk with fibroblasts, and its impact on cardiac remodeling. Human failing hearts show higher HuR levels. Diabetic milieu activates HuR expression in cardiac- and cultured bone marrow-derived macrophages (BMMØ) and stimulates HuR nuclear-to-cytoplasmic translocation and exosome transfer. Exosomes from macrophages exposed to diabetic milieu (high glucose or db/db mice) significantly increase inflammatory and profibrogenic responses in fibroblast (in vitro) and cardiac fibrosis in mice. Intriguingly, Exo-HuR deficiency (HuR knockdown in macrophage) abrogates the above effects. In diabetic mice, macrophage depletion followed by reconstitution with BMMØ-derived HuR-deficient exosomes inhibits angiotensin II-induced cardiac fibrosis response and preserves left ventricle function as compared to control-exosome administration. To the best of our knowledge, this is the first study to demonstrate that diabetes activates BMMØ HuR expression and its transfer into exosome. The data suggest that HuR might be targeted to alleviate macrophage dysfunction and pathological fibrosis in diabetes.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Proteína 1 Similar a ELAV/metabolismo , Técnicas de Silenciamiento del Gen , Macrófagos/metabolismo , Miocardio/metabolismo , Animales , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/terapia , Proteína 1 Similar a ELAV/genética , Fibrosis , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Macrófagos/patología , Ratones , Ratones Transgénicos , Miocardio/patología , Células RAW 264.7
7.
Pharmacol Res ; 171: 105766, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34271160

RESUMEN

Circular RNAs (circRNAs) are a new class of covalently circularized noncoding RNAs widely expressed in the human heart. Emerging evidence suggests they have a regulatory role in a variety of cardiovascular diseases (CVDs). This review's current focus includes our understanding of circRNA classification, biogenesis, function, stability, degradation mechanisms, and their roles in various cardiovascular disease conditions. Our knowledge of circRNA, the relatively recent member of the noncoding RNA family, is still in its infancy; however, recent literature proposes circRNAs may be promising targets for the understanding and treatment of CVD.


Asunto(s)
Enfermedades Cardiovasculares/genética , ARN Circular , Animales , Humanos , ARN Circular/metabolismo
8.
Circ Res ; 123(2): 188-204, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29976687

RESUMEN

Recent literature suggests that extracellular vesicles (EVs), secreted from most cells and containing cell-specific cargo of proteins, lipids, and nucleic acids, are major driver of intracellular communication in normal physiology and pathological conditions. The recent evidence on stem/progenitor cell EVs as potential therapeutic modality mimicking their parental cell function is exciting because EVs could possibly be used as a surrogate for the stem cell-based therapy, and this regimen may overcome certain roadblocks identified with the use of stem/progenitor cell themselves. This review provides a comprehensive update on our understanding on the role of EVs in cardiac repair and emphasizes the applications of stem/progenitor cell-derived EVs as therapeutics and discusses the current challenges associated with the EV therapy.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Vesículas Extracelulares/trasplante , Trasplante de Células Madre/métodos , Biología de Sistemas/métodos , Animales , Vesículas Extracelulares/clasificación , Vesículas Extracelulares/genética , Humanos , MicroARNs/genética
9.
Exp Cell Res ; 365(1): 46-56, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29481791

RESUMEN

The physiological cardiac hypertrophy is an adaptive condition without myocyte cell death, while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. This study explores the miRNome of α-2M-induced physiologically hypertrophied cardiomyocytes and the role of miRNA-99 family during cardiac hypertrophy. Physiological and pathological cardiac hypertrophy was induced in H9c2 cardiomyoblast cell lines using α-2M and isoproterenol respectively. Total RNA isolation and small RNA sequencing were executed for physiological hypertrophy model. The differentially expressed miRNAs and its target mRNAs were validated in animal models. Transcription factor binding sites were predicted in the promoter of specific miRNAs and validated by ChIP-PCR. Subsequently, the selected miRNA was functionally characterized by overexpression and silencing. The effects of silencing of upstream regulator and downstream target gene were studied. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy, of which miR-99 family was highly downregulated upon α-2M treatment. However, this miR-99 family expression was upregulated during pathological hypertrophy and confirmed in animal models. ChIP-PCR confirms the binding of Egr-1 transcription factor to the miR-99 promoter. Further, silencing of Egr-1 decreased the expression of miR-99. The overexpression or silencing of miR-99 diverges the physiological hypertrophy to pathological hypertrophy and vice versa by regulating Akt-1 pathway. Silencing of Akt-1 replicates the effect of overexpression of miR-99. CONCLUSION: The results proved Egr-1 mediated regulation of miR-99 family that plays a key role in determining the fate of cardiac hypertrophy by regulating Akt-1 signaling.


Asunto(s)
Cardiomegalia/genética , Cardiomegalia/patología , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , MicroARNs/genética , Miocitos Cardíacos/patología , Animales , Línea Celular , Regulación hacia Abajo/genética , Regiones Promotoras Genéticas/genética , Ratas , Ratas Wistar , Transducción de Señal/genética , Regulación hacia Arriba/genética
10.
Circulation ; 134(19): 1467-1483, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27660293

RESUMEN

BACKGROUND: Bone marrow cell (BMC)-based treatment for critical limb ischemia in diabetic patients yielded a modest therapeutic effect resulting from cell dysfunction. Therefore, approaches that improve diabetic stem/progenitor cell functions may provide therapeutic benefits. Here, we tested the hypothesis that restoration of hydrogen sulfide (H2S) production in diabetic BMCs improves their reparative capacities. METHODS: Mouse BMCs were isolated by density-gradient centrifugation. Unilateral hind limb ischemia was conducted in 12- to 14-week-old db/+ and db/db mice by ligation of the left femoral artery. The H2S level was measured by either gas chromatography or staining with florescent dye sulfidefluor 7 AM. RESULTS: Both H2S production and cystathionine γ-lyase (CSE), an H2S enzyme, levels were significantly decreased in BMCs from diabetic db/db mice. Administration of H2S donor diallyl trisulfide (DATS) or overexpression of CSE restored H2S production and enhanced cell survival and migratory capacity in high glucose (HG)-treated BMCs. Immediately after hind limb ischemia surgery, the db/+ and db/db mice were administered DATS orally and/or given a local intramuscular injection of green fluorescent protein-labeled BMCs or red fluorescent protein-CSE-overexpressing BMCs (CSE-BMCs). Mice with hind limb ischemia were divided into 6 groups: db/+, db/db, db/db+BMCs, db/db+DATS, db/db+DATS+BMCs, and db/db+CSE-BMCs. DATS and CSE overexpression greatly enhanced diabetic BMC retention in ischemic hind limbs followed by improved blood perfusion, capillary/arteriole density, skeletal muscle architecture, and cell survival and decreased perivascular CD68+ cell infiltration in the ischemic hind limbs of diabetic mice. It is interesting to note that DATS or CSE overexpression rescued high glucose-impaired migration, tube formation, and survival of BMCs or mature human cardiac microvascular endothelial cells. Moreover, DATS restored nitric oxide production and decreased endothelial nitric oxide synthase phosphorylation at threonine 495 levels in human cardiac microvascular endothelial cells and improved BMC angiogenic activity under high glucose condition. Last, silencing CSE by siRNA significantly increased endothelial nitric oxide synthase phosphorylation at threonine 495 levels in human cardiac microvascular endothelial cells. CONCLUSIONS: Decreased CSE-mediated H2S bioavailability is an underlying source of BMC dysfunction in diabetes mellitus. Our data indicate that H2S and overexpression of CSE in diabetic BMCs may rescue their dysfunction and open novel avenues for cell-based therapeutics of critical limb ischemia in diabetic patients.


Asunto(s)
Trasplante de Médula Ósea , Diabetes Mellitus Experimental , Angiopatías Diabéticas , Miembro Posterior/irrigación sanguínea , Sulfuro de Hidrógeno/sangre , Isquemia , Aloinjertos , Animales , Células de la Médula Ósea/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/terapia , Angiopatías Diabéticas/sangre , Angiopatías Diabéticas/terapia , Humanos , Isquemia/sangre , Isquemia/terapia , Masculino , Ratones
11.
Biochim Biophys Acta Mol Basis Dis ; 1863(5): 1098-1105, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27593695

RESUMEN

Mitochondrial dysfunction and associated oxidative stress are strongly linked to cardiovascular, neurodegenerative, and age associated disorders. More specifically cardiovascular diseases are common in patients with diabetes and significant contributor to the high mortality rates associated with diabetes. Studies have shown that the heart failure risk is increased in diabetic patients even after adjusting for coronary artery disease and hypertension. Although the actual basis of the increased heart failure risk is multifactorial, increasing evidences suggest that imbalances in mitochondrial function and associated oxidative stress play an important role in this process. This review summarizes these abnormalities in mitochondrial function and discusses potential underlying mechanisms. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.


Asunto(s)
Enfermedad de la Arteria Coronaria/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Hipertensión/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Estrés Oxidativo , Animales , Enfermedad de la Arteria Coronaria/patología , Cardiomiopatías Diabéticas/patología , Humanos , Hipertensión/patología , Mitocondrias Cardíacas/patología , Miocardio/patología
12.
Circ Res ; 117(1): 52-64, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25904597

RESUMEN

RATIONALE: Embryonic stem cells (ESCs) hold great promise for cardiac regeneration but are susceptible to various concerns. Recently, salutary effects of stem cells have been connected to exosome secretion. ESCs have the ability to produce exosomes, however, their effect in the context of the heart is unknown. OBJECTIVE: Determine the effect of ESC-derived exosome for the repair of ischemic myocardium and whether c-kit(+) cardiac progenitor cells (CPCs) function can be enhanced with ESC exosomes. METHODS AND RESULTS: This study demonstrates that mouse ESC-derived exosomes (mES Ex) possess ability to augment function in infarcted hearts. mES Ex enhanced neovascularization, cardiomyocyte survival, and reduced fibrosis post infarction consistent with resurgence of cardiac proliferative response. Importantly, mES Ex augmented CPC survival, proliferation, and cardiac commitment concurrent with increased c-kit(+) CPCs in vivo 8 weeks after in vivo transfer along with formation of bonafide new cardiomyocytes in the ischemic heart. miRNA array revealed significant enrichment of miR290-295 cluster and particularly miR-294 in ESC exosomes. The underlying basis for the beneficial effect of mES Ex was tied to delivery of ESC specific miR-294 to CPCs promoting increased survival, cell cycle progression, and proliferation. CONCLUSIONS: mES Ex provide a novel cell-free system that uses the immense regenerative power of ES cells while avoiding the risks associated with direct ES or ES-derived cell transplantation and risk of teratomas. ESC exosomes possess cardiac regeneration ability and modulate both cardiomyocyte and CPC-based repair programs in the heart.


Asunto(s)
Células Madre Embrionarias/fisiología , Exosomas/fisiología , Infarto del Miocardio/terapia , Animales , Supervivencia Celular , Sistema Libre de Células , Colágeno , Combinación de Medicamentos , Células Madre Embrionarias/ultraestructura , Fibroblastos/fisiología , Fibroblastos/ultraestructura , Fibrosis , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/ultraestructura , Inyecciones , Laminina , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Morfogénesis , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Neovascularización Fisiológica , Consumo de Oxígeno , Proteoglicanos , Ratas , Ratas Sprague-Dawley , Transfección , Ultrasonografía
13.
Stem Cells ; 33(12): 3519-29, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26235810

RESUMEN

Poor survival and function of transplanted cells in ischemic and inflamed myocardium likely compromises the functional benefit of stem cell-based therapies. We have earlier reported that co-administration of interleukin (IL)-10 and BMPAC enhances cell survival and improves left ventricular (LV) functions after acute myocardial infarction (MI) in mice. We hypothesized that IL-10 regulates microRNA-375 (miR-375) signaling in BMPACs to enhance their survival and function in ischemic myocardium after MI and attenuates left ventricular dysfunction after MI. miR-375 expression is significantly upregulated in BMPACs upon exposure to inflammatory/hypoxic stimulus and also after MI. IL-10 knockout mice display significantly elevated miR-375 levels. We report that ex vivo miR-375 knockdown in BMPAC before transplantation in the ischemic myocardium after MI significantly improve the survival and retention of transplanted BMPACs and also BMPAC-mediated post-infarct repair, neovascularization, and LV functions. Our in vitro studies revealed that knockdown of miR-375-enhanced BMPAC proliferation and tube formation and inhibited apoptosis; over expression of miR-375 in BMPAC had opposite effects. Mechanistically, miR-375 negatively regulated 3-phosphoinositide-dependent protein kinase-1 (PDK-1) expression and PDK-1-mediated activation of PI3kinase/AKT signaling. Interestingly, BMPAC isolated from IL-10-deficient mice showed elevated basal levels of miR-375 and exhibited functional deficiencies, which were partly rescued by miR-375 knockdown, enhancing BMPAC function in vitro and in vivo. Taken together, our studies suggest that miR-375 is negatively associated with BMPAC function and survival and IL-10-mediated repression of miR-375 enhances BMPAC survival and function.


Asunto(s)
Células de la Médula Ósea/metabolismo , Interleucina-10/metabolismo , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Trasplante de Células Madre , Células Madre/metabolismo , Animales , Células de la Médula Ósea/patología , Técnicas de Silenciamiento del Gen , Interleucina-10/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Miocardio/patología , Células Madre/patología
14.
J Mol Cell Cardiol ; 89(Pt B): 203-13, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26549357

RESUMEN

BACKGROUND: Although autophagy is an essential cellular salvage process to maintain cellular homeostasis, pathological autophagy can lead to cardiac abnormalities and ultimately heart failure. Therefore, a tight regulation of autophagic process would be important to treat chronic heart failure. Previously, we have shown that IL-10 strongly inhibited pressure overload-induced hypertrophy and heart failure, but role of IL-10 in regulation of pathological autophagy is unknown. Here we tested the hypothesis that IL-10 inhibits angiotensin II-induced pathological autophagy and this process, in part, leads to improve cardiac function. METHODS AND RESULTS: Chronic Ang II strongly induced mortality, cardiac dysfunction in IL-10 Knockout mice. IL-10 deletion exaggerated pathological autophagy in response to Ang II treatment. In isolated cardiac myocytes, IL-10 attenuated Ang II-induced pathological autophagy and activated Akt/mTORC1 signaling. Pharmacological or molecular inhibition of Akt and mTORC1 signaling attenuated IL-10 effects on Ang II-induced pathological autophagy. Furthermore, lysosomal inhibition in autophagic flux experiments further confirmed that IL-10 inhibits pathological autophagy via mTORC1 signaling. CONCLUSION: Our data demonstrate a novel role of IL-10 in regulation of pathological autophagy; thus can act as a potential therapeutic molecule for treatment of chronic heart disease.


Asunto(s)
Autofagia , Cardiomegalia/patología , Interleucina-10/metabolismo , Angiotensina II/administración & dosificación , Animales , Animales Recién Nacidos , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Beclina-1 , Cardiomegalia/complicaciones , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Eliminación de Gen , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/ultraestructura , Interleucina-10/deficiencia , Interleucina-10/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
15.
Exp Dermatol ; 24(10): 773-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26010430

RESUMEN

Delayed wound healing is one of the major complications in diabetes and is characterized by chronic proinflammatory response, and abnormalities in angiogenesis and collagen deposition. Sirtuin family proteins regulate numerous pathophysiological processes, including those involved in promotion of longevity, DNA repair, glycolysis and inflammation. However, the role of sirtuin 6 (SIRT6), a NAD+-dependent nuclear deacetylase, in wound healing specifically under diabetic condition remains unclear. To analyse the role of SIRT6 in cutaneous wound healing, paired 6-mm stented wound was created in diabetic db/db mice and injected siRNA against SIRT6 in the wound margins (transfection agent alone and nonsense siRNA served as controls). Wound time to closure was assessed by digital planimetry, and wounds were harvested for histology, immunohistochemistry and Western blotting. SIRT6-siRNA-treated diabetic wound showed impaired healing, which was associated with reduced capillary density (CD31-staining vessels) when compared to control treatment. Interestingly, SIRT6 deficiency decreased vascular endothelial growth factor expression and proliferation markers in the wounds. Furthermore, SIRT6 ablation in diabetic wound promotes nuclear factor-κB (NF-κB) activation resulting in increased expression of proinflammatory markers (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, tumor necrosis factor-α and interleukin-1ß) and increased oxidative stress. Collectively, our findings demonstrate that loss of SIRT6 in cutaneous wound aggravates proinflammatory response by increasing NF-κB activation, oxidative stress and decrease in angiogenesis in the diabetic mice. Based on these findings, we speculate that the activation of SIRT6 signalling might be a potential therapeutic approach for promoting wound healing in diabetics.


Asunto(s)
Complicaciones de la Diabetes/fisiopatología , Repitelización/genética , Sirtuinas/deficiencia , Sirtuinas/genética , Piel/metabolismo , Animales , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Tejido de Granulación/fisiopatología , Molécula 1 de Adhesión Intercelular/análisis , Interleucina-1beta/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Neovascularización Fisiológica/genética , Estrés Oxidativo/genética , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Sirtuinas/metabolismo , Piel/química , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/análisis
17.
Mol Ther Nucleic Acids ; 35(1): 102087, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38178918

RESUMEN

As cardiovascular diseases continue to be the leading cause of death worldwide, groundbreaking research is being conducted to mitigate their effects. This review looks into the potential of small nucleolar RNAs (snoRNAs) and the opportunity to use these molecular agents as therapeutic biomarkers for cardiovascular issues specific to the heart. Through an investigation of snoRNA biogenesis, functionality, and roles in cardiovascular diseases, this review relates our past and present knowledge of snoRNAs to the current scientific literature. Considering the initial discovery of snoRNAs and the studies thereafter analyzing the roles of snoRNAs in disease, we look forward to uncovering many other noncanonical functions that could lead researchers closer to finding preventive and curative solutions for cardiovascular diseases.

18.
NPJ Regen Med ; 9(1): 17, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684697

RESUMEN

Historically, a lower incidence of cardiovascular diseases (CVD) and related deaths in women as compared with men of the same age has been attributed to female sex hormones, particularly estrogen and its receptors. Autologous bone marrow stem cell (BMSC) clinical trials for cardiac cell therapy overwhelmingly included male patients. However, meta-analysis data from these trials suggest a better functional outcome in postmenopausal women as compared with aged-matched men. Mechanisms governing sex-specific cardiac reparative activity in BMSCs, with and without the influence of sex hormones, remain unexplored. To discover these mechanisms, Male (M), female (F), and ovariectomized female (OVX) mice-derived EPCs were subjected to a series of molecular and epigenetic analyses followed by in vivo functional assessments of cardiac repair. F-EPCs and OVX EPCs show a lower inflammatory profile and promote enhanced cardiac reparative activity after intra-cardiac injections in a male mouse model of myocardial infarction (MI). Epigenetic sequencing revealed a marked difference in the occupancy of the gene repressive H3K9me3 mark, particularly at transcription start sites of key angiogenic and proinflammatory genes in M-EPCs compared with F-EPCs and OVX-EPCs. Our study unveiled that functional sex differences in EPCs are, in part, mediated by differential epigenetic regulation of the proinflammatory and anti-angiogenic gene CCL3, orchestrated by the control of H3K9me3 by histone methyltransferase, G9a/Ehmt2. Our research highlights the importance of considering the sex of donor cells for progenitor-based tissue repair.

20.
Neuromolecular Med ; 25(2): 145-162, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36153432

RESUMEN

The attribution of seizure freedom is yet to be achieved for patients suffering from refractory epilepsy, e.g. Dravet Syndrome (DS). The confined ability of mono-chemical entity-based antiseizure drugs (ASDs) to act directly at genomic level is one of the factors, combined with undetermined seizure triggers lead to recurrent seizure (RS) in DS, abominably affecting the sub-genomic architecture of neural cells. Thus, the RS and ASD appear to be responsible for the spectrum of exorbitant clinical pathology. The RS distresses the 5-HT-serotonin pathway, hypomethylates genes of CNS, and modulates the microRNA (miRNA)/long non-coding RNA (lncRNA), eventually leading to frozen molecular alterations. These changes shall be reverted by compatible epigenetic regulators (EGR) like, miRNA and lncRNA from Breast milk (BML) and Bacopa monnieri (BMI). The absence of studious seizure in SCN1A mutation-positive babies for the first 6 months raises the possibility that the consequences of mutation in SCN1A are subsidized by EGRs from BML. EGR-dependent-modifier gene effect is likely imposed by the other members of the SCN family. Therefore, we advocate that miRNA/lncRNA from BML and bacosides/miRNA from BMI buffer the effect of SCN1A mutation by sustainably maintaining modifier gene effect in the aberrant neurons. The presence of miRNA-155-5p, -30b-5p, and -30c-5p family in BML and miR857, miR168, miR156, and miR158 in BMI target at regulating SCN family and CLCN5 as visualized by Cystoscope. Thus, we envisage that the possible effects of EGR might include (a) upregulating the haploinsufficient SCN1A strand, (b) down-regulating seizure-elevated miRNA, (c) suppressing the seizure-induced methyltransferases, and (d) enhancing the GluN2A subunit of NMDA receptor to improve cognition. The potential of these EGRs from BML and BML is to further experimentally strengthen, long-haul step forward in molecular therapeutics.


Asunto(s)
Epilepsia Refractaria , Epilepsias Mioclónicas , MicroARNs , ARN Largo no Codificante , Lactante , Femenino , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Epilepsia Refractaria/genética , ARN Largo no Codificante/genética , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Convulsiones , Mutación , MicroARNs/genética , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA