Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 102(5): 845-857, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706347

RESUMEN

Loss of expression of ACTN3, due to homozygosity of the common null polymorphism (p.Arg577X), is underrepresented in elite sprint/power athletes and has been associated with reduced muscle mass and strength in humans and mice. To investigate ACTN3 gene dosage in performance and whether expression could enhance muscle force, we performed meta-analysis and expression studies. Our general meta-analysis using a Bayesian random effects model in elite sprint/power athlete cohorts demonstrated a consistent homozygous-group effect across studies (per allele OR = 1.4, 95% CI 1.3-1.6) but substantial heterogeneity in heterozygotes. In mouse muscle, rAAV-mediated gene transfer overexpressed and rescued α-actinin-3 expression. Contrary to expectation, in vivo "doping" of ACTN3 at low to moderate doses demonstrated an absence of any change in function. At high doses, ACTN3 is toxic and detrimental to force generation, to demonstrate gene doping with supposedly performance-enhancing isoforms of sarcomeric proteins can be detrimental for muscle function. Restoration of α-actinin-3 did not enhance muscle mass but highlighted the primary role of α-actinin-3 in modulating muscle metabolism with altered fatiguability. This is the first study to express a Z-disk protein in healthy skeletal muscle and measure the in vivo effect. The sensitive balance of the sarcomeric proteins and muscle function has relevant implications in areas of gene doping in performance and therapy for neuromuscular disease.


Asunto(s)
Actinina/genética , Músculo Esquelético/fisiología , Anaerobiosis , Animales , Animales Recién Nacidos , Atletas , Calcineurina/metabolismo , Dependovirus/metabolismo , Regulación hacia Abajo/genética , Estudio de Asociación del Genoma Completo , Heterocigoto , Homocigoto , Humanos , Ratones Endogámicos C57BL , Fatiga Muscular , Fibras Musculares Esqueléticas/metabolismo , Tamaño de los Órganos , Oxidación-Reducción
2.
BMC Genomics ; 19(1): 13, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29298672

RESUMEN

BACKGROUND: Studies investigating associations between ACTN3 R577X and ACE I/D genotypes and endurance athletic status have been limited by small sample sizes from mixed sport disciplines and lack quantitative measures of performance. AIM: To examine the association between ACTN3 R577X and ACE I/D genotypes and best personal running times in a large homogeneous cohort of endurance runners. METHODS: We collected a total of 1064 personal best 1500, 3000, 5000 m and marathon running times of 698 male and female Caucasian endurance athletes from six countries (Australia, Greece, Italy, Poland, Russia and UK). Athletes were genotyped for ACTN3 R577X and ACE ID variants. RESULTS: There was no association between ACTN3 R577X or ACE I/D genotype and running performance at any distance in men or women. Mean (SD) marathon times (in s) were for men: ACTN3 RR 9149 (593), RX 9221 (582), XX 9129 (582) p = 0.94; ACE DD 9182 (665), ID 9214 (549), II 9155 (492) p = 0.85; for women: ACTN3 RR 10796 (818), RX 10667 (695), XX 10675 (553) p = 0.36; ACE DD 10604 (561), ID 10766 (740), II 10771 (708) p = 0.21. Furthermore, there were no associations between these variants and running time for any distance in a sub-analysis of athletes with personal records within 20% of world records. CONCLUSIONS: Thus, consistent with most case-control studies, this multi-cohort quantitative analysis demonstrates it is unlikely that ACTN3 XX genotype provides an advantage in competitive endurance running performance. For ACE II genotype, some prior studies show an association but others do not. Our data indicate it is also unlikely that ACE II genotype provides an advantage in endurance running.


Asunto(s)
Actinina/genética , Atletas , Peptidil-Dipeptidasa A/genética , Resistencia Física/genética , Polimorfismo Genético , Carrera/fisiología , Femenino , Genotipo , Humanos , Masculino , Población Blanca/genética
3.
Hum Mol Genet ; 25(5): 866-77, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26681802

RESUMEN

A common null polymorphism (R577X) in ACTN3 causes α-actinin-3 deficiency in ∼ 18% of the global population. There is no associated disease phenotype, but α-actinin-3 deficiency is detrimental to sprint and power performance in both elite athletes and the general population. However, despite considerable investigation to date, the functional consequences of heterozygosity for ACTN3 are unclear. A subset of studies have shown an intermediate phenotype in 577RX individuals, suggesting dose-dependency of α-actinin-3, while others have shown no difference between 577RR and RX genotypes. Here, we investigate the effects of α-actinin-3 expression level by comparing the muscle phenotypes of Actn3(+/-) (HET) mice to Actn3(+/+) [wild-type (WT)] and Actn3(-/-) [knockout (KO)] littermates. We show reduction in α-actinin-3 mRNA and protein in HET muscle compared with WT, which is associated with dose-dependent up-regulation of α-actinin-2, z-band alternatively spliced PDZ-motif and myotilin at the Z-line, and an incremental shift towards oxidative metabolism. While there is no difference in force generation, HET mice have an intermediate endurance capacity compared with WT and KO. The R577X polymorphism is associated with changes in ACTN3 expression consistent with an additive model in the human genotype-tissue expression cohort, but does not influence any other muscle transcripts, including ACTN2. Overall, ACTN3 influences sarcomeric composition in a dose-dependent fashion in mouse skeletal muscle, which translates directly to function. Variance in fibre type between biopsies likely masks this phenomenon in human skeletal muscle, but we suggest that an additive model is the most appropriate for use in testing ACTN3 genotype associations.


Asunto(s)
Actinina/genética , Dosificación de Gen , Músculo Esquelético/metabolismo , Resistencia Física/genética , Polimorfismo Genético , Actinina/deficiencia , Actinina/metabolismo , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Heterocigoto , Homocigoto , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Condicionamiento Físico Animal , Sarcómeros/metabolismo
4.
Physiol Genomics ; 48(2): 82-92, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26395598

RESUMEN

The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis." Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.


Asunto(s)
Modelos Animales de Enfermedad , Ejercicio Físico , Modelos Animales , Actinina/deficiencia , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo II/fisiopatología , Enfermedad del Almacenamiento de Glucógeno Tipo V/fisiopatología , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Condicionamiento Físico Animal , Ratas
5.
BMC Genomics ; 17: 285, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27075997

RESUMEN

BACKGROUND: To date, studies investigating the association between ACTN3 R577X and ACE I/D gene variants and elite sprint/power performance have been limited by small cohorts from mixed sport disciplines, without quantitative measures of performance. AIM: To examine the association between these variants and sprint time in elite athletes. METHODS: We collected a total of 555 best personal 100-, 200-, and 400-m times of 346 elite sprinters in a large cohort of elite Caucasian or African origin sprinters from 10 different countries. Sprinters were genotyped for ACTN3 R577X and ACE ID variants. RESULTS: On average, male Caucasian sprinters with the ACTN3 577RR or the ACE DD genotype had faster best 200-m sprint time than their 577XX (21.19 ± 0.53 s vs. 21.86 ± 0.54 s, p = 0.016) and ACE II (21.33 ± 0.56 vs. 21.93 ± 0.67 sec, p = 0.004) counterparts and only one case of ACE II, and no cases of ACTN3 577XX, had a faster 200-m time than the 2012 London Olympics qualifying (vs. 12 qualified sprinters with 577RR or 577RX genotype). Caucasian sprinters with the ACE DD genotype had faster best 400-m sprint time than their ACE II counterparts (46.94 ± 1.19 s vs. 48.50 ± 1.07 s, p = 0.003). Using genetic models we found that the ACTN3 577R allele and ACE D allele dominant model account for 0.92 % and 1.48 % of sprint time variance, respectively. CONCLUSIONS: Despite sprint performance relying on many gene variants and environment, the % sprint time variance explained by ACE and ACTN3 is substantial at the elite level and might be the difference between a world record and only making the final.


Asunto(s)
Actinina/genética , Atletas , Rendimiento Atlético , Peptidil-Dipeptidasa A/genética , Carrera , Alelos , Población Negra , Estudios de Cohortes , Femenino , Genotipo , Humanos , Masculino , Polimorfismo Genético , Población Blanca
6.
Hum Mol Genet ; 23(5): 1250-9, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24163128

RESUMEN

There is emerging evidence for reduced muscle function in children with neurofibromatosis type 1 (NF1). We have examined three murine models featuring NF1 deficiency in muscle to study the effect on muscle function as well as any underlying pathophysiology. The Nf1(+/-) mouse exhibited no differences in overall weight, lean tissue mass, fiber size, muscle weakness as measured by grip strength or muscle atrophy-recovery with limb disuse, although this model lacks many other characteristic features of the human disease. Next, muscle-specific knockout mice (Nf1muscle(-/-)) were generated and they exhibited a failure to thrive leading to neonatal lethality. Intramyocellular lipid accumulations were observed by electron microscopy and Oil Red O staining. More mature muscle specimens lacking Nf1 expression taken from the limb-specific Nf1Prx1(-/-) conditional knockout line showed a 10-fold increase in muscle triglyceride content. Enzyme assays revealed a significant increase in the activities of oxidative metabolism enzymes in the Nf1Prx1(-/-) mice. Western analyses showed increases in the expression of fatty acid synthase and the hormone leptin, as well as decreased expression of a number of fatty acid transporters in this mouse line. These data support the hypothesis that NF1 is essential for normal muscle function and survival and are the first to suggest a direct link between NF1 and mitochondrial fatty acid metabolism.


Asunto(s)
Desarrollo de Músculos/genética , Músculos/metabolismo , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Animales , Peso Corporal , Resorción Ósea/genética , Huesos/metabolismo , Huesos/patología , Modelos Animales de Enfermedad , Genes Letales , Heterocigoto , Homocigoto , Humanos , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Fuerza Muscular/genética , Músculos/patología , Músculos/ultraestructura , Neurofibromina 1/deficiencia , Tamaño de los Órganos
7.
Br J Sports Med ; 49(23): 1486-91, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26582191

RESUMEN

The general consensus among sport and exercise genetics researchers is that genetic tests have no role to play in talent identification or the individualised prescription of training to maximise performance. Despite the lack of evidence, recent years have witnessed the rise of an emerging market of direct-to-consumer marketing (DTC) tests that claim to be able to identify children's athletic talents. Targeted consumers include mainly coaches and parents. There is concern among the scientific community that the current level of knowledge is being misrepresented for commercial purposes. There remains a lack of universally accepted guidelines and legislation for DTC testing in relation to all forms of genetic testing and not just for talent identification. There is concern over the lack of clarity of information over which specific genes or variants are being tested and the almost universal lack of appropriate genetic counselling for the interpretation of the genetic data to consumers. Furthermore independent studies have identified issues relating to quality control by DTC laboratories with different results being reported from samples from the same individual. Consequently, in the current state of knowledge, no child or young athlete should be exposed to DTC genetic testing to define or alter training or for talent identification aimed at selecting gifted children or adolescents. Large scale collaborative projects, may help to develop a stronger scientific foundation on these issues in the future.


Asunto(s)
Aptitud/fisiología , Rendimiento Atlético/fisiología , Pruebas Dirigidas al Consumidor/normas , Pruebas Genéticas/normas , Aptitud/ética , Consenso , Decepción , Pruebas Dirigidas al Consumidor/ética , Pruebas Dirigidas al Consumidor/legislación & jurisprudencia , Medicina Basada en la Evidencia , Pruebas Genéticas/ética , Pruebas Genéticas/legislación & jurisprudencia , Genómica , Humanos , Medicina Deportiva/ética , Medicina Deportiva/legislación & jurisprudencia , Medicina Deportiva/normas
9.
Hum Mol Genet ; 20(15): 2914-27, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21536590

RESUMEN

Sarcomeric α-actinins (α-actinin-2 and -3) are a major component of the Z-disk in skeletal muscle, where they crosslink actin and other structural proteins to maintain an ordered myofibrillar array. Homozygosity for the common null polymorphism (R577X) in ACTN3 results in the absence of fast fiber-specific α-actinin-3 in ∼20% of the general population. α-Actinin-3 deficiency is associated with decreased force generation and is detrimental to sprint and power performance in elite athletes, suggesting that α-actinin-3 is necessary for optimal forceful repetitive muscle contractions. Since Z-disks are the structures most vulnerable to eccentric damage, we sought to examine the effects of α-actinin-3 deficiency on sarcomeric integrity. Actn3 knockout mouse muscle showed significantly increased force deficits following eccentric contraction at 30% stretch, suggesting that α-actinin-3 deficiency results in an increased susceptibility to muscle damage at the extremes of muscle performance. Microarray analyses demonstrated an increase in muscle remodeling genes, which we confirmed at the protein level. The loss of α-actinin-3 and up-regulation of α-actinin-2 resulted in no significant changes to the total pool of sarcomeric α-actinins, suggesting that alterations in fast fiber Z-disk properties may be related to differences in functional protein interactions between α-actinin-2 and α-actinin-3. In support of this, we demonstrated that the Z-disk proteins, ZASP, titin and vinculin preferentially bind to α-actinin-2. Thus, the loss of α-actinin-3 changes the overall protein composition of fast fiber Z-disks and alters their elastic properties, providing a mechanistic explanation for the loss of force generation and increased susceptibility to eccentric damage in α-actinin-3-deficient individuals.


Asunto(s)
Actinina/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Actinina/genética , Animales , Conectina , Immunoblotting , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Contracción Muscular/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo Genético/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Técnicas del Sistema de Dos Híbridos , Vinculina/genética , Vinculina/metabolismo
10.
Front Neurol ; 14: 1055639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36779065

RESUMEN

Recessive pathogenic variants in the laminin subunit alpha 2 (LAMA2) gene cause a spectrum of disease ranging from severe congenital muscular dystrophy to later-onset limb girdle muscular dystrophy (LGMDR23). The phenotype of LGMDR23 is characterized by slowly progressive proximal limb weakness, contractures, raised creatine kinase, and sometimes distinctive cerebral white matter changes and/or epilepsy. We present two siblings, born to consanguineous parents, who developed adult-onset LGMDR23 associated with typical cerebral white matter changes and who both later developed dementia. The male proband also had epilepsy and upper motor neuron signs when he presented at age 72. Merosin immunohistochemistry and Western blot on muscle biopsies taken from both subjects was normal. Whole exome sequencing revealed a previously unreported homozygous missense variant in LAMA2 [Chr6(GRCh38):g.129297734G>A; NM_000426.3:c.2906G>A; p.(Cys969Tyr)] in the proband. The same homozygous LAMA2 variant was confirmed by Sanger sequencing in the proband's affected sister. These findings expand the genotypic and phenotypic spectrum of LGMDR23.

11.
Front Neurol ; 13: 868655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463132

RESUMEN

Here we report on two unrelated adult patients presenting with Limb girdle muscular dystrophy who were found to have novel variants in ANO5. Both patients had prominent weakness of their proximal lower limbs with mild weakness of elbow flexion and markedly elevated creatine kinase. Next generation sequencing using a custom-designed neuromuscular panel was performed in both patients. In one patient, 336 genes were targeted for casual variants and in the other patient (using a later panel design), 464 genes were targeted. One patient was homozygous for a novel splice variant [c.294+5G>A; p.(Ala98Ins4*)] in ANO5. Another patient was compound heterozygous for two variants in ANO5; a common frameshift variant [c.191dupA; p.(Asn64fs)] and a novel missense variant [c.952G>C; p.(Ala318Pro)]. These findings support the utility of next generation sequencing in the diagnosis of patients presenting with a Limb girdle muscular dystrophy phenotype and extends the genotypic spectrum of ANO5 disease.

12.
Genome Med ; 14(1): 7, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35042540

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. METHODS: The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with 'omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). RESULTS: SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10-6), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10-3, adjusted R2 = 0.042, Beffect = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. CONCLUSIONS: These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Animales , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Polimorfismo de Nucleótido Simple , Pez Cebra/genética
13.
Eur J Hum Genet ; 30(5): 532-539, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33907316

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is recognised to be a complex neurodegenerative disease involving both genetic and non-genetic risk factors. The underlying causes and risk factors for the majority of cases remain unknown; however, ever-larger genetic data studies and methodologies promise an enhanced understanding. Recent analyses using published summary statistics from the largest ALS genome-wide association study (GWAS) (20,806 ALS cases and 59,804 healthy controls) identified that schizophrenia (SCZ), cognitive performance (CP) and educational attainment (EA) related traits were genetically correlated with ALS. To provide additional evidence for these correlations, we built single and multi-trait genetic predictors using GWAS summary statistics for ALS and these traits, (SCZ, CP, EA) in an independent Australian cohort (846 ALS cases and 665 healthy controls). We compared methods for generating the risk predictors and found that the combination of traits improved the prediction (Nagelkerke-R2) of the case-control logistic regression. The combination of ALS, SCZ, CP, and EA, using the SBayesR predictor method gave the highest prediction (Nagelkerke-R2) of 0.027 (P value = 4.6 × 10-8), with the odds-ratio for estimated disease risk between the highest and lowest deciles of individuals being 3.15 (95% CI 1.96-5.05). These results support the genetic correlation between ALS, SCZ, CP and EA providing a better understanding of the complexity of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esquizofrenia , Esclerosis Amiotrófica Lateral/genética , Australia , Cognición , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Esquizofrenia/genética
14.
Sci Transl Med ; 14(633): eabj0264, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196023

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Colesterol , Metilación de ADN/genética , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades Neurodegenerativas/genética
15.
Nat Commun ; 12(1): 2717, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976150

RESUMEN

Circulating cell-free DNA (cfDNA) in the bloodstream originates from dying cells and is a promising noninvasive biomarker for cell death. Here, we propose an algorithm, CelFiE, to accurately estimate the relative abundances of cell types and tissues contributing to cfDNA from epigenetic cfDNA sequencing. In contrast to previous work, CelFiE accommodates low coverage data, does not require CpG site curation, and estimates contributions from multiple unknown cell types that are not available in external reference data. In simulations, CelFiE accurately estimates known and unknown cell type proportions from low coverage and noisy cfDNA mixtures, including from cell types composing less than 1% of the total mixture. When used in two clinically-relevant situations, CelFiE correctly estimates a large placenta component in pregnant women, and an elevated skeletal muscle component in amyotrophic lateral sclerosis (ALS) patients, consistent with the occurrence of muscle wasting typical in these patients. Together, these results show how CelFiE could be a useful tool for biomarker discovery and monitoring the progression of degenerative disease.


Asunto(s)
Algoritmos , Esclerosis Amiotrófica Lateral/genética , Ácidos Nucleicos Libres de Células/genética , Metilación de ADN , Epigénesis Genética , Adulto , Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/patología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores/sangre , Estudios de Casos y Controles , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/clasificación , Femenino , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Monocitos/inmunología , Monocitos/metabolismo , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Especificidad de Órganos , Embarazo , Trimestres del Embarazo/sangre , Trimestres del Embarazo/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo
16.
Genome Biol ; 22(1): 90, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33771206

RESUMEN

BACKGROUND: People with neurodegenerative disorders show diverse clinical syndromes, genetic heterogeneity, and distinct brain pathological changes, but studies report overlap between these features. DNA methylation (DNAm) provides a way to explore this overlap and heterogeneity as it is determined by the combined effects of genetic variation and the environment. In this study, we aim to identify shared blood DNAm differences between controls and people with Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. RESULTS: We use a mixed-linear model method (MOMENT) that accounts for the effect of (un)known confounders, to test for the association of each DNAm site with each disorder. While only three probes are found to be genome-wide significant in each MOMENT association analysis of amyotrophic lateral sclerosis and Parkinson's disease (and none with Alzheimer's disease), a fixed-effects meta-analysis of the three disorders results in 12 genome-wide significant differentially methylated positions. Predicted immune cell-type proportions are disrupted across all neurodegenerative disorders. Protein inflammatory markers are correlated with profile sum-scores derived from disease-associated immune cell-type proportions in a healthy aging cohort. In contrast, they are not correlated with MOMENT DNAm-derived profile sum-scores, calculated using effect sizes of the 12 differentially methylated positions as weights. CONCLUSIONS: We identify shared differentially methylated positions in whole blood between neurodegenerative disorders that point to shared pathogenic mechanisms. These shared differentially methylated positions may reflect causes or consequences of disease, but they are unlikely to reflect cell-type proportion differences.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Enfermedades Neurodegenerativas/etiología , Alelos , Biomarcadores , Células Sanguíneas/metabolismo , Estudios de Casos y Controles , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Sitios Genéticos , Predisposición Genética a la Enfermedad , Humanos , Enfermedades Neurodegenerativas/metabolismo
17.
Expert Rev Neurother ; 20(9): 921-941, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32569484

RESUMEN

INTRODUCTION: ALS is a fatal neurodegenerative disease. However, patients show variability in the length of survival after symptom onset. Understanding the mechanisms of long survival could lead to possible avenues for therapy. AREAS COVERED: This review surveys the reported length of survival in ALS, the clinical features that predict survival in individual patients, and possible factors, particularly genetic factors, that could cause short or long survival. The authors also speculate on possible mechanisms. EXPERT OPINION: a small number of known factors can explain some variability in ALS survival. However, other disease-modifying factors likely exist. Factors that alter motor neurone vulnerability and immune, metabolic, and muscle function could affect survival by modulating the disease process. Knowing these factors could lead to interventions to change the course of the disease. The authors suggest a broad approach is needed to quantify the proportion of variation survival attributable to genetic and non-genetic factors and to identify and estimate the effect size of specific factors. Studies of this nature could not only identify novel avenues for therapeutic research but also play an important role in clinical trial design and personalized medicine.


Asunto(s)
Esclerosis Amiotrófica Lateral/mortalidad , Humanos
18.
J Neurol Sci ; 413: 116809, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32334137

RESUMEN

BACKGROUND: Heat shock protein beta-1 (HSPB1) is a ubiquitously expressed molecular chaperone that is important in protecting cells against cellular injury. Mutations in this protein are known to cause autosomal dominant hereditary distal axonal neuropathies, including Charcot Marie Tooth disease type 2F (CMT2F) and distal hereditary motor neuropathy (dHMN). However, patients with HSPB1 mutations have also been described with upper motor neuron signs. We present five patients with mutations in HSPB1 who presented with a range of clinical phenotypes related to different patterns of motor neuron dysfunction. Three of these mutations have not been previously reported. METHODS: Patients were seen at our neuromuscular or amyotrophic lateral sclerosis (ALS) clinics. Gene sequencing was carried out as part of diagnostic investigations. Detailed clinical and electrophysiologic data was collected. RESULTS: Five patients had variants of HSPB1. Three patients had a hereditary length-dependent sensori-motor axonal neuropathy consistent with Charcot Marie Tooth type 2 (CMT2); two of these patients carried novel mutations in the C-terminal region (p.Glu186* and p.Pro170Thr). One patient had the clinical picture of ALS and a novel missense mutation (p.Arg27Leu) in the N-terminal region. Another patient had the phenotype of hereditary spastic paraparesis (HSP) associated with a missense mutation (p.Gly84Arg) already described in families with CMT or dHMN. CONCLUSION: This study describes three novel mutations of HSPB1 and describes two patients with upper motor neurone signs associated with HSPB1 mutations.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas de Choque Térmico HSP27 , Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares , Neuronas Motoras , Mutación/genética , Fenotipo
19.
Artículo en Inglés | MEDLINE | ID: mdl-32643435

RESUMEN

Gut microbiota studies have been well-investigated for neurodegenerative diseases such as Alzheimer's and Parkinson's disease, however, fewer studies have comprehensively examined the gut microbiome in Motor Neuron Disease (MND), with none examining its impact on disease prognosis. Here, we investigate MND prognosis and the fecal microbiota, using 16S rRNA case-control data from 100 individuals with extensive medical histories and metabolic measurements. We contrast the composition and diversity of fecal microbiome signatures from 49 MND and 51 healthy controls by combining current gold-standard 16S microbiome pipelines. Using stringent quality control thresholds, we conducted qualitative assessment approaches including; direct comparison of taxa, PICRUSt2 predicted metagenomics, Shannon and Chao1-index and Firmicutes/Bacteroidetes ratio. We show that the fecal microbiome of patients with MND is not significantly different from that of healthy controls that were matched by age, sex, and BMI, however there are distinct differences in Beta-diversity in some patients with MND. Weight, BMI, and metabolic and clinical features of disease in patients with MND were not related to the composition of their fecal microbiome, however, we observe a greater risk for earlier death in patients with MND with increased richness and diversity of the microbiome, and in those with greater Firmicutes to Bacteroidetes ratio. This was independent of anthropometric, metabolic, or clinical features of disease, and warrants support for further gut microbiota studies in MND. Given the disease heterogeneity in MND, and complexity of the gut microbiota, large studies are necessary to determine the detailed role of the gut microbiota and MND prognosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Microbiota , Enfermedad de la Neurona Motora , Heces , Humanos , Microbiota/genética , Enfermedad de la Neurona Motora/complicaciones , ARN Ribosómico 16S/genética
20.
Neurol Genet ; 6(2): e398, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32211514

RESUMEN

OBJECTIVE: To investigate the genetic contribution to amyotrophic lateral sclerosis (ALS) and the phenotypic and genetic associations between ALS and psychiatric and cardiovascular disorders (CVD) we used the national registry data from Denmark linked to first-degree relatives to estimate heritability and cross-trait parameters. METHODS: ALS cases and 100 sex and birth-matched controls per case from the Danish Civil Registration System were linked to their records in the Danish National Patient Registry. Cases and controls were compared for (1) risk of ALS in first-degree relatives, used to estimate heritability, (2) comorbidity with psychiatric disorders and CVD, and (3) risk of psychiatric disorders and CVD in first-degree relatives. RESULTS: 5,808 ALS cases and 580,800 controls were identified. Fifteen percent of cases and controls could be linked to both parents and full siblings, whereas 70% could be linked to children. (1) We estimated the heritability of ALS to be 0.43 (95% CI, 0.34-0.53). (2) We found increased rates of diagnosis of mental disorders (risk ratio = 1.18; 95% CI, 1.09-1.29) and CVD in those later diagnosed with ALS. (3) In first-degree relatives of those with ALS, we found increased rate of schizophrenia (1.17; 95% CI, 0.96-1.42), but no evidence for increased risk CVD. CONCLUSIONS: Heritability of ALS is lower than commonly reported. There is likely a genetic relationship between ALS and schizophrenia, and a nongenetic relationship between ALS and CVD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA