Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Vet Res ; 18(1): 306, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948980

RESUMEN

Piscine orthoreovirus genotype-1 (PRV-1) is a virus commonly associated with Atlantic salmon aquaculture with global variability in prevalence and association with disease. From August 2016 to November 2019, 2,070 fish sampled at 64 Atlantic salmon net-pen farm sites during 302 sampling events from British Columbia, Canada, were screened for PRV-1 using real-time qPCR. Nearly all populations became PRV-1 positive within one year of seawater entry irrespective of location, time of stocking, or producer. Cohorts became infected between 100-300 days at sea in > 90% of repeatedly sampled sites and remained infected until harvest (typically 500-700 days at sea). Heart inflammation, which is sometimes attributed to PRV-1, was also assessed in 779 production mortalities from 47 cohorts with known PRV status. Mild heart inflammation was common in mortalities from both PRV + and PRV- populations (67% and 68% prevalence, respectively). Moderate and severe lymphoplasmacytic heart inflammation was rare (11% and 3% prevalence, respectively); however, mainly arose (66 of 77 occurrences) in populations with PRV-1. Detection of PRV-1 RNA was also accomplished in water and sediment for which methods are described. These data cumulatively identify that PRV-1 ubiquitously infects farmed Atlantic salmon in British Columbia during seawater production but only in rare instances correlates with heart inflammation.


Asunto(s)
Enfermedades de los Peces , Infecciones por Reoviridae , Salmo salar , Animales , Arritmias Cardíacas/veterinaria , Canadá , Enfermedades de los Peces/epidemiología , Genotipo , Inflamación/veterinaria , Orthoreovirus , Infecciones por Reoviridae/epidemiología , Infecciones por Reoviridae/veterinaria
2.
BMC Biol ; 19(1): 138, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34253202

RESUMEN

BACKGROUND: Viruses can impose energetic demands on organisms they infect, in part by hosts mounting resistance. Recognizing that oxygen uptake reliably indicates steady-state energy consumption in all vertebrates, we comprehensively evaluated oxygen uptake and select transcriptomic messaging in sockeye salmon challenged with either a virulent rhabdovirus (IHNV) or a low-virulent reovirus (PRV). We tested three hypotheses relating to the energetic costs of viral resistance and tolerance in this vertebrate system: (1) mounting resistance incurs a metabolic cost or limitation, (2) induction of the innate antiviral interferon system compromises homeostasis, and (3) antiviral defenses are weakened by acute stress. RESULTS: IHNV infections either produced mortality within 1-4 weeks or the survivors cleared infections within 1-9 weeks. Transcription of three interferon-stimulated genes (ISGs) was strongly correlated with IHNV load but not respiratory performance. Instead, early IHNV resistance was associated with a mean 19% (95% CI = 7-31%; p = 0.003) reduction in standard metabolic rate. The stress of exhaustive exercise did not increase IHNV transcript loads, but elevated host inflammatory transcriptional signaling up to sevenfold. For PRV, sockeye tolerated high-load systemic PRV blood infections. ISG transcription was transiently induced at peak PRV loads without associated morbidity, microscopic lesions, or major changes in aerobic or anaerobic respiratory performance, but some individuals with high-load blood infections experienced a transient, minor reduction in hemoglobin concentration and increased duration of excess post-exercise oxygen consumption. CONCLUSIONS: Contrary to our first hypothesis, effective resistance against life-threatening rhabdovirus infections or tolerance to high-load reovirus infections incurred minimal metabolic costs to salmon. Even robust systemic activation of the interferon system did not levy an allostatic load sufficient to compromise host homeostasis or respiratory performance, rejecting our second hypothesis that this ancient innate vertebrate antiviral defense is itself energetically expensive. Lastly, an acute stress experienced during testing did not weaken host antiviral defenses sufficiently to promote viral replication; however, a possibility for disease intensification contingent upon underlying inflammation was indicated. These data cumulatively demonstrate that fundamental innate vertebrate defense strategies against potentially life-threatening viral exposure impose limited putative costs on concurrent aerobic or energetic demands of the organism.


Asunto(s)
Enfermedades de los Peces , Animales , Antivirales , Humanos , Virus de la Necrosis Hematopoyética Infecciosa , Interferones , Oxígeno , Salmón
3.
J Fish Dis ; 43(11): 1331-1352, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32935367

RESUMEN

Piscine orthoreovirus (PRV) is a common and widely distributed virus of salmonids. Since its discovery in 2010, the virus has been detected in wild and farmed stocks from North America, South America, Europe and East Asia in both fresh and salt water environments. Phylogenetic analysis suggests three distinct genogroups of PRV with generally discrete host tropisms and/or regional patterns. PRV-1 is found mainly in Atlantic (Salmo salar), Chinook (Oncorhynchus tshawytscha) and Coho (Oncorhynchus kisutch) Salmon of Europe and the Americas; PRV-2 has only been detected in Coho Salmon of Japan; and PRV-3 has been reported primarily in Rainbow Trout (Oncorhynchus mykiss) in Europe. All three genotypes can establish high-load systemic infections by targeting red blood cells for principal replication. Each genotype has also demonstrated potential to cause circulatory disease. At the same time, high-load PRV infections occur in non-diseased salmon and trout, indicating a complexity for defining PRV's role in disease aetiology. Here, we summarize the current body of knowledge regarding PRV following 10 years of study.


Asunto(s)
Enfermedades de los Peces/virología , Orthoreovirus/patogenicidad , Infecciones por Reoviridae/veterinaria , Animales , Acuicultura , Enfermedades de los Peces/patología , Genotipo , Orthoreovirus/clasificación , Orthoreovirus/genética , Filogenia , Infecciones por Reoviridae/virología , Salmón , Trucha
4.
Fish Shellfish Immunol ; 94: 525-538, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31539572

RESUMEN

Aquatic rhabdoviruses are globally significant pathogens associated with disease in both wild and cultured fish. Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus that causes the internationally regulated disease infectious hematopoietic necrosis (IHN) in most species of salmon. Yet not all naïve salmon exposed to IHNV become diseased, and the mechanisms by which some individuals evade or rapidly clear infection following exposure are poorly understood. Here we used RNA-sequencing to evaluate transcriptomic changes in sockeye salmon, a keystone species in the North Pacific and natural host for IHNV, to evaluate the consequences of IHNV exposure and/or infection on host cell transcriptional pathways. Immersion challenge of sockeye salmon smolts with IHNV resulted in approximately 33% infection prevalence, where both prevalence and viral kidney load peaked at 7 days post challenge (dpc). De novo assembly of kidney transcriptomes at 7 dpc revealed that both infected and exposed but noninfected individuals experienced substantial transcriptomic modification; however, stark variation in gene expression patterns were observed between exposed but noninfected, infected, and unexposed populations. GO and KEGG pathway enrichment in concert with differential expression analysis identified that kidney responses in exposed but noninfected fish emphasised a global pattern of transcriptional down-regulation, particularly for pathways involved in DNA transcription, protein biosynthesis and macromolecule metabolism. In contrast, transcriptomes of infected fish demonstrated a global emphasis of transcriptional up-regulation highlighting pathways involved in antiviral response, inflammation, apoptosis, and RNA processing. Quantitative PCR was subsequently used to highlight differential and time-specific regulation of acute phase, antiviral, inflammatory, cell boundary, and metabolic responsive transcripts in both infected and exposed but noninfected groups. This data demonstrates that waterborne exposure with IHNV has a dramatic effect on the sockeye salmon kidney transcriptome that is discrete between resistant and acutely susceptible individuals. We identify that metabolic, acute phase and cell boundary pathways are transcriptionally affected by IHNV and kidney responses to local infection are highly divergent from those generated as part of a disseminated response. These data suggest that primary resistance of naïve fish to IHNV may involve global responses that encourage reduced cellular signaling rather than promoting classical innate antiviral responses.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Salmón/genética , Salmón/inmunología , Transcriptoma/inmunología , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Virus de la Necrosis Hematopoyética Infecciosa/fisiología , Riñón/inmunología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Carga Viral/fisiología
5.
J Fish Dis ; 42(6): 869-882, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30977528

RESUMEN

While co-infections are common in both wild and cultured fish, knowledge of the interactive effects of multiple pathogens on host physiology, gene expression and immune response is limited. To evaluate the impact of co-infection on host survival, physiology and gene expression, sockeye salmon Oncorhynchus nerka smolts were infected with the salmon louse Lepeophtheirus salmonis (V-/SL+), infectious hematopoietic necrosis virus (IHNV; V+/SL-), both (V+/SL+), or neither (V-/SL-). Survival in the V+/SL+ group was significantly lower than the V-/SL- and V-/SL+ groups (p = 0.024). Co-infected salmon had elevated osmoregulatory indicators and lowered haematocrit values as compared to the uninfected control. Expression of 12 genes associated with the host immune response was analysed in anterior kidney and skin. The only evidence of L. salmonis-induced modulation of the host antiviral response was down-regulation of mhc I although the possibility of modulation cannot be ruled out for mx-1 and rsad2. Co-infection did not influence the expression of genes associated with the host response to L. salmonis. Therefore, we conclude that the reduced survival in co-infected sockeye salmon resulted from the osmoregulatory consequences of the sea lice infections which were amplified due to infection with IHNV.


Asunto(s)
Coinfección/veterinaria , Copépodos/patogenicidad , Interacciones Huésped-Patógeno/genética , Virus de la Necrosis Hematopoyética Infecciosa/patogenicidad , Osmorregulación , Salmón/inmunología , Animales , Coinfección/patología , Femenino , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/virología , Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Salmón/genética , Transcriptoma
8.
J Aquat Anim Health ; 31(1): 75-87, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30566268

RESUMEN

The salmon louse Lepeophtheirus salmonis, a type of sea lice (family Caligidae), is enzootic in marine waters of British Columbia and poses a health risk to both farmed Atlantic Salmon Salmo salar and wild Pacific salmon Oncorhynchus spp. At the adult stage, sea lice infections can often result in severe cutaneous lesions in their salmonid hosts. To evaluate and compare the physiological consequences of adult L. salmonis infections, smolts of Atlantic Salmon and Sockeye Salmon O. nerka were exposed to 2 (low), 6 (medium), or 10 (high) adult female lice/fish. Mean lice abundance decreased over time in all groups. Skin disruption due to parasite infection was observed in both species. Plasma samples were collected from infected fish and uninfected controls at 1, 3, 5, and 7 d postinfection and measured for indicators of osmoregulatory function and stress. Sockeye Salmon, regardless of L. salmonis exposure level, showed a rapid onset of elevated osmolality and sodium and chloride ion concentrations which were sustained until 7 d postinfection when values returned to levels comparable with the unexposed controls. Conversely, these effects were not measured in Atlantic Salmon. Additionally, differential host effects in blood glucose levels were observed, with Sockeye Salmon displaying immediate elevation in glucose. Relative to Atlantic Salmon, infection with L. salmonis caused a profound physiological impact to Sockeye Salmon characterized by loss of osmoregulatory integrity and a stress response. This work provides the first comprehensive report of the physiological consequences of infections with adult L. salmonis in Sockeye Salmon smolts and helps to further define the mechanisms of susceptibility in this species.


Asunto(s)
Copépodos/fisiología , Infestaciones Ectoparasitarias/veterinaria , Enfermedades de los Peces/epidemiología , Salmo salar , Salmón , Animales , Acuicultura , Colombia Británica/epidemiología , Infestaciones Ectoparasitarias/epidemiología , Infestaciones Ectoparasitarias/parasitología , Infestaciones Ectoparasitarias/fisiopatología , Femenino , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/fisiopatología , Prevalencia
9.
J Evol Biol ; 31(12): 1876-1893, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30264932

RESUMEN

In oviparous species, maternal carotenoid provisioning can deliver diverse fitness benefits to offspring via increased survival, growth and immune function. Despite demonstrated advantages of carotenoids, large intra- and interspecific variation in carotenoid utilization exists, suggesting trade-offs associated with carotenoids. In Chinook salmon (Oncorhynchus tshawytscha), extreme variation in carotenoid utilization delineates two colour morphs (red and white) that differ genetically in their ability to deposit carotenoids into tissues. Here, we take advantage of this natural variation to examine how large differences in maternal carotenoid provisioning influence offspring fitness. Using a full factorial breeding design crossing morphs and common-garden rearing, we measured differences in a suite of fitness-related traits, including survival, growth, viral susceptibility and host response, in offspring of red (carotenoid-rich eggs) and white (carotenoid-poor eggs) females. Eggs of red females had significantly higher carotenoid content than those of white females (6× more); however, this did not translate into measurable differences in offspring fitness. Given that white Chinook salmon may have evolved to counteract their maternal carotenoid deficiency, we also examined the relationship between egg carotenoid content and offspring fitness within each morph separately. Egg carotenoids only had a positive effect within the red morph on survival to eyed-egg (earliest measured trait), but not within the white morph. Although previous work shows that white females benefit from reduced egg predation, our study also supports a hypothesis that white Chinook salmon have evolved additional mechanisms to improve egg survival despite low carotenoids, providing novel insight into evolutionary mechanisms that maintain this stable polymorphism.


Asunto(s)
Carotenoides/administración & dosificación , Aptitud Genética , Pigmentación/genética , Pigmentación/fisiología , Salmón/fisiología , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Humanos , Virus de la Necrosis Hematopoyética Infecciosa , Fenómenos Fisiologicos Nutricionales Maternos , Óvulo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Salmón/crecimiento & desarrollo
10.
Dis Aquat Organ ; 128(3): 175-185, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29862976

RESUMEN

The order Herpesvirales includes viruses that infect aquatic and terrestrial vertebrates and several aquatic invertebrates (i.e. mollusks), and share the commonality of possessing a double-stranded DNA core surrounded by an icosahedral capsid. Herpesviruses of the family Alloherpesviridae that infect fish and amphibians, including channel catfish virus and koi herpesvirus, negatively impact aquaculture. Here, we describe a novel herpesvirus infection of wild European perch from lakes in Finland. Infected fish exhibited white nodules on the skin and fins, typically in the spring when prevalence reached nearly 40% in one of the sampled lakes. Transmission electron microscopic examination of affected tissues revealed abundant nuclear and cytoplasmic virus particles displaying herpesvirus morphology. Degenerate PCR targeting a conserved region of the DNA polymerase gene of large DNA viruses amplified a 520 bp product in 5 of 5 affected perch skin samples tested. Phylogenetic analysis of concatenated partial DNA polymerase and terminase (exon 2) gene sequences produced a well-supported tree grouping the European perch herpesvirus with alloherpesviruses infecting acipenserid, esocid, ictalurid, and salmonid fishes. The phenetic analysis of the European perch herpesvirus partial DNA polymerase and terminase nucleotide gene sequences ranged from 34.6 to 63.9% and 39.6 to 59.6% to other alloherpesviruses, respectively. These data support the European perch herpesvirus as a new alloherpesvirus, and we propose the formal species designation of Percid herpesvirus 2 (PeHV2) to be considered for approval by the International Committee on Taxonomy of Viruses.


Asunto(s)
Infecciones por Virus ADN/veterinaria , Virus ADN/aislamiento & purificación , Enfermedades de los Peces/virología , Percas , Animales , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/patología , Infecciones por Virus ADN/virología , Virus ADN/genética , Finlandia/epidemiología , Enfermedades de los Peces/epidemiología
11.
Dis Aquat Organ ; 122(3): 213-221, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28117300

RESUMEN

Infectious hematopoietic necrosis virus (IHNV) outbreaks have had a significant negative impact on Atlantic salmon Salmo salar production in British Columbia, Canada, since the first outbreak was reported in 1992. In 2005, the APEX-IHN® vaccine was approved for use in Canada for prevention of IHN. The vaccine was proven to be safe and efficacious prior to approval; however, it is unknown as to whether APEX-IHN®-vaccinated Atlantic salmon infected with IHNV can support replication and virus shedding in sufficient quantities to provide an infectious dose to a nearby susceptible host. To determine whether vaccinated, infected fish are able to transmit an infectious dose of IHNV, vaccinated Atlantic salmon were injected with IHNV (104 plaque-forming units per fish) and cohabitated with either naïve Atlantic salmon or naïve sockeye salmon Oncorhynchus nerka. APEX-IHN®-vaccinated fish were significantly protected against IHNV with mortality occurring in only 2.6% of the population as opposed to 97% in unvaccinated controls. Vaccination in IHNV-infected Atlantic salmon completely abolished disease transmission to cohabitating naïve sockeye salmon and reduced virus spread among cohabitating naïve Atlantic salmon. At 7 mo post-vaccination, IHNV-neutralizing antibodies were detected in nearly all vaccinated fish (94%) with similar titer occurring between vaccinated, infected fish and vaccinated, uninfected fish, indicating APEX-IHN® vaccination induces a robust seroconversion response. Taken together, these results demonstrate that vaccination greatly reduces the infectious load and potential for IHNV transmission. As such, APEX-IHN® should be included in fish health management strategies when culturing Atlantic salmon in IHNV endemic areas.


Asunto(s)
Enfermedades de los Peces/prevención & control , Virus de la Necrosis Hematopoyética Infecciosa , Infecciones por Rhabdoviridae/veterinaria , Salmo salar , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Enfermedades de los Peces/transmisión , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/prevención & control , Infecciones por Rhabdoviridae/transmisión , Infecciones por Rhabdoviridae/virología
12.
BMC Genomics ; 17(1): 848, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27806699

RESUMEN

BACKGROUND: Piscine reovirus (PRV) has been associated with the serious disease known as Heart and Skeletal Muscle Inflammation (HSMI) in cultured Atlantic salmon Salmo salar in Norway. PRV is also prevalent in wild and farmed salmon without overt disease manifestations, suggesting multifactorial triggers or PRV variant-specific factors are required to initiate disease. In this study, we explore the head kidney transcriptome of Sockeye salmon Oncorhynchus nerka during early PRV infection to identify host responses in the absence of disease in hopes of elucidating mechanisms by which PRV may directly alter host functions and contribute to the development of a disease state. We further investigate the role of PRV as a coinfecting agent following superinfection with infectious hematopoietic necrosis virus (IHNV) - a highly pathogenic rhabdovirus endemic to the west coast of North America. RESULTS: Challenge of Sockeye salmon with PRV resulted in high quantities of viral transcripts to become present in the blood and kidney of infected fish without manifestations of disease. De novo transcriptome assembly of over 2.3 billion paired RNA-seq reads from the head kidneys of 36 fish identified more than 320,000 putative unigenes, of which less than 20 were suggested to be differentially expressed in response to PRV at either 2 or 3 weeks post challenge by DESeq2 and edgeR analysis. Of these, only one, Ependymin, was confirmed to be differentially expressed by qPCR in an expanded sample set. In contrast, IHNV induced substantial transcriptional changes (differential expression of > 20,000 unigenes) which included transcripts involved in antiviral and inflammatory response pathways. Prior infection with PRV had no significant effect on host responses to superinfecting IHNV, nor did host responses initiated by IHNV exposure influence increasing PRV loads. CONCLUSIONS: PRV does not substantially alter the head kidney transcriptome of Sockeye salmon during early (2 to 3 week) infection and dissemination in a period of significant increasing viral load, nor does the presence of PRV change the host transcriptional response to an IHNV superinfection. Further, concurrent infections of PRV and IHNV do not appear to significantly influence the infectivity or severity of IHNV associated disease, or conversely, PRV load.


Asunto(s)
Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Regulación de la Expresión Génica , Virus de la Necrosis Hematopoyética Infecciosa , Riñón/metabolismo , Salmón/genética , Sobreinfección , Transcriptoma , Animales , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Riñón/virología , Salmón/virología
13.
Dis Aquat Organ ; 118(2): 91-111, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26912041

RESUMEN

Complete and transparent reporting of key elements of diagnostic accuracy studies for infectious diseases in cultured and wild aquatic animals benefits end-users of these tests, enabling the rational design of surveillance programs, the assessment of test results from clinical cases and comparisons of diagnostic test performance. Based on deficiencies in the Standards for Reporting of Diagnostic Accuracy (STARD) guidelines identified in a prior finfish study (Gardner et al. 2014), we adapted the Standards for Reporting of Animal Diagnostic Accuracy Studies-paratuberculosis (STRADAS-paraTB) checklist of 25 reporting items to increase their relevance to finfish, amphibians, molluscs, and crustaceans and provided examples and explanations for each item. The checklist, known as STRADAS-aquatic, was developed and refined by an expert group of 14 transdisciplinary scientists with experience in test evaluation studies using field and experimental samples, in operation of reference laboratories for aquatic animal pathogens, and in development of international aquatic animal health policy. The main changes to the STRADAS-paraTB checklist were to nomenclature related to the species, the addition of guidelines for experimental challenge studies, and the designation of some items as relevant only to experimental studies and ante-mortem tests. We believe that adoption of these guidelines will improve reporting of primary studies of test accuracy for aquatic animal diseases and facilitate assessment of their fitness-for-purpose. Given the importance of diagnostic tests to underpin the Sanitary and Phytosanitary agreement of the World Trade Organization, the principles outlined in this paper should be applied to other World Organisation for Animal Health (OIE)-relevant species.


Asunto(s)
Anfibios/microbiología , Enfermedades Transmisibles/veterinaria , Crustáceos/microbiología , Pruebas Diagnósticas de Rutina/veterinaria , Enfermedades de los Peces/microbiología , Peces , Moluscos/microbiología , Animales , Pruebas Diagnósticas de Rutina/normas , Guías como Asunto , Interacciones Huésped-Patógeno , Edición/normas
14.
BMC Genomics ; 16: 634, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26306576

RESUMEN

BACKGROUND: Sockeye Salmon are an iconic species widely distributed throughout the North Pacific. A devastating pathogen of Sockeye Salmon is infectious hematopoietic necrosis virus (IHNV, genus Novirhabdovirus, family Rhabdoviridae). It has been postulated that IHNV is maintained in salmon populations by persisting over the life of its host and/or by residing in natural reservoirs other than its susceptible hosts. Herein we demonstrate the presence of IHNV in the brain of Sockeye Salmon that survived an experimentally-induced outbreak, suggesting the presence of viral persistence in this susceptible species. To understand the viral persistent state in Sockeye Salmon we profiled the transcriptome to evaluate the host response in asymptomatic carriers and to determine what effects (if any) IHNV exposure may have on subsequent virus challenges. RESULTS: A laboratory disease model to simulate a natural IHNV outbreak in Sockeye Salmon resulted in over a third of the population incurring acute IHN disease and mortality during the first four months after initial exposure. Nine months post IHNV exposure, despite the absence of disease and mortality, a small percentage (<4 %) of the surviving population contained IHNV in brain. Transcriptome analysis in brain of asymptomatic virus carriers and survivors without virus exhibited distinct transcriptional profiles in comparison to naïve fish. Characteristic for carriers was the up-regulation of genes involved in antibody production and antigen presentation. In both carriers and survivors a down-regulation of genes related to cholesterol biosynthesis, resembling an antiviral mechanism observed in higher vertebrates was revealed along with differences in nervous system development. Moreover, following challenge with poly(I:C), survivors and carriers displayed an elevated antiviral immune response in comparison to naïve fish. CONCLUSIONS: IHN virus persistence was identified in Sockeye Salmon where it elicited a unique brain transcriptome profile suggesting an ongoing adaptive immune response. IHNV carriers remained uncompromised in mounting efficient innate antiviral responses when exposed to a viral mimic. The capacity of IHNV to reside in asymptomatic hosts supports a virus carrier hypothesis and if proven infectious, could have significant epidemiological consequences towards maintaining and spreading IHNV among susceptible host populations.


Asunto(s)
Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Virus de la Necrosis Hematopoyética Infecciosa , Salmón/genética , Salmón/virología , Animales , Encéfalo/metabolismo , Encéfalo/virología , Portador Sano , Enfermedades de los Peces/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Virus de la Necrosis Hematopoyética Infecciosa/genética , Virus de la Necrosis Hematopoyética Infecciosa/inmunología , Metabolismo de los Lípidos/genética , Poli I-C/administración & dosificación , Poli I-C/farmacología , Reproducibilidad de los Resultados , Salmón/inmunología , Transcriptoma
15.
Artículo en Inglés | MEDLINE | ID: mdl-39349869

RESUMEN

Sablefish Anoplopoma fimbria is a groundfish of the North Pacific Ocean typically found in sea floor habitat at depths to 2700 m. Prized as a food fish with exceptionally high market value, sablefish aquaculture has been sought to provide a sustainable source of this fish to meet market demands. While commercial culture has successfully produced market-sized fish in Pacific coastal environments, production has been hampered by disease and the overall lack of information on sablefish health and immunology. To begin to address these knowledge gaps, herein we describe the isolation and characterization of spontaneously immortalized sablefish larval cell lines (AFL). Six sublines were established from pools of early yolk-sac larvae, while attempts to develop tissue-specific-derived cell lines were unsuccessful. The six yolk-sac larval cell lines each display two morphologies in culture, an elongated fibroblast-like cell type, and a rounded squamous or epithelial-like cell type. Cytogenetic characterization suggests that both cell types are diploid (2n = 48) with 24 pairs of chromosomes, 23 pairs of autosomes, and 1 pair of sex chromosomes. A small proportion (11%) of AFL cells display tetraploidy. Incubation temperature and medium composition experiments revealed HEPES buffered L-15 media containing 10-20% FBS at temperatures between 15 and 18° C yielded optimal cell growth. These growth characteristics suggest that sablefish larval cells display a robustness for varying growth conditions. The establishment of AFL cell lines provides a foundational tool to study the physiology, health, immunology, and cell and molecular biology of sablefish.

16.
Dis Aquat Organ ; 104(2): 93-104, 2013 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-23709462

RESUMEN

Viral haemorrhagic septicaemia virus (VHSV) is a fish pathogen found throughout the Northern Hemisphere and is capable of infecting and causing mortality in numerous marine and freshwater hosts. In the coastal waters of British Columbia, Canada, the virus has been detected for 20 yr with many occurrences of mass mortalities among populations of Pacific herring Clupea pallasii (Valenciennes) and sardine Sardinops sagax as well as detections among cultured Atlantic Salmo salar and Chinook Oncorhynchus tshawytscha salmon. We compared nucleotide sequence of the full glycoprotein (G) gene coding region (1524 nt) of 63 VHSV isolates sampled during its recorded presence from 1993 to 2011 from 6 species and a total of 29 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVa within the major VHSV genetic group IV. Of the 63 virus isolates, there were 42 unique sequences, each of which was ephemeral, being repeatedly detected at most only 1 yr after its initial detection. Multiple sequence types were revealed during single viral outbreak events, and genetic heterogeneity was observed within isolates from individual fish. Moreover, phylogenetic analysis revealed a close genetic linkage between VHSV isolates obtained from pelagic finfish species and farmed salmonids, providing evidence for virus transmission from wild to farmed fish.


Asunto(s)
Acuicultura , Septicemia Hemorrágica Viral/virología , Novirhabdovirus/genética , Salmo salar , Animales , Animales Salvajes , Colombia Británica/epidemiología , Variación Genética , Septicemia Hemorrágica Viral/epidemiología , Epidemiología Molecular , Novirhabdovirus/aislamiento & purificación , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria
17.
Dis Aquat Organ ; 106(2): 103-15, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24113244

RESUMEN

Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonid fishes in North America, Europe and Asia and is reportable to the World Organization for Animal Health (OIE). Phylogenetic analysis has identified 5 major virus genogroups of IHNV worldwide, designated U, M, L, E and J; multiple subtypes also exist within those genogroups. Here, we report the development and validation of a universal IHNV reverse-transcriptase real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) gene. Properties of diagnostic sensitivity (DSe) and specificity (DSp) were defined using laboratory-challenged steelhead trout Oncorhynchus mykiss, and the new assay was compared to the OIE-accepted conventional PCR test and virus isolation in cell culture. The IHNV N gene RT-rPCR had 100% DSp and DSe and a higher estimated diagnostic odds ratio (DOR) than virus culture or conventional PCR. The RT-rPCR assay was highly repeatable within a laboratory and highly reproducible between laboratories. Field testing of the assay was conducted on a random sample of juvenile steelhead collected from a hatchery raceway experiencing an IHN epizootic. The RT-rPCR detected a greater number of positive samples than cell culture and there was 40% agreement between the 2 tests. Overall, the RT-rPCR assay was highly sensitive, specific, repeatable and reproducible and is suitable for use in a diagnostic setting.


Asunto(s)
Enfermedades de los Peces/virología , Virus de la Necrosis Hematopoyética Infecciosa/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Infecciones por Rhabdoviridae/veterinaria , Animales , Enfermedades de los Peces/diagnóstico , Oportunidad Relativa , Oncorhynchus mykiss , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Infecciones por Rhabdoviridae/diagnóstico , Infecciones por Rhabdoviridae/virología
18.
Dis Aquat Organ ; 98(1): 41-56, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22422128

RESUMEN

Megalocytiviruses have been associated with epizootics resulting in significant economic losses in public aquaria and food-fish and ornamental fish industries, as well as threatening wild fish stocks. The present report describes characteristics of the first megalocytivirus from a wild temperate North American fish, the threespine stickleback Gasterosteus aculeatus. Moribund and dead fish sampled after transfer to quarantine for an aquarium exhibit had amphophilic to basophilic intracytoplasmic inclusions (histopathology) and icosahedral virions (transmission electron microscopy) consistent with an iridovirus infection. Phylogenetic analyses of the major capsid, ATPase, and DNA polymerase genes confirmed the virus as the first known member of the genus Megalocytivirus (family Iridoviridae) from a gasterosteid fish. The unique biologic and genetic properties of this virus are sufficient to establish a new Megalocytivirus species to be formally known as the threespine stickleback iridovirus (TSIV). The threespine stickleback is widely distributed throughout the northern hemisphere in both freshwater and estuarine environments. The presence of megalocytiviruses with broad host specificity and detrimental economic and ecologic impacts among such a widely dispersed fish species indicates the need for sampling of other stickleback populations as well as other North American sympatric marine and freshwater ichthyofauna.


Asunto(s)
Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/virología , Iridoviridae/clasificación , Iridoviridae/aislamiento & purificación , Smegmamorpha , Animales , Colombia Británica/epidemiología , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/virología , Enfermedades de los Peces/epidemiología , Genotipo , Iridoviridae/genética , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinaria
19.
Dis Aquat Organ ; 93(2): 105-10, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21381516

RESUMEN

Infectious hematopoietic necrosis (IHN) leads to periodic epidemics among certain wild and farmed fish species of the Northeast (NE) Pacific. The source of the IHN virus (IHNV) that initiates these outbreaks remains unknown; however, a leading hypothesis involves viral persistence in marine host species such as Pacific herring Clupea pallasii. Under laboratory conditions we exposed specific pathogen-free (SPF) larval and juvenile Pacific herring to 10(3) to 10(4) plaque-forming units (pfu) of IHNV ml(-1) by waterborne immersion. Cumulative mortalities among exposed groups were not significantly different from those of negative control groups. After waterborne exposure, IHNV was transiently recovered from the tissues of larvae but absent in tissues of juveniles. Additionally, no evidence of viral shedding was detected in the tank water containing exposed juveniles. After intraperitoneal (IP) injection of IHNV in juvenile herring with 10(3) pfu, IHNV was recovered from the tissues of sub-sampled individuals for only the first 5 d post-exposure. The lack of susceptibility to overt disease and transient levels of IHNV in the tissues of exposed fish indicate that Pacific herring do not likely serve a major epizootiological role in perpetuation of IHNV among free-ranging sockeye salmon Oncorhynchus nerka and farmed Atlantic salmon Salmo salar in the NE Pacific.


Asunto(s)
Enfermedades de los Peces/virología , Virus de la Necrosis Hematopoyética Infecciosa , Infecciones por Rhabdoviridae/veterinaria , Animales , Peces , Larva/virología , Infecciones por Rhabdoviridae/virología , Factores de Tiempo
20.
Dis Aquat Organ ; 96(1): 29-43, 2011 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-21991663

RESUMEN

Viral hemorrhagic septicemia virus (VHSV) is a fish rhabdovirus that causes disease in a broad range of marine and freshwater hosts. The known geographic range includes the Northern Atlantic and Pacific Oceans, and recently it has invaded the Great Lakes region of North America. The goal of this work was to characterize genetic diversity of Great Lakes VHSV isolates at the early stage of this viral emergence by comparing a partial glycoprotein (G) gene sequence (669 nt) of 108 isolates collected from 2003 to 2009 from 31 species and at 37 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVb within the major VHSV genetic group IV. Among these 108 isolates, genetic diversity was low, with a maximum of 1.05% within the 669 nt region. There were 11 unique sequences, designated vcG001 to vcG011. Two dominant sequence types, vcG001 and vcG002, accounted for 90% (97 of 108) of the isolates. The vcG001 isolates were most widespread. We saw no apparent association of sequence type with host or year of isolation, but we did note a spatial pattern, in which vcG002 isolates were more prevalent in the easternmost sub-regions, including inland New York state and the St. Lawrence Seaway. Different sequence types were found among isolates from single disease outbreaks, and mixtures of types were evident within 2 isolates from individual fish. Overall, the genetic diversity of VHSV in the Great Lakes region was found to be extremely low, consistent with an introduction of a new virus into a geographic region with previously naive host populations.


Asunto(s)
Enfermedades de los Peces/virología , Variación Genética , Novirhabdovirus/genética , Animales , Enfermedades de los Peces/epidemiología , Peces , Agua Dulce , Great Lakes Region/epidemiología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA