Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 15(9): 1989-98, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20629995

RESUMEN

Transplantation of mesenchymal stem cells (MSCs) derived from adult bone marrow has been proposed as a potential therapeutic approach for post-infarction left ventricular (LV) dysfunction. However, age-related functional decline of stem cells has restricted their clinical benefits after transplantation into the infarcted myocardium. The limitations imposed on patient cells could be addressed by genetic modification of stem cells. This study was designed to improve our understanding of genetic modification of human bone marrow derived mesenchymal stem cells (hMSCs) by polyethylenimine (PEI, branched with Mw 25 kD), one of non-viral vectors that show promise in stem cell genetic modification, in the context of cardiac regeneration for patients. We optimized the PEI-mediated reporter gene transfection into hMSCs, evaluated whether transfection efficiency is associated with gender or age of the cell donors, analysed the influence of cell cycle on transfection and investigated the transfer of therapeutic vascular endothelial growth factor gene (VEGF). hMSCs were isolated from patients with cardiovascular disease aged from 41 to 85 years. Optimization of gene delivery to hMSCs was carried out based on the particle size of the PEI/DNA complexes, N/P ratio of complexes, DNA dosage and cell viability. The highest efficiency with the cell viability near 60% was achieved at N/P ratio 2 and 6.0 µg DNA/cm(2) . The average transfection efficiency for all tested samples, middle-age group (<65 years), old-age group (>65 years), female group and male group was 4.32%, 3.85%, 4.52%, 4.14% and 4.38%, respectively. The transfection efficiency did not show any correlation either with the age or the gender of the donors. Statistically, there were two subpopulations in the donors; and transfection efficiency in each subpopulation was linearly related to the cell percentage in S phase. No significant phenotypic differences were observed between these two subpopulations. Furthermore, PEI-mediated therapeutic gene VEGF transfer could significantly enhance the expression level.


Asunto(s)
Células de la Médula Ósea/metabolismo , Técnicas de Transferencia de Gen , Células Madre Mesenquimatosas/metabolismo , Polietileneimina/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN/metabolismo , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Persona de Mediana Edad , Fenotipo , Fase S/efectos de los fármacos , Transfección , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
J Gene Med ; 10(8): 897-909, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18481827

RESUMEN

BACKGROUND: Systemic gene delivery is limited by the adverse hydrodynamic conditions on the collection of gene carrier particles to the specific area. In the present study, a magnetic field was employed to guide magnetic nanobead (MNB)/polymer/DNA complexes after systemic administration to the left side of the mouse thorax in order to induce localized gene expression. METHODS: Nonviral polymer (poly ethyleneimine, PEI) vector-gene complexes were conjugated to MNBs with the Sulfo-NHS-LC-Biotin linker. In vitro transfection efficacy of MNB/PEI/DNA was compared with PEI/DNA in three different cell lines as well as primary endothelial cells under magnetic field stimulation. In vivo, MNB/PEI/DNA complexes were injected into the tail vein of mice and an epicardial magnet was employed to attract the circulating MNB/PEI/DNA complexes. RESULTS: Endocytotic uptake of MNB/PEI/DNA complexes and intracellular gene release with nuclear translocation were observed in vitro, whereas the residues of MNB/PEI complexes were localized at the perinuclear region. Compared with PEI/DNA complexes alone, MNB/PEI/DNA complexes had a 36- to 85-fold higher transfection efficiency under the magnetic field. In vivo, the epicardial magnet effectively attracted MNB/PEI/DNA complexes in the left side of the thorax, resulting in strong reporter and therapeutic gene expression in the left lung and the heart. Gene expression in the heart was mainly within the endothelium. CONCLUSIONS: MNB-mediated gene delivery could comprise a promising method for gene delivery to the lung and the heart.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/efectos de los fármacos , Magnetismo , Polietileneimina/farmacología , Animales , ADN/genética , ADN/metabolismo , Estudios de Factibilidad , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Polietileneimina/metabolismo , Tórax/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA