Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
EMBO Rep ; 24(4): e55971, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36856136

RESUMEN

Pseudomonas aeruginosa is a Gram-negative bacterium causing morbidity and mortality in immuno-compromised humans. It produces a lectin, LecB, that is considered a major virulence factor, however, its impact on the immune system remains incompletely understood. Here we show that LecB binds to endothelial cells in human skin and mice and disrupts the transendothelial passage of leukocytes in vitro. It impairs the migration of dendritic cells into the paracortex of lymph nodes leading to a reduced antigen-specific T cell response. Under the effect of the lectin, endothelial cells undergo profound cellular changes resulting in endocytosis and degradation of the junctional protein VE-cadherin, formation of an actin rim, and arrested cell motility. This likely negatively impacts the capacity of endothelial cells to respond to extracellular stimuli and to generate the intercellular gaps for allowing leukocyte diapedesis. A LecB inhibitor can restore dendritic cell migration and T cell activation, underlining the importance of LecB antagonism to reactivate the immune response against P. aeruginosa infection.


Asunto(s)
Pseudomonas aeruginosa , Migración Transendotelial y Transepitelial , Humanos , Animales , Ratones , Células Endoteliales/metabolismo , Lectinas/metabolismo , Lectinas/farmacología , Inmunidad
2.
Cell Mol Life Sci ; 80(9): 266, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624561

RESUMEN

The morphogen Sonic Hedgehog (SHH) plays an important role in coordinating embryonic development. Short- and long-range SHH signalling occurs through a variety of membrane-associated and membrane-free forms. However, the molecular mechanisms that govern the early events of the trafficking of neosynthesised SHH in mammalian cells are still poorly understood. Here, we employed the retention using selective hooks (RUSH) system to show that newly-synthesised SHH is trafficked through the classical biosynthetic secretory pathway, using TMED10 as an endoplasmic reticulum (ER) cargo receptor for efficient ER-to-Golgi transport and Rab6 vesicles for Golgi-to-cell surface trafficking. TMED10 and SHH colocalized at ER exit sites (ERES), and TMED10 depletion significantly delays SHH loading onto ERES and subsequent exit leading to significant SHH release defects. Finally, we utilised the Drosophila wing imaginal disc model to demonstrate that the homologue of TMED10, Baiser (Bai), participates in Hedgehog (Hh) secretion and signalling in vivo. In conclusion, our work highlights the role of TMED10 in cargo-specific egress from the ER and sheds light on novel important partners of neosynthesised SHH secretion with potential impact on embryonic development.


Asunto(s)
Proteínas Hedgehog , Transducción de Señal , Femenino , Animales , Proteínas Hedgehog/genética , Membrana Celular , Drosophila , Vías Secretoras , Mamíferos
3.
Hepatology ; 76(4): 1164-1179, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35388524

RESUMEN

BACKGROUND AND AIMS: Numerous HCV entry factors have been identified, and yet information regarding their spatiotemporal dynamics is still limited. Specifically, one of the main entry factors of HCV is occludin (OCLN), a protein clustered at tight junctions (TJs), away from the HCV landing site. Thus, whether HCV particles slide toward TJs or, conversely, OCLN is recruited away from TJs remain debated. APPROACH AND RESULTS: Here, we generated CRISPR/CRISPR-associated protein 9 edited Huh7.5.1 cells expressing endogenous levels of enhanced green fluorescent protein/OCLN and showed that incoming HCV particles recruit OCLN outside TJs, independently of claudin 1 (CLDN1) expression, another important HCV entry factor located at TJs. Using ex vivo organotypic culture of hepatic slices obtained from human liver explants, a physiologically relevant model that preserves the overall tissue architecture, we confirmed that HCV associates with OCLN away from TJs. Furthermore, we showed, by live cell imaging, that increased OCLN recruitment beneath HCV particles correlated with lower HCV motility. To decipher the mechanism underlying virus slow-down upon OCLN recruitment, we performed CRISPR knockout (KO) of CLDN1, an HCV entry factor proposed to act upstream of OCLN. Although CLDN1 KO potently inhibits HCV infection, OCLN kept accumulating underneath the particle, indicating that OCLN recruitment is CLDN1 independent. Moreover, inhibition of the phosphorylation of Ezrin, a protein involved in HCV entry that links receptors to the actin cytoskeleton, increased OCLN accumulation and correlated with more efficient HCV internalization. CONCLUSIONS: Together, our data provide robust evidence that HCV particles interact with OCLN away from TJs and shed mechanistic insights regarding the manipulation of transmembrane receptor localization by extracellular virus particles.


Asunto(s)
Hepatitis C , Uniones Estrechas , Proteína 9 Asociada a CRISPR/metabolismo , Claudina-1/genética , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepatocitos/metabolismo , Humanos , Ocludina , Virión , Internalización del Virus
4.
Nature ; 552(7685): 410-414, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29236694

RESUMEN

Vesicular carriers transport proteins and lipids from one organelle to another, recognizing specific identifiers for the donor and acceptor membranes. Two important identifiers are phosphoinositides and GTP-bound GTPases, which provide well-defined but mutable labels. Phosphatidylinositol and its phosphorylated derivatives are present on the cytosolic faces of most cellular membranes. Reversible phosphorylation of its headgroup produces seven distinct phosphoinositides. In endocytic traffic, phosphatidylinositol-4,5-biphosphate marks the plasma membrane, and phosphatidylinositol-3-phosphate and phosphatidylinositol-4-phosphate mark distinct endosomal compartments. It is unknown what sequence of changes in lipid content confers on the vesicles their distinct identity at each intermediate step. Here we describe 'coincidence-detecting' sensors that selectively report the phosphoinositide composition of clathrin-associated structures, and the use of these sensors to follow the dynamics of phosphoinositide conversion during endocytosis. The membrane of an assembling coated pit, in equilibrium with the surrounding plasma membrane, contains phosphatidylinositol-4,5-biphosphate and a smaller amount of phosphatidylinositol-4-phosphate. Closure of the vesicle interrupts free exchange with the plasma membrane. A substantial burst of phosphatidylinositol-4-phosphate immediately after budding coincides with a burst of phosphatidylinositol-3-phosphate, distinct from any later encounter with the phosphatidylinositol-3-phosphate pool in early endosomes; phosphatidylinositol-3,4-biphosphate and the GTPase Rab5 then appear and remain as the uncoating vesicles mature into Rab5-positive endocytic intermediates. Our observations show that a cascade of molecular conversions, made possible by the separation of a vesicle from its parent membrane, can label membrane-traffic intermediates and determine their destinations.


Asunto(s)
Vesículas Cubiertas por Clatrina/química , Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Endocitosis , Endosomas/metabolismo , Fosfatidilinositoles/metabolismo , Animales , Auxilinas/metabolismo , Células COS , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Invaginaciones Cubiertas de la Membrana Celular/química , Endosomas/química , Humanos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/análisis , Fosfatidilinositoles/química , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Fosfotransferasas/metabolismo , Proteínas de Unión al GTP rab5/metabolismo
5.
BMC Public Health ; 22(1): 1279, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778679

RESUMEN

BACKGROUND: With more than 160 000 confirmed COVID-19 cases and about 30 000 deceased people at the end of June 2020, France was one of the countries most affected by the coronavirus crisis worldwide. We aim to assess the efficiency of global lockdown policy in limiting spatial contamination through an in-depth reanalysis of spatial statistics in France during the first lockdown and immediate post-lockdown phases. METHODS: To reach that goal, we use an integrated approach at the crossroads of geography, spatial epidemiology, and public health science. To eliminate any ambiguity relevant to the scope of the study, attention focused at first on data quality assessment. The data used originate from official databases (Santé Publique France) and the analysis is performed at a departmental level. We then developed spatial autocorrelation analysis, thematic mapping, hot spot analysis, and multivariate clustering. RESULTS: We observe the extreme heterogeneity of local situations and demonstrate that clustering and intensity are decorrelated indicators. Thematic mapping allows us to identify five "ghost" clusters, whereas hot spot analysis detects two positive and two negative clusters. Our re-evaluation also highlights that spatial dissemination follows a twofold logic, zonal contiguity and linear development, thus determining a "metastatic" propagation pattern. CONCLUSIONS: One of the most problematic issues about COVID-19 management by the authorities is the limited capacity to identify hot spots. Clustering of epidemic events is often biased because of inappropriate data quality assessment and algorithms eliminating statistical-spatial outliers. Enhanced detection techniques allow for a better identification of hot and cold spots, which may lead to more effective political decisions during epidemic outbreaks.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Análisis por Conglomerados , Control de Enfermedades Transmisibles , Brotes de Enfermedades , Humanos , Salud Pública
6.
Biol Cell ; 112(5): 140-151, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32034780

RESUMEN

BACKGROUND INFORMATION: Claudin-1 (CLDN1) is a four-span transmembrane protein localised at cell-cell tight junctions (TJs), playing an important role in epithelial impermeability and tissue homoeostasis under physiological conditions. Moreover, CLDN1 expression is up-regulated in several cancers, and the level of CLDN1 expression has been proposed as a prognostic marker of patient survival. RESULTS: Here, we generated and characterised a novel reporter cell line expressing endogenous fluorescent levels of CLDN-1, allowing dynamic monitoring of CLDN-1 expression levels. Specifically, a hepatocellular carcinoma Huh7.5.1 monoclonal cell line was bioengineered using CRISPR/Cas9 to endogenously express a fluorescent TagRFP-T protein fused at the N-terminus of the CLDN1 protein. These cells were proved useful to measure CLDN1 expression and distribution in live cells. However, the cells were resistant to hepatitis C virus (HCV) infection, of which CLDN1 is a viral receptor, while retaining permissiveness to VSV-G-decorated pseudoparticles. Nonetheless, the TagRFP-CLDN1+/+ cell line showed expected CLDN1 protein localisation at TJs and the cell monolayer had similar impermeability and polarisation features as its wild-type counterpart. Finally, using fluorescence recovery after photobleaching (FRAP) approaches, we measured that the majority of endogenous and overexpressed TagRFP-CLDN1 diffuses rapidly within the TJ, whereas half of the overexpressed EGFP-CLDN1 proteins were stalled at TJs. CONCLUSIONS: The Huh7.5.1 TagRFP-CLDN1+/+ edited cell line showed physiological features comparable to that of non-edited cells, but became resistant to HCV infection. Our data also highlight the important impact of the fluorescent protein chosen for endogenous tagging. SIGNIFICANCE: Although HCV-related studies may not be achieved with these cells, our work provides a novel tool to study the cell biology of TJ-associated proteins and a potential screening strategy measuring CLDN1 expression levels.


Asunto(s)
Claudina-1/metabolismo , Técnicas de Sustitución del Gen , Hepacivirus/fisiología , Hepatocitos/metabolismo , Internalización del Virus , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virología , Línea Celular Tumoral , Movimiento Celular , Hepatocitos/virología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virología
8.
Int J Cancer ; 142(1): 133-144, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28884480

RESUMEN

Human blood monocytes are very potent to take up antigens. Like macrophages in tissue, they efficiently degrade exogenous protein and are less efficient than dendritic cells (DCs) at cross-presenting antigens to CD8+ T cells. Although it is generally accepted that DCs take up tissue antigens and then migrate to lymph nodes to prime T cells, the mechanisms of presentation of antigens taken up by monocytes are poorly documented so far. In the present work, we show that monocytes loaded in vitro with MelanA long peptides retain the capacity to stimulate antigen-specific CD8+ T cell clones after 5 days of differentiation into monocytes-derived dendritic cells (MoDCs). Tagged-long peptides can be visualized in electron-dense endocytic compartments distinct from lysosomes, suggesting that antigens can be protected from degradation for extended periods of time. To address the pathophysiological relevance of these findings, we screened blood monocytes from 18 metastatic melanoma patients and found that CD14+ monocytes from two patients effectively activate a MelanA-specific CD8 T cell clone after in vitro differentiation into MoDCs. This in vivo sampling of tumor antigen by circulating monocytes might alter the tumor-specific immune response and should be taken into account for cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Antígeno MART-1/inmunología , Melanoma/inmunología , Monocitos/inmunología , Presentación de Antígeno/inmunología , Diferenciación Celular/inmunología , Células Dendríticas/citología , Humanos , Monocitos/citología
9.
J Virol ; 90(9): 4494-4510, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26912630

RESUMEN

UNLABELLED: Virus entry into cells is a multistep process that often requires the subversion of subcellular machineries. A more complete understanding of these steps is necessary to develop new antiviral strategies. While studying the potential role of the actin network and one of its master regulators, the small GTPase Cdc42, during Junin virus (JUNV) entry, we serendipitously uncovered the small molecule ZCL278, reported to inhibit Cdc42 function as an entry inhibitor for JUNV and for vesicular stomatitis virus, lymphocytic choriomeningitis virus, and dengue virus but not for the nonenveloped poliovirus. Although ZCL278 did not interfere with JUNV attachment to the cell surface or virus particle internalization into host cells, it prevented the release of JUNV ribonucleoprotein cores into the cytosol and decreased pH-mediated viral fusion with host membranes. We also identified SVG-A astroglial cell-derived cells to be highly permissive for JUNV infection and generated new cell lines expressing fluorescently tagged Rab5c or Rab7a or lacking Cdc42 using clustered regularly interspaced short palindromic repeat (CRISPR)-caspase 9 (Cas9) gene-editing strategies. Aided by these tools, we uncovered that perturbations in the actin cytoskeleton or Cdc42 activity minimally affect JUNV entry, suggesting that the inhibitory effect of ZCL278 is not mediated by ZCL278 interfering with the activity of Cdc42. Instead, ZCL278 appears to redistribute viral particles from endosomal to lysosomal compartments. ZCL278 also inhibited JUNV replication in a mouse model, and no toxicity was detected. Together, our data suggest the unexpected antiviral activity of ZCL278 and highlight its potential for use in the development of valuable new tools to study the intracellular trafficking of pathogens. IMPORTANCE: The Junin virus is responsible for outbreaks of Argentine hemorrhagic fever in South America, where 5 million people are at risk. Limited options are currently available to treat infections by Junin virus or other viruses of the Arenaviridae, making the identification of additional tools, including small-molecule inhibitors, of great importance. How Junin virus enters cells is not yet fully understood. Here we describe new cell culture models in which the cells are susceptible to Junin virus infection and to which we applied CRISPR-Cas9 genome engineering strategies to help characterize early steps during virus entry. We also uncovered ZCL278 to be a new antiviral small molecule that potently inhibits the cellular entry of the Junin virus and other enveloped viruses. Moreover, we show that ZCL278 also functions in vivo, thereby preventing Junin virus replication in a mouse model, opening the possibility for the discovery of ZCL278 derivatives of therapeutic potential.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Descubrimiento de Drogas , Tiourea/análogos & derivados , Internalización del Virus/efectos de los fármacos , Actinas/metabolismo , Animales , Línea Celular , Células Cultivadas , Clatrina/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/virología , Técnicas de Inactivación de Genes , Fiebre Hemorrágica Americana/genética , Fiebre Hemorrágica Americana/metabolismo , Fiebre Hemorrágica Americana/virología , Humanos , Virus Junin/efectos de los fármacos , Virus Junin/fisiología , Ratones , Unión Proteica , Transporte de Proteínas , Proteolisis , Ribonucleoproteínas/metabolismo , Tiourea/farmacología , Carga Viral , Proteínas Virales/metabolismo , Acoplamiento Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
12.
EMBO Mol Med ; 16(4): 1004-1026, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472366

RESUMEN

Viral neuroinfections represent a major health burden for which the development of antivirals is needed. Antiviral compounds that target the consequences of a brain infection (symptomatic treatment) rather than the cause (direct-acting antivirals) constitute a promising mitigation strategy that requires to be investigated in relevant models. However, physiological surrogates mimicking an adult human cortex are lacking, limiting our understanding of the mechanisms associated with viro-induced neurological disorders. Here, we optimized the Organotypic culture of Post-mortem Adult human cortical Brain explants (OPAB) as a preclinical platform for Artificial Intelligence (AI)-driven antiviral studies. OPAB shows robust viability over weeks, well-preserved 3D cytoarchitecture, viral permissiveness, and spontaneous local field potential (LFP). Using LFP as a surrogate for neurohealth, we developed a machine learning framework to predict with high confidence the infection status of OPAB. As a proof-of-concept, we showed that antiviral-treated OPAB could partially restore LFP-based electrical activity of infected OPAB in a donor-dependent manner. Together, we propose OPAB as a physiologically relevant and versatile model to study neuroinfections and beyond, providing a platform for preclinical drug discovery.


Asunto(s)
Antivirales , Hepatitis C Crónica , Humanos , Antivirales/farmacología , Inteligencia Artificial , Sistemas Microfisiológicos , Encéfalo
13.
Autophagy ; : 1-12, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38566318

RESUMEN

HIV-1 entry into CD4+ T lymphocytes relies on the viral and cellular membranes' fusion, leading to viral capsid delivery in the target cell cytoplasm. Atg8/LC3B conjugation to lipids, process named Atg8ylation mainly studied in the context of macroautophagy/autophagy, occurs transiently in the early stages of HIV-1 replication in CD4+ T lymphocytes. Despite numerous studies investigating the HIV-1-autophagy interplays, the Atg8ylation impact in these early stages of infection remains unknown. Here we found that HIV-1 exposure leads to the rapid LC3B enrichment toward the target cell plasma membrane, in close proximity with the incoming viral particles. Furthermore, we demonstrated that Atg8ylation is a key event facilitating HIV-1 entry in target CD4+ T cells. Interestingly, this effect is independent of canonical autophagy as ATG13 silencing does not prevent HIV-1 entry. Together, our results provide an unconventional role of LC3B conjugation subverted by HIV-1 to achieve a critical step of its replication cycle.Abbreviations: BafA1: bafilomycin A1; BlaM: beta-lactamase; CD4+ TL: CD4+ T lymphocytes; PtdIns3K-BECN1 complex: BECN1-containing class III phosphatidylinositol 3-kinase complex; Env: HIV-1 envelope glycoproteins; HIV-1: type 1 human immunodeficiency virus; PM: plasma membrane; PtdIns3P: phosphatidylinositol-3-phosphate; VLP: virus-like particle.

14.
Nat Microbiol ; 9(5): 1189-1206, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548923

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with short- and long-term neurological complications. The variety of symptoms makes it difficult to unravel molecular mechanisms underlying neurological sequalae after coronavirus disease 2019 (COVID-19). Here we show that SARS-CoV-2 triggers the up-regulation of synaptic components and perturbs local electrical field potential. Using cerebral organoids, organotypic culture of human brain explants from individuals without COVID-19 and post-mortem brain samples from individuals with COVID-19, we find that neural cells are permissive to SARS-CoV-2 to a low extent. SARS-CoV-2 induces aberrant presynaptic morphology and increases expression of the synaptic components Bassoon, latrophilin-3 (LPHN3) and fibronectin leucine-rich transmembrane protein-3 (FLRT3). Furthermore, we find that LPHN3-agonist treatment with Stachel partially restored organoid electrical activity and reverted SARS-CoV-2-induced aberrant presynaptic morphology. Finally, we observe accumulation of relatively static virions at LPHN3-FLRT3 synapses, suggesting that local hindrance can contribute to synaptic perturbations. Together, our study provides molecular insights into SARS-CoV-2-brain interactions, which may contribute to COVID-19-related neurological disorders.


Asunto(s)
Encéfalo , COVID-19 , Homeostasis , Organoides , SARS-CoV-2 , Sinapsis , Humanos , SARS-CoV-2/fisiología , COVID-19/virología , COVID-19/metabolismo , COVID-19/patología , Encéfalo/virología , Sinapsis/virología , Sinapsis/metabolismo , Organoides/virología , Virión/metabolismo , Neuronas/virología , Neuronas/metabolismo , Receptores de Péptidos/metabolismo , Receptores de Péptidos/genética
15.
Lab Chip ; 23(16): 3603-3614, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37489118

RESUMEN

Stem cell-derived cerebral organoids are artificially grown miniature organ-like structures mimicking embryonic brain architecture. They are composed of multiple neural cell types with 3D cell layer organization exhibiting local field potential. Measuring the extracellular electrical activity by means of conventional planar microelectrode arrays is particularly challenging due to the 3D architecture of organoids. In order to monitor the intra-organoid electrical activity of thick spheroid-shaped samples, we developed long protruding microelectrode arrays able to penetrate the inner regions of cerebral organoids to measure the local potential of neurons within the organoids. A new microfabrication process has been developed which, thanks to the relaxation of internal stresses of a stack of materials deposited over a sacrificial layer, allows one to build a protruding cantilever microelectrode array placed at the apex of beams which rise vertically, over two hundred microns. These slender beams inserted deeply into the organoids give access to the recording of local field potential from neurons buried inside the organoid. This novel device shall provide valuable tools to study neural functions in greater detail.


Asunto(s)
Organoides , Células Madre , Microelectrodos , Organoides/metabolismo , Neuronas/metabolismo
16.
Trends Mol Med ; 28(1): 12-24, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34810086

RESUMEN

The clinical impact of viral neuroinvasion on the central nervous system (CNS) ranges from barely detectable to deadly, including acute and chronic outcomes. Developing innovative therapeutic strategies is important to mitigate virus-induced neurological and psychiatric disorders. A key gatekeeper to the CNS is the neurovascular unit (NVU), a major obstacle to viral neuroinvasion and antiviral therapies. The NVU isolates the brain from the blood through firm sealing operated by the tight junctions (TJs) of endothelial cells. Here, we make the thought-provoking assumption that TJs can be targets to prevent or treat viral neuroinvasion and resulting disorders. This review aims at defining the conceptual diverse mode of actions of such approaches, evaluates their feasibility, and discusses future challenges in the field.


Asunto(s)
Células Endoteliales , Uniones Estrechas , Barrera Hematoencefálica , Encéfalo , Sistema Nervioso Central , Humanos
17.
Cell Chem Biol ; 29(7): 1113-1125.e6, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35728599

RESUMEN

The increasingly frequent outbreaks of pathogenic viruses have underlined the urgent need to improve our arsenal of antivirals that can be deployed for future pandemics. Innate immunity is a powerful first line of defense against pathogens, and compounds that boost the innate response have high potential to act as broad-spectrum antivirals. Here, we harnessed localization-dependent protein-complementation assays (called Alpha Centauri) to measure the nuclear translocation of interferon regulatory factors (IRFs), thus providing a readout of innate immune activation following viral infection that is applicable to high-throughput screening of immunomodulatory molecules. As proof of concept, we screened a library of kinase inhibitors on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and identified Gilteritinib as a powerful enhancer of innate responses to viral infection. This immunostimulatory activity of Gilteritinib was found to be dependent on the AXL-IRF7 axis and results in a broad and potent antiviral activity against unrelated RNA viruses.


Asunto(s)
COVID-19 , Virosis , Antivirales/farmacología , Humanos , Inmunidad Innata , SARS-CoV-2 , Virosis/tratamiento farmacológico
18.
Retrovirology ; 8: 92, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-22074589

RESUMEN

BACKGROUND: The human immunodeficiency virus type 1 (HIV-1) central DNA Flap is generated during reverse transcription as a result of (+) strand initiation at the central polypurine tract (cPPT) and termination after a ca. 100 bp strand displacement at the central termination sequence (CTS). The central DNA Flap is a determinant of HIV-1 nuclear import, however, neither cPPT nor CTS mutations entirely abolish nuclear import and infection. Therefore, to determine whether or not the DNA Flap is essential for HIV-1 nuclear import, we generated double mutant (DM) viruses, combining cPPT and CTS mutations to abolish DNA Flap formation. RESULTS: The combination of cPPT and CTS mutations reduced the proportion of viruses forming the central DNA Flap at the end of reverse transcription and further decreased virus infectivity in one-cycle titration assays. The most affected DM viruses were unable to establish a spreading infection in the highly permissive MT4 cell line, nor in human primary peripheral blood mononuclear cells (PBMCs), indicating that the DNA Flap is required for virus replication. Surprisingly, we found that DM viruses still maintained residual nuclear import levels, amounting to 5-15% of wild-type virus, as assessed by viral DNA circle quantification. Alu-PCR quantification of integrated viral genome also indicated 5-10% residual integration levels compared to wild-type virus. CONCLUSION: This work establishes that the central DNA Flap is required for HIV-1 spreading infection but points to a residual DNA Flap independent nuclear import, whose functional significance remains unclear since it is not sufficient to support viral replication.


Asunto(s)
Núcleo Celular/virología , ADN Viral/genética , ADN Viral/metabolismo , Infecciones por VIH/virología , VIH-1/genética , Mutación , Transcripción Reversa , Replicación Viral , Transporte Activo de Núcleo Celular , Secuencia de Bases , Línea Celular , Núcleo Celular/metabolismo , Codón de Terminación , VIH-1/fisiología , Humanos , Datos de Secuencia Molecular
19.
Trends Cell Biol ; 31(1): 17-23, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33023793

RESUMEN

Dissemination and replication of viruses into hosts is a multistep process where viral particles infect, navigate, and indoctrinate various cell types. Viruses can reach tissues that are distant from their infection site by subverting subcellular mechanisms in ways that are, sometimes, disruptive. Modeling these steps, at appropriate resolution and within animal models, is cumbersome. Yet, mimicking these strategies in vitro fails to recapitulate the complexity of the cellular ecosystem. Here, we will discuss relevant in vivo platforms to dissect the cellular and molecular programs governing viral dissemination and briefly discuss organoid and ex vivo alternatives. We will focus on the zebrafish model and will describe how it provides a transparent window to unravel new cellular mechanisms of viral dissemination in vivo.


Asunto(s)
Virus/metabolismo , Animales , Embrión no Mamífero/virología , Humanos , Ratones , Modelos Animales , Pez Cebra/embriología , Pez Cebra/virología
20.
Sci Adv ; 7(2)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523982

RESUMEN

The biosynthetic secretory pathway is particularly challenging to investigate as it is underrepresented compared to the abundance of the other intracellular trafficking routes. Here, we combined the retention using selective hook (RUSH) to a CRISPR-Cas9 gene editing approach (eRUSH) and identified Rab7-harboring vesicles as an important intermediate compartment of the Golgi-to-plasma membrane transport of neosynthesized transferrin receptor (TfR). These vesicles did not exhibit degradative properties and were not associated to Rab6A-harboring vesicles. Rab7A was transiently associated to neosynthetic TfR-containing post-Golgi vesicles but dissociated before fusion with the plasma membrane. Together, our study reveals a role for Rab7 in the biosynthetic secretory pathway of the TfR, highlighting the diversity of the secretory vesicles' nature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA