Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 22(4): 100527, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894123

RESUMEN

p38α (encoded by MAPK14) is a protein kinase that regulates cellular responses to almost all types of environmental and intracellular stresses. Upon activation, p38α phosphorylates many substrates both in the cytoplasm and nucleus, allowing this pathway to regulate a wide variety of cellular processes. While the role of p38α in the stress response has been widely investigated, its implication in cell homeostasis is less understood. To investigate the signaling networks regulated by p38α in proliferating cancer cells, we performed quantitative proteomic and phosphoproteomic analyses in breast cancer cells in which this pathway had been either genetically targeted or chemically inhibited. Our study identified with high confidence 35 proteins and 82 phosphoproteins (114 phosphosites) that are modulated by p38α and highlighted the implication of various protein kinases, including MK2 and mTOR, in the p38α-regulated signaling networks. Moreover, functional analyses revealed an important contribution of p38α to the regulation of cell adhesion, DNA replication, and RNA metabolism. Indeed, we provide experimental evidence supporting that p38α facilitates cancer cell adhesion and showed that this p38α function is likely mediated by the modulation of the adaptor protein ArgBP2. Collectively, our results illustrate the complexity of the p38α-regulated signaling networks, provide valuable information on p38α-dependent phosphorylation events in cancer cells, and document a mechanism by which p38α can regulate cell adhesion.


Asunto(s)
Neoplasias , Proteómica , Adhesión Celular , Fosforilación , Proteínas Quinasas , Proteómica/métodos , Transducción de Señal , Proteína Quinasa 14 Activada por Mitógenos/metabolismo
2.
Angew Chem Int Ed Engl ; 63(12): e202316730, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38153885

RESUMEN

Degraders hold the promise to efficiently inactivate previously intractable disease-relevant targets. Unlike traditional inhibitors, degraders act substoichiometrically and rely on the hijacked proteolysis machinery, which can also act as an entry point for resistance. To fully harness the potential of targeted protein degradation, it is crucial to comprehend resistance mechanisms and formulate effective strategies to overcome them. We conducted a chemical screening to identify synthetic lethal vulnerabilities of cancer cells that exhibit widespread resistance to degraders. Comparative profiling followed by tailored optimization delivered the small molecule RBS-10, which shows preferential cytotoxicity against cells pan-resistant to degraders. Multiomics deconvolution of the mechanism of action revealed that RBS-10 acts as a prodrug bioactivated by the oxidoreductase enzyme NQO1, which is highly overexpressed in our resistance models. Collectively, our work informs on NQO1 as an actionable vulnerability to overcome resistance to degraders and as a biomarker to selectively exploit bioactivatable prodrugs in cancer.


Asunto(s)
Neoplasias , Profármacos , Humanos , Profármacos/farmacología , Proteolisis , NAD(P)H Deshidrogenasa (Quinona)/metabolismo
3.
Respir Res ; 24(1): 80, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922832

RESUMEN

BACKGROUND: Premature birth, perinatal inflammation, and life-saving therapies such as postnatal oxygen and mechanical ventilation are strongly associated with the development of bronchopulmonary dysplasia (BPD); these risk factors, alone or combined, cause lung inflammation and alter programmed molecular patterns of normal lung development. The current knowledge on the molecular regulation of lung development mainly derives from mechanistic studies conducted in newborn rodents exposed to postnatal hyperoxia, which have been proven useful but have some limitations. METHODS: Here, we used the rabbit model of BPD as a cost-effective alternative model that mirrors human lung development and, in addition, enables investigating the impact of premature birth per se on the pathophysiology of BPD without further perinatal insults (e.g., hyperoxia, LPS-induced inflammation). First, we characterized the rabbit's normal lung development along the distinct stages (i.e., pseudoglandular, canalicular, saccular, and alveolar phases) using histological, transcriptomic and proteomic analyses. Then, the impact of premature birth was investigated, comparing the sequential transcriptomic profiles of preterm rabbits obtained at different time intervals during their first week of postnatal life with those from age-matched term pups. RESULTS: Histological findings showed stage-specific morphological features of the developing rabbit's lung and validated the selected time intervals for the transcriptomic profiling. Cell cycle and embryo development, oxidative phosphorylation, and WNT signaling, among others, showed high gene expression in the pseudoglandular phase. Autophagy, epithelial morphogenesis, response to transforming growth factor ß, angiogenesis, epithelium/endothelial cells development, and epithelium/endothelial cells migration pathways appeared upregulated from the 28th day of gestation (early saccular phase), which represents the starting point of the premature rabbit model. Premature birth caused a significant dysregulation of the inflammatory response. TNF-responsive, NF-κB regulated genes were significantly upregulated at premature delivery and triggered downstream inflammatory pathways such as leukocyte activation and cytokine signaling, which persisted upregulated during the first week of life. Preterm birth also dysregulated relevant pathways for normal lung development, such as blood vessel morphogenesis and epithelial-mesenchymal transition. CONCLUSION: These findings establish the 28-day gestation premature rabbit as a suitable model for mechanistic and pharmacological studies in the context of BPD.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Nacimiento Prematuro , Animales , Embarazo , Femenino , Conejos , Recién Nacido , Humanos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patología , Nacimiento Prematuro/metabolismo , Hiperoxia/metabolismo , Transcriptoma , Células Endoteliales/metabolismo , Proteómica , Animales Recién Nacidos , Pulmón/metabolismo , Inflamación/metabolismo
4.
J Med Genet ; 59(2): 170-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33323470

RESUMEN

INTRODUCTION: The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are involved in many fundamental processes, including DNA replication, cell cycle checkpoint recovery and chromatin remodelling. Mutations in TLK2 were recently associated with 'Mental Retardation Autosomal Dominant 57' (MRD57, MIM# 618050), a neurodevelopmental disorder characterised by a highly variable phenotype, including mild-to-moderate intellectual disability, behavioural abnormalities, facial dysmorphisms, microcephaly, epilepsy and skeletal anomalies. METHODS: We re-evaluate whole exome sequencing and array-CGH data from a large cohort of patients affected by neurodevelopmental disorders. Using spatial proteomics (BioID) and single-cell gel electrophoresis, we investigated the proximity interaction landscape of TLK2 and analysed the effects of p.(Asp551Gly) and a previously reported missense variant (c.1850C>T; p.(Ser617Leu)) on TLK2 interactions, localisation and activity. RESULTS: We identified three new unrelated MRD57 families. Two were sporadic and caused by a missense change (c.1652A>G; p.(Asp551Gly)) or a 39 kb deletion encompassing TLK2, and one was familial with three affected siblings who inherited a nonsense change from an affected mother (c.1423G>T; p.(Glu475Ter)). The clinical phenotypes were consistent with those of previously reported cases. The tested mutations strongly impaired TLK2 kinase activity. Proximal interactions between TLK2 and other factors implicated in neurological disorders, including CHD7, CHD8, BRD4 and NACC1, were identified. Finally, we demonstrated a more relaxed chromatin state in lymphoblastoid cells harbouring the p.(Asp551Gly) variant compared with control cells, conferring susceptibility to DNA damage. CONCLUSION: Our study identified novel TLK2 pathogenic variants, confirming and further expanding the MRD57-related phenotype. The molecular characterisation of missense variants increases our knowledge about TLK2 function and provides new insights into its role in neurodevelopmental disorders.


Asunto(s)
Cromatina/metabolismo , Trastornos del Neurodesarrollo/genética , Proteínas Quinasas/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Metaboloma , Persona de Mediana Edad , Mutación , Mutación Missense , Trastornos del Neurodesarrollo/enzimología , Linaje , Mapeo de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Secuenciación del Exoma , Adulto Joven
5.
Chembiochem ; 23(12): e202200152, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35362647

RESUMEN

We report a quantitative proteomics data analysis pipeline, which coupled to protein-directed dynamic combinatorial chemistry (DDC) experiments, enables the rapid discovery and direct characterization of protein-protein interaction (PPI) modulators. A low-affinity PD-1 binder was incubated with a library of >100 D-peptides under thiol-exchange favoring conditions, in the presence of the target protein PD-1, and we determined the S-linked dimeric species that resulted, amplified in the protein samples versus the controls. We chemically synthesized the target dimer candidates and validated them by thermophoresis binding and protein-protein interaction assays. The results provide a proof-of-concept for using this strategy in the high-throughput search of improved drug-like peptide binders that block therapeutically relevant protein-protein interactions.


Asunto(s)
Biblioteca de Péptidos , Proteómica , Técnicas Químicas Combinatorias/métodos , Inhibidores de Puntos de Control Inmunológico , Péptidos/química , Receptor de Muerte Celular Programada 1 , Proteínas , Proteómica/métodos
6.
J Proteome Res ; 19(1): 221-237, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31703166

RESUMEN

Protamine 1 (P1) and protamine 2 (P2) family are extremely basic, sperm-specific proteins, packing 85-95% of the paternal DNA. P1 is synthesized as a mature form, whereas P2 components (HP2, HP3, and HP4) arise from the proteolysis of the precursor (pre-P2). Due to the particular protamine physical-chemical properties, their identification by standardized bottom-up mass spectrometry (MS) strategies is not straightforward. Therefore, the aim of this study was to identify the sperm protamine proteoforms profile, including their post-translational modifications, in normozoospermic individuals using two complementary strategies, a top-down MS approach and a proteinase-K-digestion-based bottom-up MS approach. By top-down MS, described and novel truncated P1 and pre-P2 proteoforms were identified. Intact P1, pre-P2, and P2 mature proteoforms and their phosphorylation pattern were also detected. Additionally, a +61 Da modification in different proteoforms was observed. By the bottom-up MS approach, phosphorylated residues for pre-P2, as well as the new P2 isoform 2, which is not annotated in the UniProtKB database, were revealed. Implementing these strategies in comparative studies of different infertile phenotypes, together with the evaluation of P1/P2 and pre-P2/P2 MS-derived ratios, would permit determining specific alterations in the protamine proteoforms and elucidate the role of phosphorylation/dephosphorylation dynamics in male fertility.


Asunto(s)
Espectrometría de Masas/métodos , Protaminas/análisis , Proteómica/métodos , Espermatozoides/química , Cromatografía Liquida/métodos , Humanos , Masculino , Fosforilación , Protaminas/metabolismo , Isoformas de Proteínas/análisis , Procesamiento Proteico-Postraduccional , Flujo de Trabajo
7.
Anal Chem ; 91(11): 6953-6961, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31045356

RESUMEN

The number of publications in the field of chemical cross-linking combined with mass spectrometry (XL-MS) to derive constraints for protein three-dimensional structure modeling and to probe protein-protein interactions has increased during the last years. As the technique is now becoming routine for in vitro and in vivo applications in proteomics and structural biology there is a pressing need to define protocols as well as data analysis and reporting formats. Such consensus formats should become accepted in the field and be shown to lead to reproducible results. This first, community-based harmonization study on XL-MS is based on the results of 32 groups participating worldwide. The aim of this paper is to summarize the status quo of XL-MS and to compare and evaluate existing cross-linking strategies. Our study therefore builds the framework for establishing best practice guidelines to conduct cross-linking experiments, perform data analysis, and define reporting formats with the ultimate goal of assisting scientists to generate accurate and reproducible XL-MS results.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Albúmina Sérica Bovina/análisis , Albúmina Sérica Bovina/química , Laboratorios , Espectrometría de Masas/instrumentación , Reproducibilidad de los Resultados
8.
Anal Chem ; 90(7): 4552-4560, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29537826

RESUMEN

Brain-derived amyloid-ß (Aß) dimers are associated with Alzheimer's disease (AD). However, their covalent nature remains controversial. This feature is relevant, as a covalent cross-link has been proposed to make brain-derived dimers (brain dimers) more synaptotoxic than Aß monomers and would also make them suitable candidates for biomarker development. To resolve this controversy, we here present a three-step approach. First, we validated a type of synthetic cross-linked Aß (CL Aß) dimers, obtained by means of the photoinduced cross-linking of unmodified proteins (PICUP) reaction, as well-defined mimics of putative brain CL Aß dimers. Second, we used these PICUP CL Aß dimers as standards to improve the isolation of brain Aß dimers and to develop state-of-the-art mass spectrometry (MS) strategies to allow their characterization. Third, we applied these MS methods to the analysis of brain Aß dimer samples allowing the detection of the CL [Aß(6-16)]2 peptide comprising a dityrosine cross-link. This result demonstrates the presence of CL Aß dimers in the brains of patients with AD and opens up avenues for establishing new therapeutic targets and developing novel biomarkers for this disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Química Encefálica , Encéfalo/metabolismo , Encéfalo/patología , Multimerización de Proteína , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Humanos , Espectrometría de Masas , Tirosina/análogos & derivados , Tirosina/química
9.
Proc Natl Acad Sci U S A ; 109(7): 2660-5, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22308405

RESUMEN

Globins constitute a superfamily of proteins widespread in all kingdoms of life, where they fulfill multiple functions, such as efficient O(2) transport and modulation of nitric oxide bioactivity. In plants, the most abundant Hbs are the symbiotic leghemoglobins (Lbs) that scavenge O(2) and facilitate its diffusion to the N(2)-fixing bacteroids in nodules. The biosynthesis of Lbs during nodule formation has been studied in detail, whereas little is known about the green derivatives of Lbs generated during nodule senescence. Here we characterize modified forms of Lbs, termed Lba(m), Lbc(m), and Lbd(m), of soybean nodules. These green Lbs have identical globins to the parent red Lbs but their hemes are nitrated. By combining UV-visible, MS, NMR, and resonance Raman spectroscopies with reconstitution experiments of the apoprotein with protoheme or mesoheme, we show that the nitro group is on the 4-vinyl. In vitro nitration of Lba with excess nitrite produced several isomers of nitrated heme, one of which is identical to those found in vivo. The use of antioxidants, metal chelators, and heme ligands reveals that nitration is contingent upon the binding of nitrite to heme Fe, and that the reactive nitrogen species involved derives from nitrous acid and is most probably the nitronium cation. The identification of these green Lbs provides conclusive evidence that highly oxidizing and nitrating species are produced in nodules leading to nitrosative stress. These findings are consistent with a previous report showing that the modified Lbs are more abundant in senescing nodules and have aberrant O(2) binding.


Asunto(s)
Fabaceae/química , Hemo/química , Leghemoglobina/química , Especies de Nitrógeno Reactivo/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Espectrofotometría Ultravioleta
10.
Proteomics ; 14(20): 2275-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25055762

RESUMEN

We present several bioinformatics applications for the identification and quantification of phosphoproteome components by MS. These applications include a front-end graphical user interface that combines several Thermo RAW formats to MASCOT™ Generic Format extractors (EasierMgf), two graphical user interfaces for search engines OMSSA and SEQUEST (OmssaGui and SequestGui), and three applications, one for the management of databases in FASTA format (FastaTools), another for the integration of search results from up to three search engines (Integrator), and another one for the visualization of mass spectra and their corresponding database search results (JsonVisor). These applications were developed to solve some of the common problems found in proteomic and phosphoproteomic data analysis and were integrated in the workflow for data processing and feeding on our LymPHOS database. Applications were designed modularly and can be used standalone. These tools are written in Perl and Python programming languages and are supported on Windows platforms. They are all released under an Open Source Software license and can be freely downloaded from our software repository hosted at GoogleCode.


Asunto(s)
Minería de Datos/métodos , Espectrometría de Masas/métodos , Proteómica/métodos , Animales , Bases de Datos de Proteínas , Humanos , Fosfoproteínas/análisis , Proteoma/análisis , Motor de Búsqueda , Programas Informáticos , Interfaz Usuario-Computador
11.
iScience ; 27(6): 109984, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38868186

RESUMEN

The Tousled-like kinases 1 and 2 (TLK1/TLK2) regulate DNA replication, repair and chromatin maintenance. TLK2 variants underlie the neurodevelopmental disorder (NDD) 'Intellectual Disability, Autosomal Dominant 57' (MRD57), characterized by intellectual disability and microcephaly. Several TLK1 variants have been reported in NDDs but their functional significance is unknown. A male patient presenting with ID, seizures, global developmental delay, hypothyroidism, and primary immunodeficiency was determined to have a heterozygous TLK1 variant (c.1435C>G, p.Q479E), as well as a mutation in MDM1 (c.1197dupT, p.K400∗). Cells expressing TLK1 p.Q479E exhibited reduced cytokine responses and elevated DNA damage, but not increased radiation sensitivity or DNA repair defects. The TLK1 p.Q479E variant impaired kinase activity but not proximal protein interactions. Our study provides the first functional characterization of NDD-associated TLK1 variants and suggests that, such as TLK2, TLK1 variants may impact development in multiple tissues and should be considered in the diagnosis of rare NDDs.

12.
Chembiochem ; 14(14): 1820-7, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23744817

RESUMEN

Intrinsically disordered regions (IDRs) are preferred sites for post-translational modifications essential for regulating protein function. The enhanced local mobility of IDRs facilitates their observation by NMR spectroscopy in vivo. Phosphorylation events can occur at multiple sites and respond dynamically to changes in kinase-phosphatase networks. Here we used real-time NMR spectroscopy to study the effect of kinases and phosphatases present in Xenopus oocytes and egg extracts on the phosphorylation state of the "unique domain" of c-Src. We followed the phosphorylation of S17 in oocytes, and of S17, S69, and S75 in egg extracts by NMR spectroscopy, MS, and western blotting. Addition of specific kinase inhibitors showed that S75 and S69 are phosphorylated by CDKs (cyclin-dependent kinases) differently from Cdk1. Moreover, although PKA (cAMP-dependent protein kinase) can phosphorylate S17 in vitro, this was not the major S17 kinase in egg extracts. Changes in PKA activity affected the phosphorylation levels of CDK-dependent sites, thus suggesting indirect effects of kinase-phosphatase networks. This study provides a proof-of-concept of the use of real-time in vivo NMR spectroscopy to characterize kinase/phosphatase effects on intrinsically disordered regulatory domains.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Familia-src Quinasas/química , Secuencia de Aminoácidos , Animales , Proteína Tirosina Quinasa CSK , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Oocitos/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
13.
medRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37662408

RESUMEN

Background: The Tousled-like kinases 1 and 2 (TLK1/TLK2) regulate DNA replication, repair and chromatin maintenance. TLK2 variants are associated with 'Intellectual Disability, Autosomal Dominant 57' (MRD57), a neurodevelopmental disorder (NDD) characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. Several TLK1 variants have been reported in NDDs but their functional significance is unknown. Methods: A male patient presenting with ID, seizures, global developmental delay, hypothyroidism, and primary immunodeficiency was determined to have a novel, heterozygous variant in TLK1 (c.1435C>G, p.Q479E) by genome sequencing (GS). Single cell gel electrophoresis, western blot, flow cytometry and RNA-seq were performed in patient-derived lymphoblast cell lines. In silico, biochemical and proteomic analysis were used to determine the functional impact of the p.Q479E variant and previously reported NDD-associated TLK1 variant, p.M566T. Results: Transcriptome sequencing in patient-derived cells confirmed expression of TLK1 transcripts carrying the p.Q479E variant and revealed alterations in genes involved in class switch recombination and cytokine signaling. Cells expressing the p.Q479E variant exhibited reduced cytokine responses and higher levels of spontaneous DNA damage but not increased sensitivity to radiation or DNA repair defects. The p.Q479E and p.M566T variants impaired kinase activity but did not strongly alter localization or proximal protein interactions. Conclusion: Our study provides the first functional characterization of TLK1 variants associated with NDDs and suggests potential involvement in central nervous system and immune system development. Our results indicate that, like TLK2 variants, TLK1 variants may impact development in multiple tissues and should be considered in the diagnosis of rare NDDs.

14.
J Exp Bot ; 63(10): 3923-34, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22442424

RESUMEN

In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1-48 h with 50 µM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24-48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses.


Asunto(s)
Fabaceae/enzimología , Regulación Enzimológica de la Expresión Génica , Ligasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Fabaceae/química , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Inmunohistoquímica , Ligasas/química , Ligasas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/química , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Transporte de Proteínas
15.
Genome Biol ; 23(1): 192, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096799

RESUMEN

BACKGROUND: Vertebrate CPEB proteins bind mRNAs at cytoplasmic polyadenylation elements (CPEs) in their 3' UTRs, leading to cytoplasmic changes in their poly(A) tail lengths; this can promote translational repression or activation of the mRNA. However, neither the regulation nor the mechanisms of action of the CPEB family per se have been systematically addressed to date. RESULTS: Based on a comparative analysis of the four vertebrate CPEBs, we determine their differential regulation by phosphorylation, the composition and properties of their supramolecular assemblies, and their target mRNAs. We show that all four CPEBs are able to recruit the CCR4-NOT deadenylation complex to repress the translation. However, their regulation, mechanism of action, and target mRNAs define two subfamilies. Thus, CPEB1 forms ribonucleoprotein complexes that are remodeled upon a single phosphorylation event and are associated with mRNAs containing canonical CPEs. CPEB2-4 are regulated by multiple proline-directed phosphorylations that control their liquid-liquid phase separation. CPEB2-4 mRNA targets include CPEB1-bound transcripts, with canonical CPEs, but also a specific subset of mRNAs with non-canonical CPEs. CONCLUSIONS: Altogether, these results show how, globally, the CPEB family of proteins is able to integrate cellular cues to generate a fine-tuned adaptive response in gene expression regulation through the coordinated actions of all four members.


Asunto(s)
Factores de Transcripción , Factores de Escisión y Poliadenilación de ARNm , Regiones no Traducidas 3' , Animales , Regulación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
16.
Sci Rep ; 12(1): 640, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022497

RESUMEN

COVID-19 pathophysiology is currently not fully understood, reliable prognostic factors remain elusive, and few specific therapeutic strategies have been proposed. In this scenario, availability of biomarkers is a priority. MS-based Proteomics techniques were used to profile the proteome of 81 plasma samples extracted in four consecutive days from 23 hospitalized COVID-19 associated pneumonia patients. Samples from 10 subjects that reached a critical condition during their hospital stay and 10 matched non-severe controls were drawn before the administration of any COVID-19 specific treatment and used to identify potential biomarkers of COVID-19 prognosis. Additionally, we compared the proteome of five patients before and after glucocorticoids and tocilizumab treatment, to assess the changes induced by the therapy on our selected candidates. Forty-two proteins were differentially expressed between patients' evolution groups at 10% FDR. Twelve proteins showed lower levels in critical patients (fold-changes 1.20-3.58), of which OAS3 and COG5 found their expression increased after COVID-19 specific therapy. Most of the 30 proteins over-expressed in critical patients (fold-changes 1.17-4.43) were linked to inflammation, coagulation, lipids metabolism, complement or immunoglobulins, and a third of them decreased their expression after treatment. We propose a set of candidate proteins for biomarkers of COVID-19 prognosis at the time of hospital admission. The study design employed is distinctive from previous works and aimed to optimize the chances of the candidates to be validated in confirmatory studies and, eventually, to play a useful role in the clinical practice.


Asunto(s)
Proteínas Sanguíneas , COVID-19/sangre , COVID-19/diagnóstico , Hospitalización , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Estudios Prospectivos , Proteoma
17.
J Proteomics ; 251: 104409, 2022 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-34758407

RESUMEN

Global analysis of protein phosphorylation by mass spectrometry proteomic techniques has emerged in the last decades as a powerful tool in biological and biomedical research. However, there are several factors that make the global study of the phosphoproteome more challenging than measuring non-modified proteins. The low stoichiometry of the phosphorylated species and the need to retrieve residue specific information require particular attention on sample preparation, data acquisition and processing to ensure reproducibility, qualitative and quantitative robustness and ample phosphoproteome coverage in phosphoproteomic workflows. Aiming to investigate the effect of different variables in the performance of proteome wide phosphoprotein analysis protocols, ProteoRed-ISCIII and EuPA launched the Proteomics Multicentric Experiment 11 (PME11). A reference sample consisting of a yeast protein extract spiked in with different amounts of a phosphomix standard (Sigma/Merck) was distributed to 31 laboratories around the globe. Thirty-six datasets from 23 laboratories were analyzed. Our results indicate the suitability of the PME11 reference sample to benchmark and optimize phosphoproteomics strategies, weighing the influence of different factors, as well as to rank intra and inter laboratory performance.


Asunto(s)
Proteoma , Proteómica , Laboratorios , Fosfoproteínas/análisis , Fosforilación , Proteoma/análisis , Proteómica/métodos , Estándares de Referencia , Reproducibilidad de los Resultados
18.
Chem Commun (Camb) ; 57(49): 6054-6057, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34036992

RESUMEN

We describe furan as a triggerable 'warhead' for site-specific cross-linking using the actin and thymosin ß4 (Tß4)-complex as model of a weak and dynamic protein-protein interaction (PPI) with known 3D structure and with application potential in disease contexts. The identified cross-linked residues demonstrate that lysine is a target for the furan warhead. The presented in vitro validation of covalently acting 'furan-armed' Tß4-variants provides initial proof to further exploit furan-technology for covalent drug design targeting lysines.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Furanos/química , Timosina/química , Actinas/química , Modelos Moleculares , Unión Proteica
19.
Proteomes ; 9(2)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946530

RESUMEN

Protamines replace histones as the main nuclear protein in the sperm cells of many species and play a crucial role in compacting the paternal genome. Human spermatozoa contain protamine 1 (P1) and the family of protamine 2 (P2) proteins. Alterations in protamine PTMs or the P1/P2 ratio may be associated with male infertility. Top-down proteomics enables large-scale analysis of intact proteoforms derived from alternative splicing, missense or nonsense genetic variants or PTMs. In contrast to current gold standard techniques, top-down proteomics permits a more in-depth analysis of protamine PTMs and proteoforms, thereby opening up new perspectives to unravel their impact on male fertility. We report on the analysis of two normozoospermic semen samples by top-down proteomics. We discuss the difficulties encountered with the data analysis and propose solutions as this step is one of the current bottlenecks in top-down proteomics with the bioinformatics tools currently available. Our strategy for the data analysis combines two software packages, ProSight PD (PS) and TopPIC suite (TP), with a clustering algorithm to decipher protamine proteoforms. We identified up to 32 protamine proteoforms at different levels of characterization. This in-depth analysis of the protamine proteoform landscape of normozoospermic individuals represents the first step towards the future study of sperm pathological conditions opening up the potential personalized diagnosis of male infertility.

20.
Chem Sci ; 12(11): 4057-4062, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-34163676

RESUMEN

Vasopressin (VP) and oxytocin (OT) are cyclic neuropeptides that regulate fundamental physiological functions via four G protein-coupled receptors, V1aR, V1bR, V2R, and OTR. Ligand development remains challenging for these receptors due to complex structure-activity relationships. Here, we investigated dimerization as a strategy for developing ligands with novel pharmacology. We regioselectively synthesised and systematically studied parallel, antiparallel and N- to C-terminal cyclized homo- and heterodimer constructs of VP, OT and dVDAVP (1-deamino-4-valine-8-d-arginine-VP). All disulfide-linked dimers, except for the head-to-tail cyclized constructs, retained nanomolar potency despite the structural implications of dimerization. Our results support a single chain interaction for receptor activation. Dimer orientation had little impact on activity, except for the dVDAVP homodimers, where an antagonist to agonist switch was observed at the V1aR. This study provides novel insights into the structural requirements of VP/OT receptor activation and spotlights dimerization as a strategy to modulate pharmacology, a concept also frequently observed in nature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA