Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(5)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38148153

RESUMEN

Adolescent cocaine exposure (ACE) induces anxiety and higher sensitivity to substances abuse during adulthood. Here, we show that the claustrum is crucial for controlling these psychiatric problems in male mice. In anxiety-like behavioral tests, the CaMKII-positive neurons in the median portion of the claustrum (MClaustrum) were triggered, and local suppression of these neurons reduced the anxiety-like behavior in ACE mice during adulthood. In contrast, the CaMKII-positive neurons in the anterior portion of the claustrum (AClaustrum) were more activated in response to subthreshold dose of cocaine induced conditioned place preference (CPP), and local suppression of these neurons blocked the acquisition of cocaine CPP in ACE mice during adulthood. Our findings for the first time identified the fine-regional role of the claustrum in regulating the anxiety and susceptibility to cocaine in ACE mice during adulthood, extending our understanding of the claustrum in substance use disorder.


Asunto(s)
Claustro , Cocaína , Masculino , Animales , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Recompensa , Cocaína/farmacología , Ansiedad
2.
J Neurosci ; 44(11)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38331582

RESUMEN

Cerebellum has been implicated in drug addiction; however, its underlying cellular populations and neuronal circuitry remain largely unknown. In the current study, we identified a neural pathway from tyrosine hydroxylase (TH)-positive Purkinje cells (PCTH+) in cerebellar lobule VI to calcium/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the medial cerebellar nucleus (MedCaMKII), forming the lobule VI PCTH+-MedCaMKII pathway in male mice. In naive male mice, inhibition of PCTH+ neurons activated Med neurons. During conditioned place preference (CPP) training, exposure to methamphetamine (METH) inhibited lobule VI PCTH+ neurons while excited MedCaMKII neurons in mice. Silencing MedCaMKII using a tetanus toxin light chain (tettox) suppressed the acquisition of METH CPP in mice but resulted in motor coordination deficits in naive mice. In contrast, activating lobule VI PCTH+ terminals within Med inhibited the activity of Med neurons and subsequently blocked the acquisition of METH CPP in mice without affecting motor coordination, locomotor activity, and sucrose reinforcements in naive mice. Our findings identified a novel lobule VI PCTH+-MedCaMKII pathway within the cerebellum and explored its role in mediating the acquisition of METH-preferred behaviors.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metanfetamina , Animales , Masculino , Ratones , Metanfetamina/farmacología , Tirosina 3-Monooxigenasa/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Refuerzo en Psicología , Cerebelo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología
3.
EMBO Rep ; 24(9): e56981, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37535645

RESUMEN

Adolescent cocaine abuse increases the risk for developing addiction in later life, but the underlying molecular mechanism remains poorly understood. Here, we establish adolescent cocaine-exposed (ACE) male mouse models. A subthreshold dose of cocaine (sdC) treatment, insufficient to produce conditioned place preference (CPP) in adolescent mice, induces CPP in ACE mice during adulthood, along with more activated CaMKII-positive neurons, higher dual specificity protein kinase phosphatase-1 (Dusp1) mRNA, lower DUSP1 activity, and lower DUSP1 expression in CaMKII-positive neurons in the medial prefrontal cortex (mPFC). Overexpressing DUSP1 in CaMKII-positive neurons suppresses neuron activity and blocks sdC-induced CPP in ACE mice during adulthood. On the contrary, depleting DUSP1 in CaMKII-positive neurons activates more neurons and further enhances sdC-induced behavior in ACE mice during adulthood. Also, ERK1/2 might be a downstream signal of DUSP1 in the process. Our findings reveal a role of mPFC DUSP1 in ACE-induced higher sensitivity to the drug in adult mice. DUSP1 might be a potential pharmacological target to predict or treat the susceptibility to addictive drugs caused by adolescent substance use.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Ratones , Masculino , Animales , Cocaína/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corteza Prefrontal , Neuronas/metabolismo
4.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38981852

RESUMEN

Previously, we found that dCA1 A1-like polarization of astrocytes contributes a lot to the spatial memory deficit in methamphetamine abstinence mice. However, the underlying mechanism remains unclear, resulting in a lack of promising therapeutic targets. Here, we found that methamphetamine abstinence mice exhibited an increased M1-like microglia and A1-like astrocytes, together with elevated levels of interleukin 1α and tumor necrosis factor α in dCA1. In vitro, the M1-like BV2 microglia cell medium, containing high levels of Interleukin 1α and tumor necrosis factor α, elevated A1-like polarization of astrocytes, which weakened their capacity for glutamate clearance. Locally suppressing dCA1 M1-like microglia activation with minocycline administration attenuated A1-like polarization of astrocytes, ameliorated dCA1 neurotoxicity, and, most importantly, rescued spatial memory in methamphetamine abstinence mice. The effective time window of minocycline treatment on spatial memory is the methamphetamine exposure period, rather than the long-term methamphetamine abstinence.


Asunto(s)
Astrocitos , Trastornos de la Memoria , Metanfetamina , Microglía , Minociclina , Memoria Espacial , Animales , Metanfetamina/toxicidad , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratones , Trastornos de la Memoria/inducido químicamente , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Memoria Espacial/fisiología , Memoria Espacial/efectos de los fármacos , Masculino , Minociclina/farmacología , Ratones Endogámicos C57BL , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/patología , Estimulantes del Sistema Nervioso Central/toxicidad
5.
J Neurosci ; 43(5): 803-811, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36564185

RESUMEN

Anxiety is one of the most common withdrawal symptoms of methamphetamine (METH) abuse, which further drives relapse to drugs. Interpeduncular nucleus (IPN) has been implicated in anxiety-like behaviors and addiction, yet its role in METH-abstinence-induced anxiety remains unknown. Here, we found that prolonged abstinence from METH enhanced anxiety-like behaviors in male mice, accompanied by more excited IPN GABAergic neurons, as indicated by the increased c-fos expression and the enhanced neuronal excitability by electrophysiological recording in the GABAergic neurons. Using the designer receptors exclusively activated by designer drugs method, specific inhibition of IPN GABAergic neurons rescued the aberrant neuronal excitation of IPN GABAergic neurons and efficiently reduced anxiety-like behaviors, whereas it did not induce depression-like behaviors in male mice after prolonged abstinence from METH. These findings reveal that IPN GABAergic neurons should be a promising brain target to alleviate late withdrawal symptoms from METH with few side effects.SIGNIFICANCE STATEMENT Prolonged abstinence from METH triggers IPN GABAergic neurons and ultimately increases anxiety in male mice. Suppressing IPN GABAergic neurons rescues METH abstinence-induced aberrant neuronal excitation of IPN GABAergic neurons and efficiently reduces anxiety in mice.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Núcleo Interpeduncular , Metanfetamina , Síndrome de Abstinencia a Sustancias , Ratones , Masculino , Animales , Metanfetamina/farmacología , Núcleo Interpeduncular/metabolismo , Ansiedad/metabolismo , Neuronas GABAérgicas/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Trastornos Relacionados con Anfetaminas/metabolismo
6.
Virol J ; 21(1): 151, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965616

RESUMEN

BACKGROUND: The canine influenza virus (CIV) outbreak has garnered considerable attention as it poses a significant threat to dog health. During the H3N2 CIV evolution in beagles, the virus formed a new clade after 2019 and gradually became more adaptable to other mammals. Therefore, successfully elucidating the biological characteristics and constructing a canine influenza infection model is required for CIV characterization. METHODS: We performed genetic analyses to examine the biological characteristics and infection dynamics of CIV. RESULTS: The genotype of our H3N2 CIV strain (from 2019 in Shanghai) belonged to the 5.1 clade, which is now prevalent in China. Using MDCK cells, we investigated viral cytopathic effects. Virus size and morphology were observed using transmission electron microscopy. Beagles were also infected with 104, 105, and 106 50% egg-infectious doses (EID50). When compared with the other groups, the 106 EID50 group showed the most obvious clinical symptoms, the highest virus titers, and typical lung pathological changes. Our results suggested that the other two treatments caused mild clinical manifestations and pathological changes. Subsequently, CIV distribution in the 106 EID50 group was detected by hematoxylin and eosin (H&E) and immunofluorescence (IF) staining, which indicated that CIV primarily infected the lungs. CONCLUSIONS: The framework established in this study will guide further CIV prevention strategies.


Asunto(s)
Enfermedades de los Perros , Genotipo , Subtipo H3N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Perros , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/patología , Enfermedades de los Perros/virología , Células de Riñón Canino Madin Darby , China/epidemiología , Pulmón/virología , Pulmón/patología , Filogenia , Carga Viral , Modelos Animales de Enfermedad
7.
Arch Virol ; 169(2): 21, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194148

RESUMEN

A rapid and sensitive assay is essential for reliable surveillance and diagnosis of canine astrovirus (CaAstV). In this study, two real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays with high sensitivity, rapidity, and reliability were developed using fluorescence dye and FRET-based assimilating probes for real-time detection of CaAstV. These assays specifically amplified the ORF2 gene of CaAstV and did not amplify any sequences from canine enterovirus. The limit of detection (LOD) of both the probe-based and dye-based RT-LAMPs was 100 copies/µL. Fluorescence signals were generated within 30 min for the lowest concentration of a standard RNA sample, which was significantly faster than that achieved by real-time fluorescence quantitative PCR (qRT-PCR) assay. When clinical samples were tested, the positive and negative agreement of the dye-based RT-LAMP assay with qRT-PCR was 87.5% (14/16) and 93.55% (29/31), respectively. The positive and negative agreement of the probe-based RT-LAMP assay with qRT-PCR was 94.11% (16/17) and 96.55% (28/29), respectively. The RT-LAMP assays developed in this study showed strong potential for use as an on-site diagnostic assay for rapid, specific, and reliable detection of CaAstV in clinical samples.


Asunto(s)
Astroviridae , Virus ARN , Animales , Perros , Antígenos Virales , Astroviridae/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reproducibilidad de los Resultados
8.
Addict Biol ; 28(1): e13255, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577725

RESUMEN

Methamphetamine (METH) is a commonly abused addictive psychostimulant, and METH-induced neurotoxic and behavioural deficits are in a sex-specific manner. However, there is lack of biomarkers to evaluate METH addiction in clinical practice, especially for gender differences. We utilized ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to detect the serum metabolomics in METH addicts and controls, specially exploring the sex-specific metabolic alterations by METH abuse. We found that many differently expressed metabolites in METH addicts related to metabolisms of amino acid, energy, vitamin and neurological disorders. Further, METH abuse caused different patterns of metabolomics in a sex-specific manner. As to amino acid metabolism, L-phenylalanine, L-tryptophan and L-histidine in serum of male addicts and betaine in serum of female addicts were significantly changed by METH use. In addition, it seemed that purine and pyrimidine-related metabolites (e.g., xanthosine and adenosine 5'-monophosphate) in male and the metabolites of hormone (e.g., cortisol) and folate biosynthesis (e.g., 7,8-dihydrobiopterin and 4-hydroxybenzoic acid) in female were more sensitive to METH addiction. Our findings revealed that L-glutamic acid, L-aspartic acid, alpha-ketoglutarate acid and citric acid may be potential biomarkers for monitoring METH addiction in clinic. Considering sex-specific toxicity by METH, the metabolites of purine and pyrimidine metabolism in male and those of stress-related hormones in female may be used to facilitate the accurate diagnosis and treatment for METH addicts of different genders.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Metanfetamina , Femenino , Masculino , Humanos , Metanfetamina/farmacología , Espectrometría de Masas en Tándem , Biomarcadores/metabolismo , Purinas , Aminoácidos , Pirimidinas
9.
Addict Biol ; 28(9): e13314, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37644891

RESUMEN

Methamphetamine (Meth) withdrawal elicits anxiety, which is a public health concern with limited therapeutic options. Previous studies implied a strong correlation between mPFC and Meth withdrawal. Here, we examined the role of Gegen-Qinlian decoction (GQD) in Meth withdrawal anxiety and explored potential therapeutic targets in mPFC. We found that intra-gastric administration of GQD during the withdrawal period efficiently alleviated anxiety-like behaviours in Meth-withdrawn mice. Further, GQD could restore Meth withdrawal-triggered pathway of GABAergic interneurons (GABA IN)-pyramidal neurons (PN) in the mPFC of Meth-withdrawn mice, especially the prelimbic cortex (PrL) sub-region and PV-positive GABA IN. While, GQD had no obvious effects on the glial cells in the mPFC of Meth-withdrawn mice. By transcriptomic analysis and validation of several gene candidates, we found that genes in the MAPK signalling pathway, especially those related to heat shock proteins, including Hspa1a, Hspa1b and Hspb1, might be GQD-targeting genes in mPFC to treat Meth withdrawal anxiety, as indicated that these genes were up-regulated by Meth withdrawal but rescued by GQD in mPFC. Collectively, our findings identified for the first time that GQD could efficiently alleviate Meth withdrawal anxiety, partially through regulating the local GABA IN-PN pathway and transcriptomic profile of mPFC. The present study confirms that TCM, such as GQD, will be a desirable therapeutic approach in the treatment of drug addiction and related emotional deficits.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Metanfetamina , Síndrome de Abstinencia a Sustancias , Animales , Ratones , Medicina Tradicional China , Ansiedad/tratamiento farmacológico , Células Piramidales , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Interneuronas , Ácido gamma-Aminobutírico
10.
Brain Behav Immun ; 103: 85-96, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35427759

RESUMEN

Recent progress on the central lymphatic system has greatly increased our understanding of how the brain maintains its own waste homeostasis. Here, we showed that perivascular spaces and meningeal lymphatic vessels form a functional route for clearance of senescent astrocytes from the aging brain. Blocking meningeal lymphatic drainage by ligation of the deep cervical lymph nodes impaired clearance of senescent astrocytes from brain parenchyma, subsequently increasing neuroinflammation in aged mice. By contrast, enhancing meningeal lymphatic vessel diameter by a recombinant adeno-associated virus encoding mouse vascular endothelial growth factor-C (VEGF-C) improved clearance of senescent astrocytes and mitigated neuroinflammation. Mechanistically, VEGF-C was highly expressed in senescent astrocytes, contributing themselves to migrate across lymphatic vessels along C-C motif chemokine ligand 21 (CCL21) gradient by interacting with VEGF receptor 3. Moreover, intra-cisternal injection of antibody against CCL21 hampered senescent astrocytes into the lymphatic vessels and exacerbated short memory defects of aged mice. Together, these findings reveal a new perspective for the meningeal lymphatics in the removal of senescent astrocytes, thus offering a valuable target for therapeutic intervention.


Asunto(s)
Vasos Linfáticos , Factor C de Crecimiento Endotelial Vascular , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Sistema Linfático , Vasos Linfáticos/metabolismo , Ratones , Factor C de Crecimiento Endotelial Vascular/metabolismo
11.
Mol Psychiatry ; 26(3): 941-954, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-30980042

RESUMEN

Sleep is essential to emotional health. Sleep disturbance, particularly REM sleep disturbance, profoundly impacts emotion regulation, but the underlying neural mechanisms remain elusive. Here we show that chronic REM sleep disturbance, achieved in mice by chronic sleep fragmentation (SF), enhanced neural activity in the medial habenula (mHb), a brain region increasingly implicated in negative affect. Specifically, after a 5-day SF procedure that selectively fragmented REM sleep, cholinergic output neurons (ChNs) in the mHb exhibited increased spontaneous firing rate and enhanced firing regularity in brain slices. The SF-induced firing changes remained intact upon inhibition of glutamate, GABA, acetylcholine, and histamine receptors, suggesting cell-autonomous mechanisms independent of synaptic transmissions. Moreover, the SF-induced hyperactivity was not because of enhanced intrinsic membrane excitability, but was accompanied by depolarized resting membrane potential in mHb ChNs. Furthermore, inhibition of TASK-3 (KCNK9) channels, a subtype of two-pore domain K+ channels, mimicked the SF effects by increasing the firing rate and regularity, as well as depolarizing the resting membrane potential in mHb ChNs in control-sleep mice. These effects of TASK-3 inhibition were absent in SF mice, suggesting reduced TASK-3 activity following SF. By contrast, inhibition of small-conductance Ca2+-activated K+ (SK) channels did not produce similar effects. Thus, SF compromised TASK-3 function in mHb ChNs, which likely led to depolarized resting membrane potential and increased spontaneous firing. These results not only demonstrate that selective REM sleep disturbance leads to hyperactivity of mHb ChNs, but also identify a key molecular substrate through which REM sleep disturbance may alter affect regulation.


Asunto(s)
Habénula , Animales , Colinérgicos , Potenciales de la Membrana , Ratones , Privación de Sueño , Transmisión Sináptica
12.
Addict Biol ; 27(3): e13175, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35470558

RESUMEN

Paternal methamphetamine (METH) exposure results in long-term behavioural deficits in the sub-generations with a sex difference. Here, we aim to investigate the sex-specific neurobehavioural outcomes in the first-generation offspring mice (F1 mice) paternally exposed to METH prior to conception and explore the underlying brain mechanisms. We found that paternal METH exposure increased anxiety-like behaviours and spatial memory deficits only in female F1 mice and caused depression-like behaviours in the offspring without sex-specific differences. In parallel, METH-sired F1 mice exhibited sex-specific brain activity pattern in response to mild stimulus (in water at room temperature for 3 min). Overall, paternal METH exposure caused a blunting phenomenon of prelimbic cortex (PrL), infralimbic cortex (IL) and nucleus accumbens (NAc) core in both male and female F1 mice, as indicated by the decreased c-Fos levels under mild stimulus. Of note, the activity of central nucleus of the amygdala (CeA) by mild stimulus was triggered in male but suppressed in female F1 mice, whereas the neurons of orbitofrontal cortex (OFC), cingulate cortex (Cg1), NAc shell, medial habenula (mHb), dorsal hippocampal CA1 (dCA1) and ventral hippocampal CA1 (vCA1) were only blunted in female F1 mice. Taken together, the distinct brain stimulation patterns between male and female F1 mice might contribute to the sex-specific behavioural outcomes by paternal METH exposure, which indicate that sex differences should be considered in the treatment of offspring paternally exposed drugs.


Asunto(s)
Metanfetamina , Animales , Encéfalo , Femenino , Hipocampo , Masculino , Metanfetamina/farmacología , Ratones , Núcleo Accumbens , Corteza Prefrontal
13.
Addict Biol ; 27(1): e13068, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34128302

RESUMEN

Methamphetamine (METH) elicits endogenous glutamate (Glu) in the brain, which could partially explain METH-induced memory deficits. Here, we investigated the therapeutic effects of electroacupuncture (EA) on spatial memory deficits in METH withdrawal mice and its potential synaptic mechanisms. We found that EA at acupoints 'Baihui' and 'Yintang' ameliorated the impaired spatial memory in METH withdrawal mice. In parallel, EA attenuated the Glu levels in vivo and suppressed the neuronal activities within dCA1 of METH withdrawal mice, as indicated by the decreasing c-Fos levels and the amplitude of mEPSP. In the dCA1, EA decreased A1-like astrocytes but increased astrocytic glutamatergic transporting molecules including glutamate transporter 1 and glutamine synthase. However, EA seemed to have no effects on presynaptic Glu transmission from the dCA3, as evidenced by the similiar levels of c-Fos in the dCA3 neurons, synaptic vesicular markers of dCA3 neural terminals and values of paired-pulse ratio in the dCA1 neurons between EA-treated and sham EA-treated METH withdrawal mice. These findings suggest that EA might normalize the dCA1 Glu levels at least in part through enhancing astrocyte-mediated Glu clearance. Taken together, astrocytes might be a novel target for developing therapeutic interventions against the impaired memory behaviours in METH users, and EA represents a promising non-invasive therapeutic strategy for the management of drug-caused memory deficits.


Asunto(s)
Trastornos Relacionados con Anfetaminas/fisiopatología , Astrocitos/efectos de los fármacos , Electroacupuntura/métodos , Ácido Glutámico/efectos de los fármacos , Trastornos de la Memoria/terapia , Memoria Espacial/efectos de los fármacos , Animales , Masculino , Metanfetamina/farmacología , Ratones , Neuronas/efectos de los fármacos
14.
Glia ; 69(10): 2404-2418, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34110044

RESUMEN

Methamphetamine (METH) is a common abused drug. METH-triggered glutamate (Glu) levels in dorsal CA1 (dCA1) could partially explain the etiology of METH-caused abnormal memory, but the synaptic mechanism remains unclear. Here, we found that METH withdrawal disrupted spatial memory in mice, accompanied by the increases in Glu levels and postsynaptic neuronal activities at dCA1 synapses. METH withdrawal weakened the capacity of Glu clearance in astrocytes, as indicated by increasing the A1-like astrocytes and phosphorylated signal transducer and activator of transcription 3 (p-STAT3), decreasing the Glu transporter 1(GLT-1, also known as EAAT2 or SLC1A2), Glu-aspartate-transporter (GLAST also known as EAAT1 or SLC1A3) and astrocytic glutamine synthase (GS), but failed to affect the presynaptic Glu release from dCA3 within dCA1. Moreover, we identified that in vitro A1-like astrocytes exhibited an increased STAT3 activation and the impaired capacity of Glu clearance. Most importantly, selective knockdown of astrocytic STAT3 in vivo in dCA1 restored the astrocytic capacity of Glu clearance, normalized Glu levels at dCA1 synapses, and finally rescued METH withdrawal-disrupted spatial memory in mice. Thus, astrocytic Glu clearance system, especially STAT3, serves as a novel target for future therapies against METH neurotoxicity.


Asunto(s)
Astrocitos , Metanfetamina , Animales , Astrocitos/fisiología , Transportador 2 de Aminoácidos Excitadores/genética , Ácido Glutámico , Metanfetamina/toxicidad , Ratones , Factor de Transcripción STAT3/genética , Memoria Espacial
15.
J Clin Microbiol ; 59(2)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33177126

RESUMEN

In February and December of 2019, two large-scale outbreaks of diarrhea were observed in the same swine farm with 3,000 sows in Shanghai, China. We successfully isolated two porcine epidemic diarrhea virus (PEDV) isolates (strains shxx1902 and shxx1912 in February and December, respectively) from clinical samples in this farm using suspension Vero cells. A third PEDV strain (SH1302) tested positive in another farm of Shanghai, China, in 2013 and was also isolated using suspension Vero cells. The three isolates were better adapted to growth in adherent Vero cells through serial passages in the suspension Vero cells. The three isolated strains were detected positive by an immunofluorescence assay (IFA) and observed through electron microscopy. Phylogenetic analysis of the complete genomic sequence demonstrated that shxx1902 (the 5th passage) and shxx1912 (the 5th passage) clustered with a new GII subgroup (GII-c), which consisted of SINDEL strains from America (e.g., OH851), and their S gene belonged to GII-a. Both strains(the 35th passage) have incurred dramatic changes in their genomes compared with the 5th passage. The 5th and 35th passages of SH1302 belonged to the GI-b genotype. The anti-N protein antibody titer of the strain shxx1902 was elevated to the same level as the vaccine strain (CV777) in mice. The use of the suspension Vero cells to isolate and propagate PEDV provides an effective approach for studies of the epidemiological characteristics and vaccine development of this virus.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , China/epidemiología , Chlorocebus aethiops , Femenino , Ratones , Filogenia , Virus de la Diarrea Epidémica Porcina/genética , Porcinos , Células Vero
16.
J Med Virol ; 93(6): 3496-3507, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33386745

RESUMEN

H3N2 feline influenza virus (FIV) and canine influenza virus (CIV) are very common in cats and dogs. Due to the ability of the influenza virus to spread across hosts and frequent contact between pets and people, there exist huge public health problems. In this study, we collected H3N2 CIV and FIV genomes from 2006 to 2019 from NCBI and analyzed the evolutionary dynamics and molecular variation using a series of phylogenetic analysis methods. Results indicated that H3N2 FIVs were closely related to CIVs with high posterior probability and CIVs and FIVs have certain regional characteristics. However, compared with previous studies, the significance of geographical structure correlation decreased. Furthermore, we also found that the intrasubtypic reassortment between FIVs and CIVs were common during epidemics. The integrated analysis was also performed for different selection pressure acting on HA (566 codons), NA (469 codons), M1 (252 codons), and M2 (97 codons) proteins. One HA, two NA, three M1, and two M2 sites were found under positive selection. We subsequently performed the evolutionary dynamics of H3N2 CIV. The results indicated that the time of the most recent common ancestor of CIV H3N2 may have occurred earlier than indicated in a previous study. The Bayesian skyline plot analysis in this study showed the period of divergence of major H3N2 CIVs segments occurred between 2008 and 2010. Notably, according to our research, the PB1 has experienced two divergence periods (2006-2008 and 2009-2011).


Asunto(s)
Evolución Molecular , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Filogenia , Animales , Teorema de Bayes , Enfermedades de los Gatos/virología , Gatos , Enfermedades de los Perros/virología , Perros , Genoma Viral , Selección Genética
17.
FASEB J ; 34(9): 11913-11924, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32683743

RESUMEN

We recently found that adolescent cocaine exposure (ACE) resulted in an enhancement of the γ-aminobutyric acid (GABA) neurotransmitter system in the prelimbic cortex (PrL) of adult mice. Here, we aim to further investigate the role of GABAergic transmission, especially parvalbumin (PV) interneurons within PrL in the development of ACE-induced anxiety-like behavior, and to assess whether and how electro-acupuncture (EA) therapeutically manage the ACE-induced abnormal behaviors in adulthood. ACE mice exhibited the enhanced anxiety-like behaviors in their adulthood, accompanied by increased GABAergic transmission and PV interneurons in PrL. Chemogenetic blocking PV interneurons in PrL alleviated ACE-enhanced anxiety-like behaviors in mice. Importantly, 37-day EA treatments (mixture of 2 Hz/100 Hz, 1 mA, 30 minutes once a day) at the acupoints of Yintang (GV29) and Baihui (GV20) also alleviated ACE-induced anxiety-like behaviors, and rescued ACE-impaired GABAergic neurotransmitter system and PV interneurons in PrL. In parallel, EA treatments further suppressed the activities of pyramidal neurons in PrL, suggesting that EA treatments seem to perform it beneficial effects on the ACE-induced abnormal emotional behaviors by "calming down" the whole PrL. Collectively, these findings revealed that hyper-function of GABAergic transmission, especially mediating by PV interneurons in PrL may be key etiology underlying ACE-induced anxiety-like behaviors. At least by normalizing the function of GABAergic and PV interneurons, EA may represent a promising therapeutic strategy for managing adolescent substance use-related emotional disorders.


Asunto(s)
Ansiedad , Conducta Animal , Trastornos Relacionados con Cocaína , Electroacupuntura , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Ansiedad/terapia , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/fisiopatología , Trastornos Relacionados con Cocaína/terapia , Sistema Límbico/metabolismo , Sistema Límbico/fisiopatología , Masculino , Ratones , Ratones Transgénicos
18.
Nano Lett ; 20(11): 8267-8272, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33135901

RESUMEN

We report a new method to determine the orientation of individual nitrogen-vacancy (NV) centers in a bulk diamond and use them to realize a calibration-free vector magnetometer with nanoscale resolution. Optical vortex beam is used for optical excitation and scanning the NV center in a [111]-oriented diamond. The scanning fluorescence patterns of NV center with different orientations are completely different. Thus, the orientation information on each NV center in the lattice can be known directly without any calibration process. Further, we use three differently oriented NV centers to form a magnetometer and reconstruct the complete vector information on the magnetic field based on the optically detected magnetic resonance(ODMR) technique. Compared with previous schemes to realize vector magnetometry using an NV center, our method is much more efficient and is easily applied in other NV-based quantum sensing applications.

19.
FASEB J ; 33(7): 8614-8622, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31034782

RESUMEN

We have recently shown in rats that adolescent cocaine exposure induces prolonged modifications on synapses in medial prefrontal cortex (mPFC), which might contribute to long-term behavioral outcomes in adulthood. In this study, we further investigated the molecular mechanisms underlying adolescent cocaine exposure-related psychiatric problems in adulthood, especially focusing on the alterations of GABAergic transmission in prelimbic cortex (PrL), 1 subregion of mPFC. Consistent with a previous study, adolescent cocaine-exposed mice exhibited enhanced anxiety-like behaviors in their adulthood. In the same mice models, depression-like behaviors increased as well, but the conditioned place preference formed normally. In parallel, activities of pyramidal neurons at layer V of PrL were reduced after adolescent cocaine exposure, accompanied by an increase in the percentage of symmetric synapses in PrL of adult mice. Additionally, miniature inhibitory postsynaptic currents rather than miniature excitatory postsynaptic currents were increased on these pyramidal neurons, and increased levels of GABA were found in adult PrL. The molecules in the GABAergic system in adult PrL were also changed by adolescent cocaine use, as indicated by increased glutamate decarboxylase 67 kDa, GABAA-α1, and decreased GABA transporter 1. In the same mice, some regulators to GABAergic transmission such as neuregulin 1/ErbB4 signals were heightened as well. Collectively, these findings revealed that adolescent cocaine exposure results in permanent enhancement of GABAergic transmission on pyramidal neurons in PrL, which subsequently attenuate the activities of these neurons and ultimately contributes to the development of psychiatric disorders in later life.-Shi, P., Nie, J., Liu, H., Li, Y., Lu, X., Shen, X., Ge, F., Yuan, T.-F., Guan, X. Adolescent cocaine exposure enhances the GABAergic transmission in the prelimbic cortex of adult mice.


Asunto(s)
Cocaína/efectos adversos , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Receptores de GABA-A/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Sinapsis/metabolismo
20.
Virus Genes ; 56(3): 329-338, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32107672

RESUMEN

An avian-origin canine influenza virus (CIV) has recently emerged in dogs and is spreading in China. Given that humans have frequent contact with dogs, this has prompted an increased emphasis on biosafety. In this study, we collected 693 nasal swab samples and 800 blood samples from stray dogs in animal shelters to survey canine influenza epidemiology and characterize the evolution of CIV H3N2 in Shanghai. We tested samples for canine influenza antibodies and canine influenza RNA in January-May, 2019, and the results showed that the positive rate was 17.62% by ELISA, 15.75% by microneutralization (MN) assay, and 18.51% by real time RT-PCR, respectively. We also performed phylogenetic and genomic analysis on six H3N2 CIV isolates. The H3N2 viruses which prevailed in Shanghai originated from Beijing and Jiangsu isolates. Phylogenetic analysis showed that the sequences of CIV isolates have multiple amino acid antigenic drifts, deletions, and substitutions. The time of the most recent common ancestor (TMRCA) of HA and NA was 2004 and 2005, respectively. Notably, the substitution, 146S, in hemagglutinin and the deletion in the neuraminidase (NA) stalk region we found in this study warrant attention because they have frequently been identified in human influenza viruses. The potential adaptation of this CIV H3N2 clade to mammals and its public health threat should be further evaluated.


Asunto(s)
Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/virología , Evolución Molecular , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Animales , China/epidemiología , Perros , Genes Virales , Subtipo H3N2 del Virus de la Influenza A/clasificación , Filogenia , Vigilancia en Salud Pública , ARN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA