Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Xray Sci Technol ; 32(1): 69-85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38189729

RESUMEN

BACKGROUND: Slow kVp switching technique is an important approach to realize dual-energy CT (DECT) imaging, but its performance has not been thoroughly investigated yet. OBJECTIVE: This study aims at comparing and evaluating the DECT imaging performance of different slow kVp switching protocols, and thus helps determining the optimal system settings. METHODS: To investigate the impact of energy separation, two different beam filtration schemes are compared: the stationary beam filtration and dynamic beam filtration. Moreover, uniform tube voltage modulation and weighted tube voltage modulation are compared along with various modulation frequencies. A model-based direct decomposition algorithm is employed to generate the water and iodine material bases. Both numerical and physical experiments are conducted to verify the slow kVp switching DECT imaging performance. RESULTS: Numerical and experimental results demonstrate that the material decomposition is less sensitive to beam filtration, voltage modulation type and modulation frequency. As a result, robust material-specific quantitative decomposition can be achieved in slow kVp switching DECT imaging. CONCLUSIONS: Quantitative DECT imaging can be implemented with slow kVp switching under a variety of system settings.


Asunto(s)
Yodo , Tomografía Computarizada por Rayos X , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Algoritmos
2.
Opt Express ; 31(26): 44273-44282, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178502

RESUMEN

X-ray dark-filed imaging is a powerful approach to quantify the dimension of micro-structures of the object. Often, a series of dark-filed signals have to be measured under various correlation lengths. For instance, this is often achieved by adjusting the sample positions by multiple times in Talbot-Lau interferometer. Moreover, such multiple measurements can also be collected via adjustments of the inter-space between the phase gratings in dual phase grating interferometer. In this study, the energy resolving capability of the dual phase grating interferometer is explored with the aim to accelerate the data acquisition speed of dark-filed imaging. To do so, both theoretical analyses and numerical simulations are investigated. Specifically, the responses of the dual phase grating interferometer at varied X-ray beam energies are studied. Compared with the mechanical position translation approach, the combination of such energy resolving capability helps to greatly shorten the total dark-field imaging time in dual phase grating interferometer.

3.
J Neuroradiol ; 50(6): 556-561, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36773846

RESUMEN

BACKGROUND AND PURPOSE: Current clinical computed tomography venographic (cCTV) images present limited cerebral venous profiles. Therefore, this study aimed to develop an automatic cerebral CTV imaging technique using computed tomographic perfusion (CTP) images in a cohort of patients with stroke. MATERIALS AND METHODS: We retrospectively evaluated 10 (intracerebral hemorrhage) and 2 (acute ischemic stroke) patients who underwent institutional CTP imaging. CTV images were processed with the proposed CTV (pCTV) technique, and pCTV and cCTV images were then independently evaluated by two experienced neuroradiologists blinded to all clinical information using a novel scoring method that considered overall image quality, venous visibility, and arterial mis-segmentation. Venous visibility was separately evaluated for the dural sinus, superficial vein, and deep vein. Then, statistical analysis was performed to determine whether the pCTV technique was superior to the cCTV technique. RESULTS: In total, 14 sets of pCTV images were generated and compared with cCTV images. The overall image quality and venous visibility scores of pCTV images were significantly higher than those of cCTV images (all values of p<0.05), especially for the dural sinus (median [25th, 75th percentiles], 14.00 [13.63, 15.50] vs. 7.50 [7.00, 10.88]), and superficial vein (9.00 [8.88, 10.00] vs. 3.25 [1.63, 8.25]), while the difference in arterial mis-segmentation was not statistically significant (p= 0.164). CONCLUSIONS: This study proposed an automatic cerebral CTV imaging technique to eliminate residual bone and soft tissues, minimize the impact of the cerebral arterial system, and present a relatively comprehensive cerebral venous system, which would help physicians assess cerebral venous outflow profiles after stroke and seek imaging markers associated with clinical outcomes.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Circulación Cerebrovascular
4.
Opt Lett ; 46(11): 2791-2794, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061115

RESUMEN

In this work, a novel, to the best of our knowledge, approach based on an x-ray thin lens imaging theory is proposed to predict the angular sensitivity responses of dual-phase-grating differential phase contrast (DPC) interferometers. Experimental validations have been performed to demonstrate the high accuracy of theoretical predictions using two different setups: one with real source images and the other with virtual source images. This new sensitivity calculation method is helpful to optimize the DPC imaging performance of a dual-phase-grating system.

5.
Opt Express ; 28(7): 9786-9801, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32225579

RESUMEN

In this work, we developed a new theoretical framework using wave optics to explain the working mechanism of the grating based X-ray differential phase contrast imaging (XPCI) interferometer systems consist of more than one phase grating. Under the optical reversibility principle, the wave optics interpretation was simplified into the geometrical optics interpretation, in which the phase grating was treated as a thin lens. Moreover, it was derived that the period of an arrayed source, e.g., the period of a source grating, is always equal to the period of the diffraction fringe formed on the source plane. When a source grating is utilized, the theory indicated that it is better to keep the periods of the two phase gratings different to generate large period diffraction fringes. Experiments were performed to validate these theoretical findings.

6.
Opt Lett ; 45(22): 6314-6317, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33186978

RESUMEN

The single-shot x-ray Talbot-Lau interferometer-based differential phase contrast (DPC) imaging is able to accelerate time-consuming data acquisition; however, the extracted phase image suffers from severe image artifacts. Here, we propose to estimate the DPC image via a deep convolutional neural network (CNN) incorporated with the physical imaging model. Instead of training the CNN with thousands of labeled data beforehand, both phantom and biological specimen validation experiments show that high-quality DPC images can be automatically generated from only one single-shot projection image with a certain periodic moiré pattern. This work provides a new, to the best of our knowledge, paradigm for single-shot x-ray DPC imaging.

7.
J Xray Sci Technol ; 28(6): 1157-1169, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32925159

RESUMEN

Breast cancer is the most frequently diagnosed cancer in women worldwide. Digital breast tomosynthesis (DBT), which is based on limited-angle tomography, was developed to solve tissue overlapping problems associated with traditional breast mammography. However, due to the problems associated with tube movement during the process of data acquisition, stationary DBT (s-DBT) was developed to allow the X-ray source array to stay stationary during the DBT scanning process. In this work, we evaluate four widely used and investigated DBT image reconstruction algorithms, including the commercial Feldkamp-Davis-Kress algorithm (FBP), the simultaneous iterative reconstruction technique (SIRT), the simultaneous algebraic reconstruction technique (SART) and the total variation regularized SART (SART-TV) for an s-DBT imaging system that we set up in our own laboratory for studies using a semi-elliptical digital phantom and a rubber breast phantom to determine the most superior algorithm for s-DBT image reconstruction among the four algorithms. Several quantitative indexes for image quality assessment, including the peak signal-noise ratio (PSNR), the root mean square error (RMSE) and the structural similarity (SSIM), are used to determine the best algorithm for the imaging system that we set up. Image resolutions are measured via the calculation of the contrast-to-noise ratio (CNR) and artefact spread function (ASF). The experimental results show that the SART-TV algorithm gives reconstructed images with the highest PSNR and SSIM values and the lowest RMSE values in terms of image accuracy and similarity, along with the highest CNR values calculated for the selected features and the best ASF curves in terms of image resolution in the horizontal and vertical directions. Thus, the SART-TV algorithm is proven to be the best algorithm for use in s-DBT image reconstruction for the specific imaging task in our study.


Asunto(s)
Mama/diagnóstico por imagen , Mamografía , Nanotubos de Carbono/química , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X , Algoritmos , Femenino , Humanos , Mamografía/instrumentación , Mamografía/métodos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos
8.
Sensors (Basel) ; 19(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626109

RESUMEN

Aiming at reducing computed tomography (CT) scan radiation while ensuring CT image quality, a new low-dose CT super-resolution reconstruction method based on combining a random forest with coupled dictionary learning is proposed. The random forest classifier finds the optimal solution of the mapping relationship between low-dose CT (LDCT) images and high-dose CT (HDCT) images and then completes CT image reconstruction by coupled dictionary learning. An iterative method is developed to improve robustness, the important coefficients for the tree structure are discussed and the optimal solutions are reported. The proposed method is further compared with a traditional interpolation method. The results show that the proposed algorithm can obtain a higher peak signal-to-noise ratio (PSNR) and structural similarity index measurement (SSIM) and has better ability to reduce noise and artifacts. This method can be applied to many different medical imaging fields in the future and the addition of computer multithreaded computing can reduce time consumption.

9.
J Xray Sci Technol ; 27(3): 573-590, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31177258

RESUMEN

Recently, low-dose computed tomography (CT) has become highly desirable due to the increasing attention paid to the potential risks of excessive radiation of the regular dose CT. However, ensuring image quality while reducing the radiation dose in the low-dose CT imaging is a major challenge. Compared to classical filtered back-projection (FBP) algorithms, statistical iterative reconstruction (SIR) methods for modeling measurement statistics and imaging geometry can significantly reduce the radiation dose, while maintaining the image quality in a variety of CT applications. To facilitate low-dose CT imaging, we in this study proposed an improved statistical iterative reconstruction scheme based on the penalized weighted least squares (PWLS) standard combined with total variation (TV) minimization and sparse dictionary learning (DL), which is named as a method of PWLS-TV-DL. To evaluate this PWLS-TV-DL method, we performed experiments on digital phantoms and physical phantoms, and analyzed the results in terms of image quality and calculation. The results show that the proposed method is better than the comparison methods, which indicates the potential of applying this PWLS-TV-DL method to reconstruct low-dose CT images.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Análisis de los Mínimos Cuadrados , Fantasmas de Imagen , Dosis de Radiación
10.
J Xray Sci Technol ; 27(4): 739-753, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31227684

RESUMEN

X-ray radiation is harmful to human health. Thus, obtaining a better reconstructed image with few projection view constraints is a major challenge in the computed tomography (CT) field to reduce radiation dose. In this study, we proposed and tested a new algorithm that combines penalized weighted least-squares using total generalized variation (PWLS-TGV) and dictionary learning (DL), named PWLS-TGV-DL to address this challenge. We first presented and tested this new algorithm and evaluated it through both data simulation and physical experiments. We then analyzed experimental data in terms of image qualitative and quantitative measures, such as the structural similarity index (SSIM) and the root mean square error (RMSE). The experiments and data analysis indicated that applying the new algorithm to CT data recovered images more efficiently and yielded better results than the traditional CT image reconstruction approaches.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Cabeza/diagnóstico por imagen , Humanos , Análisis de los Mínimos Cuadrados , Fantasmas de Imagen , Aprendizaje Automático Supervisado
11.
Opt Express ; 24(12): 12955-68, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27410315

RESUMEN

In this paper, a novel method was developed to improve the radiation dose efficiency, viz., contrast to noise ratio normalized by dose (CNRD), of the grating-based X-ray differential phase contrast (DPC) imaging system that is integrated with an energy-resolving photon counting detector. The method exploits the low-dimensionality of the spatial-spectral DPC image matrix acquired from different energy windows. A low rank approximation of the spatial-spectral image matrix was developed to reduce image noise while retaining the DPC signal accuracy for every energy window. Numerical simulations and experimental phantom studies have been performed to validate the proposed method by showing noise reduction and CNRD improvement for each energy window.

12.
Opt Express ; 22(12): 14246-52, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24977522

RESUMEN

Grating-based x-ray differential phase contrast imaging (DPCI) often uses a phase stepping procedure to acquire data that enables the extraction of phase information. This method prolongs the time needed for data acquisition by several times compared with conventional x-ray absorption image acquisitions. A novel analyzer grating design was developed in this work to eliminate the additional data acquisition time needed to perform phase stepping in DPCI. The new analyzer grating was fabricated such that the linear grating structures are shifted from one detector row to the next; the amount of the lateral shift was equal to a fraction of the x-ray diffraction fringe pattern. The x-ray data from several neighboring detector rows were then combined to extract differential phase information. Initial experimental results have demonstrated that the new analyzer grating enables accurate DPCI signal acquisition from a single x-ray exposure like conventional x-ray absorption imaging.

13.
Bioengineering (Basel) ; 11(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39061728

RESUMEN

X-ray computed tomography (CT) imaging technology has become an indispensable diagnostic tool in clinical examination. However, it poses a risk of ionizing radiation, making the reduction of radiation dose one of the current research hotspots in CT imaging. Sparse-view imaging, as one of the main methods for reducing radiation dose, has made significant progress in recent years. In particular, sparse-view reconstruction methods based on deep learning have shown promising results. Nevertheless, efficiently recovering image details under ultra-sparse conditions remains a challenge. To address this challenge, this paper proposes a high-frequency enhanced and attention-guided learning Network (HEAL). HEAL includes three optimization strategies to achieve detail enhancement: Firstly, we introduce a dual-domain progressive enhancement module, which leverages fidelity constraints within each domain and consistency constraints across domains to effectively narrow the solution space. Secondly, we incorporate both channel and spatial attention mechanisms to improve the network's feature-scaling process. Finally, we propose a high-frequency component enhancement regularization term that integrates residual learning with direction-weighted total variation, utilizing directional cues to effectively distinguish between noise and textures. The HEAL network is trained, validated and tested under different ultra-sparse configurations of 60 views and 30 views, demonstrating its advantages in reconstruction accuracy and detail enhancement.

14.
Phys Med Biol ; 69(16)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047782

RESUMEN

Objective.This study aims at developing a simple and rapid Compton scatter correction approach for cone-beam CT (CBCT) imaging.Approach.In this work, a new Compton scatter estimation model is established based on two distinct CBCT scans: one measures the full primary and scatter signals without anti-scatter grid (ASG), and the other measures a portion of primary and scatter signals with ASG. To accelerate the entire data acquisition speed, a half anti-scatter grid (h-ASG) that covers half of the full detector surface is proposed. As a result, the distribution of scattered x-ray photons could be estimated from a single CBCT scan. Physical phantom experiments are conducted to validate the performance of the newly proposed scatter correction approach.Main results.Results demonstrate that the proposed half grid approach can quickly and precisely estimate the distribution of scattered x-ray photons from only one single CBCT scan, resulting in a significant reduction of shading artifacts. In addition, it is found that the h-ASG approach is less sensitive to the grid transmission fractions, grid ratio and object size, indicating a robust performance of the new method.Significance.In the future, the Compton scatter artifacts can be quickly corrected using a half grid in CBCT imaging.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Dispersión de Radiación , Tomografía Computarizada de Haz Cónico/métodos , Tomografía Computarizada de Haz Cónico/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Humanos
15.
IEEE Trans Med Imaging ; 43(2): 734-744, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37756176

RESUMEN

In flat-panel detector (FPD) based cone-beam computed tomography (CBCT) imaging, the native receptor array is usually binned into a smaller matrix size. By doing so, the signal readout speed could be increased by 4-9 times at the expense of a spatial resolution loss of 50%-67%. Clearly, such manipulation poses a key bottleneck in generating high spatial and high temporal resolution CBCT images at the same time. In addition, the conventional FPD is also difficult in generating dual-energy CBCT images. In this paper, we propose an innovative super resolution dual-energy CBCT imaging method, named as suRi, based on dual-layer FPD (DL-FPD) to overcome these aforementioned difficulties at once. With suRi, specifically, a 1D or 2D sub-pixel (half pixel in this study) shifted binning is applied instead of the conventionally aligned binning to double the spatial sampling rate during the dual-energy data acquisition. As a result, the suRi approach provides a new strategy to enable high spatial resolution CBCT imaging while at high readout speed. Moreover, a penalized likelihood material decomposition algorithm is developed to directly reconstruct the high resolution bases from these dual-energy CBCT projections containing sub-pixel shifts. Numerical and physical experiments are performed to validate this newly developed suRi method with phantoms and biological specimen. Results demonstrate that suRi can significantly improve the spatial resolution of the CBCT image. We believe this developed suRi method would greatly enhance the imaging performance of the DL-FPD based dual-energy CBCT systems in future.


Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico , Tomografía Computarizada de Haz Cónico/métodos , Fantasmas de Imagen , Probabilidad
16.
Quant Imaging Med Surg ; 14(1): 640-652, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223035

RESUMEN

Background: Recently, deep learning techniques have been widely used in low-dose computed tomography (LDCT) imaging applications for quickly generating high quality computed tomography (CT) images at lower radiation dose levels. The purpose of this study is to validate the reproducibility of the denoising performance of a given network that has been trained in advance across varied LDCT image datasets that are acquired from different imaging systems with different spatial resolutions. Methods: Specifically, LDCT images with comparable noise levels but having different spatial resolutions were prepared to train the U-Net. The number of CT images used for the network training, validation and test was 2,400, 300 and 300, respectively. Afterwards, self- and cross-validations among six selected spatial resolutions (62.5, 125, 250, 375, 500, 625 µm) were studied and compared side by side. The residual variance, peak signal to noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity (SSIM) were measured and compared. In addition, network retraining on a small number of image set was performed to fine tune the performance of transfer learning among LDCT tasks with varied spatial resolutions. Results: Results demonstrated that the U-Net trained upon LDCT images having a certain spatial resolution can effectively reduce the noise of the other LDCT images having different spatial resolutions. Regardless, results showed that image artifacts would be generated during the above cross validations. For instance, noticeable residual artifacts were presented at the margin and central areas of the object as the resolution inconsistency increased. The retraining results showed that the artifacts caused by the resolution mismatch can be greatly reduced by utilizing about only 20% of the original training data size. This quantitative improvement led to a reduction in the NRMSE from 0.1898 to 0.1263 and an increase in the SSIM from 0.7558 to 0.8036. Conclusions: In conclusion, artifacts would be generated when transferring the U-Net to a LDCT denoising task with different spatial resolution. To maintain the denoising performance, it is recommended to retrain the U-Net with a small amount of datasets having the same target spatial resolution.

17.
Nat Commun ; 15(1): 1588, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383659

RESUMEN

High performance X-ray detector with ultra-high spatial and temporal resolution are crucial for biomedical imaging. This study reports a dynamic direct-conversion CMOS X-ray detector assembled with screen-printed CsPbBr3, whose mobility-lifetime product is 5.2 × 10-4 cm2 V-1 and X-ray sensitivity is 1.6 × 104 µC Gyair-1 cm-2. Samples larger than 5 cm[Formula: see text]10 cm can be rapidly imaged by scanning this detector at a speed of 300 frames per second along the vertical and horizontal directions. In comparison to traditional indirect-conversion CMOS X-ray detector, this perovskite CMOS detector offers high spatial resolution (5.0 lp mm-1) X-ray radiographic imaging capability at low radiation dose (260 nGy). Moreover, 3D tomographic images of a biological specimen are also successfully reconstructed. These results highlight the perovskite CMOS detector's potential in high-resolution, large-area, low-dose dynamic biomedical X-ray and CT imaging, as well as in non-destructive X-ray testing and security scanning.

18.
Quant Imaging Med Surg ; 13(3): 1360-1374, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36915341

RESUMEN

Background: The widespread application of X-ray computed tomography (CT) imaging in medical screening makes radiation safety a major concern for public health. Sparse-view CT is a promising solution to reduce the radiation dose. However, the reconstructed CT images obtained using sparse-view CT may suffer severe streaking artifacts and structural information loss. Methods: In this study, a novel attention-based dual-branch network (ADB-Net) is proposed to solve the ill-posed problem of sparse-view CT image reconstruction. In this network, downsampled sinogram input is processed through 2 parallel branches (CT branch and signogram branch) of the ADB-Net to independently extract the distinct, high-level feature maps. These feature maps are fused in a specified attention module from 3 perspectives (channel, plane, and spatial) to allow complementary optimizations that can mitigate the streaking artifacts and the structure loss in sparse-view CT imaging. Results: Numerical simulations, an anthropomorphic thorax phantom, and in vivo preclinical experiments were conducted to verify the sparse-view CT imaging performance of the ADB-Net. The proposed network achieved a root-mean-square error (RMSE) of 20.6160, a structural similarity (SSIM) of 0.9257, and a peak signal-to-noise ratio (PSNR) of 38.8246 on numerical data. The visualization results demonstrate that this newly developed network can consistently remove the streaking artifacts while maintaining the fine structures. Conclusions: The proposed attention-based dual-branch deep network, ADB-Net, provides a promising alternative to reconstruct high-quality sparse-view CT images for low-dose CT imaging.

19.
Phys Med Biol ; 69(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38048627

RESUMEN

Objective.This study aims at investigating a novel super resolution CBCT imaging approach with a dual-layer flat panel detector (DL-FPD).Approach.With DL-FPD, the low-energy and high-energy projections acquired from the top and bottom detector layers contain over-sampled spatial information, from which super-resolution CT images can be reconstructed. A simple mathematical model is proposed to explain the signal formation procedure in DL-FPD, and a dedicated recurrent neural network, named suRi-Net, is developed based upon the above imaging model to nonlinearly retrieve the high-resolution dual-energy information. Physical benchtop experiments are conducted to validate the performance of this newly developed super-resolution CBCT imaging method.Main Results.The results demonstrate that the proposed suRi-Net can accurately retrieve high spatial resolution information from the low-energy and high-energy projections of low spatial resolution. Quantitatively, the spatial resolution of the reconstructed CBCT images from the top and bottom detector layers is increased by about 45% and 54%, respectively.Significance.In the future, suRi-Net will provide a new approach to perform high spatial resolution dual-energy imaging in DL-FPD-based CBCT systems.


Asunto(s)
Aprendizaje Profundo , Tomografía Computarizada de Haz Cónico Espiral , Tomografía Computarizada de Haz Cónico/métodos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X
20.
Nano Res ; : 1-7, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37359075

RESUMEN

Inorganic perovskite wafers with good stability and adjustable sizes are promising in X-ray detection but the high synthetic temperature is a hindrance. Herein, dimethyl sulfoxide (DMSO) is used to prepare the CsPbBr3 micro-bricks powder at room temperature. The CsPbBr3 powder has a cubic shape with few crystal defects, small charge trap density, and high crystallinity. A trace amount of DMSO attaches to the surface of the CsPbBr3 micro-bricks via Pb-O bonding, forming the CsPbBr3-DMSO adduct. During hot isostatic processing, the released DMSO vapor merges the CsPbBr3 micro-bricks, producing a compact and dense CsPbBr3 wafer with minimized grain boundaries and excellent charge transport properties. The CsPbBr3 wafer shows a large mobility-lifetime (µτ) product of 5.16 × 10-4 cm2·V-1, high sensitivity of 14,430 µC·Gyair-1·cm-2, low detection limit of 564 nGyair·s-1, as well as robust stability in X-ray detection. The results reveal a novel strategy with immense practical potential pertaining to high-contrast X-ray detection. Electronic Supplementary Material: Supplementary material (further details of the characterization, SEM images, AFM images, KPFM images, schematic illustration, XRD patterns, XPS spectra, FTIR spectra, UPS spectra, and stability tests) is available in the online version of this article at 10.1007/s12274-023-5487-3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA