Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
2.
medRxiv ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38370823

RESUMEN

Background: Bloom Syndrome (BSyn) is an autosomal recessive disorder caused by biallelic germline variants in BLM, which functions to maintain genomic stability. BSyn patients have poor growth, immune defects, insulin resistance, and a significantly increased risk of malignancies, most commonly hematologic. The malignancy risk in carriers of pathogenic variants in BLM (BLM variant carriers) remains understudied. Clonal hematopoiesis of indeterminate potential (CHIP) is defined by presence of somatic mutations in leukemia-related genes in blood of individuals without leukemia and is associated with increased risk of leukemia. We hypothesize that somatic mutations driving clonal expansion may be an underlying mechanism leading to increased cancer risk in BSyn patients and BLM variant carriers. Methods: To determine whether de novo or somatic variation is increased in BSyn patients or carriers, we performed and analyzed exome sequencing on BSyn and control trios. Results: We discovered that both BSyn patients and carriers had increased numbers of low-frequency, putative somatic variants in CHIP genes compared to controls. Furthermore, BLM variant carriers had increased numbers of somatic variants in DNA methylation genes compared to controls. There was no statistical difference in the numbers of de novo variants in BSyn probands compared to control probands. Conclusion: Our findings of increased CHIP in BSyn probands and carriers suggest that one or two germline pathogenic variants in BLM could be sufficient to increase the risk of clonal hematopoiesis. These findings warrant further studies in larger cohorts to determine the significance of CHIP as a potential biomarker of aging, cancer, cardiovascular disease, morbidity and mortality.

3.
Nat Commun ; 12(1): 6893, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824250

RESUMEN

Replicative immortality is a hallmark of cancer, and can be achieved through telomere lengthening and maintenance. Although the role of telomere length in cancer has been well studied, its association to genomic features is less well known. Here, we report the telomere lengths of 392 localized prostate cancer tumours and characterize their relationship to genomic, transcriptomic and proteomic features. Shorter tumour telomere lengths are associated with elevated genomic instability, including single-nucleotide variants, indels and structural variants. Genes involved in cell proliferation and signaling are correlated with tumour telomere length at all levels of the central dogma. Telomere length is also associated with multiple clinical features of a tumour. Longer telomere lengths in non-tumour samples are associated with a lower rate of biochemical relapse. In summary, we describe the multi-level integration of telomere length, genomics, transcriptomics and proteomics in localized prostate cancer.


Asunto(s)
Neoplasias de la Próstata/genética , Telómero/genética , Variaciones en el Número de Copia de ADN , Epigenoma , Fusión Génica , Genómica , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteoma , Telomerasa/genética , Telomerasa/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA