Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 18(6): e1010232, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35666708

RESUMEN

[This corrects the article DOI: 10.1371/journal.pcbi.1007360.].

2.
PLoS Biol ; 5(3): e65, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17341132

RESUMEN

Retinal ganglion cells are commonly classified as On-center or Off-center depending on whether they are excited predominantly by brightening or dimming within the receptive field. Here we report that many ganglion cells in the salamander retina can switch from one response type to the other, depending on stimulus events far from the receptive field. Specifically, a shift of the peripheral image--as produced by a rapid eye movement--causes a brief transition in visual sensitivity from Off-type to On-type for approximately 100 ms. We show that these ganglion cells receive inputs from both On and Off bipolar cells, and the Off inputs are normally dominant. The peripheral shift strongly modulates the strength of these two inputs in opposite directions, facilitating the On pathway and suppressing the Off pathway. Furthermore, we identify certain wide-field amacrine cells that contribute to this modulation. Depolarizing such an amacrine cell affects nearby ganglion cells in the same way as the peripheral image shift, facilitating the On inputs and suppressing the Off inputs. This study illustrates how inhibitory interneurons can rapidly gate the flow of information within a circuit, dramatically altering the behavior of the principal neurons in the course of a computation.


Asunto(s)
Polaridad Celular , Células Ganglionares de la Retina/química , Animales , Movimientos Oculares , Estimulación Luminosa , Células Ganglionares de la Retina/fisiología , Urodelos
3.
Curr Opin Neurobiol ; 46: 200-207, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28938181

RESUMEN

Inhibitory and excitatory neurons form intricate interconnected circuits in the mammalian sensory cortex. Whereas the function of excitatory neurons is largely to integrate and transmit information within and between brain areas, inhibitory neurons are thought to shape the way excitatory neurons integrate information, and they exhibit context-specific and behavior-specific responses. Over the last few years, work across sensory modalities has begun unraveling the function of distinct types of cortical inhibitory neurons in sensory processing, identifying their contribution to controlling stimulus selectivity of excitatory neurons and modulating information processing based on the behavioral state of the subject. Here, we review results from recent studies and discuss the implications for the contribution of inhibition to cortical circuit activity and information processing.


Asunto(s)
Interneuronas/fisiología , Inhibición Neural/fisiología , Vías Nerviosas/fisiología , Sensación/fisiología , Corteza Sensoriomotora/fisiología , Animales , Humanos
4.
Elife ; 42015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26460542

RESUMEN

Reliably detecting unexpected sounds is important for environmental awareness and survival. By selectively reducing responses to frequently, but not rarely, occurring sounds, auditory cortical neurons are thought to enhance the brain's ability to detect unexpected events through stimulus-specific adaptation (SSA). The majority of neurons in the primary auditory cortex exhibit SSA, yet little is known about the underlying cortical circuits. We found that two types of cortical interneurons differentially amplify SSA in putative excitatory neurons. Parvalbumin-positive interneurons (PVs) amplify SSA by providing non-specific inhibition: optogenetic suppression of PVs led to an equal increase in responses to frequent and rare tones. In contrast, somatostatin-positive interneurons (SOMs) selectively reduce excitatory responses to frequent tones: suppression of SOMs led to an increase in responses to frequent, but not to rare tones. A mutually coupled excitatory-inhibitory network model accounts for distinct mechanisms by which cortical inhibitory neurons enhance the brain's sensitivity to unexpected sounds.


Asunto(s)
Adaptación Fisiológica , Corteza Auditiva/fisiología , Interneuronas/fisiología , Sonido , Estimulación Acústica
5.
Nat Neurosci ; 16(8): 994-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23817548

RESUMEN

Although emotional learning affects sensory acuity, little is known about how these changes are facilitated in the brain. We found that auditory fear conditioning in mice elicited either an increase or a decrease in frequency discrimination acuity depending on how specific the learned response was to the conditioned tone. Using reversible pharmacological inactivation, we found that the auditory cortex mediated learning-evoked changes in acuity in both directions.


Asunto(s)
Corteza Auditiva/fisiología , Reacción de Prevención/fisiología , Miedo/fisiología , Estimulación Acústica , Amígdala del Cerebelo/fisiología , Animales , Umbral Auditivo/fisiología , Condicionamiento Clásico/fisiología , Señales (Psicología) , Umbral Diferencial/fisiología , Difusión , Discriminación en Psicología/fisiología , Electrochoque , Colorantes Fluorescentes/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Muscimol/farmacocinética , Muscimol/farmacología , Plasticidad Neuronal , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA