Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 31(24): 4029-31, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26315906

RESUMEN

UNLABELLED: High-throughput sequencing technologies survey genetic variation at genome scale and are increasingly used to study the contribution of rare and low-frequency genetic variants to human traits. As part of the Cohorts arm of the UK10K project, genetic variants called from low-read depth (average 7×) whole genome sequencing of 3621 cohort individuals were analysed for statistical associations with 64 different phenotypic traits of biomedical importance. Here, we describe a novel genome browser based on the Biodalliance platform developed to provide interactive access to the association results of the project. AVAILABILITY AND IMPLEMENTATION: The browser is available at http://www.uk10k.org/dalliance.html. Source code for the Biodalliance platform is available under a BSD license from http://github.com/dasmoth/dalliance, and for the LD-display plugin and backend from http://github.com/dasmoth/ldserv.


Asunto(s)
Estudios de Asociación Genética , Variación Genética , Genoma Humano , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Desequilibrio de Ligamiento
2.
Nat Genet ; 51(2): 343-353, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30692680

RESUMEN

Loci discovered by genome-wide association studies predominantly map outside protein-coding genes. The interpretation of the functional consequences of non-coding variants can be greatly enhanced by catalogs of regulatory genomic regions in cell lines and primary tissues. However, robust and readily applicable methods are still lacking by which to systematically evaluate the contribution of these regions to genetic variation implicated in diseases or quantitative traits. Here we propose a novel approach that leverages genome-wide association studies' findings with regulatory or functional annotations to classify features relevant to a phenotype of interest. Within our framework, we account for major sources of confounding not offered by current methods. We further assess enrichment of genome-wide association studies for 19 traits within Encyclopedia of DNA Elements- and Roadmap-derived regulatory regions. We characterize unique enrichment patterns for traits and annotations driving novel biological insights. The method is implemented in standalone software and an R package, to facilitate its application by the research community.


Asunto(s)
Enfermedad/genética , Genoma/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Anotación de Secuencia Molecular/métodos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Programas Informáticos
3.
PLoS One ; 12(9): e0182438, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28926565

RESUMEN

In the current precision medicine era, more and more samples get genotyped and sequenced. Both researchers and commercial companies expend significant time and resources to reduce the error rate. However, it has been reported that there is a sample mix-up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the down-stream genetic reporting processes. Even on the low end of this estimate, this translates to a significant number of mislabeled samples, especially over the projected one billion people that will be sequenced within the next decade. Here, we first describe a method to identify a small set of Single nucleotide polymorphisms (SNPs) that can uniquely identify a personal genome, which utilizes allele frequencies of five major continental populations reported in the 1000 genomes project and the ExAC Consortium. To make this panel more informative, we added four SNPs that are commonly used to predict ABO blood type, and another two SNPs that are capable of predicting sex. We then implement a web interface (http://qrcme.tech), nicknamed QRC (for QR code based Concordance check), which is capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a quick response (QR) code, and comparing QR codes to report the concordance of underlying genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease in complexity and the number of markers used for genetic data labelling and tracking. Our method and web tool is easily accessible to both researchers and the general public who consider the accuracy of complex genetic data as a prerequisite towards precision medicine.


Asunto(s)
Polimorfismo de Nucleótido Simple , Interfaz Usuario-Computador , Frecuencia de los Genes , Genoma Humano , Genotipo , Humanos , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA