Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytopathology ; 112(6): 1284-1298, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34989594

RESUMEN

Recent studies on multiple continents indicate members of the Fusarium tricinctum species complex (FTSC) are emerging as prevalent pathogens of small-grain cereals, pulses, and other economically important crops. These understudied fusaria produce structurally diverse mycotoxins, among which enniatins (ENNs) and moniliformin (MON) are the most frequent and of greatest concern to food and feed safety. Herein a large survey of fusaria in the Fusarium Research Center and Agricultural Research Service culture collections was undertaken to assess species diversity and mycotoxin potential within the FTSC. A 151-strain collection originating from diverse hosts and substrates from different agroclimatic regions throughout the world was selected from 460 FTSC strains to represent the breadth of FTSC phylogenetic diversity. Evolutionary relationships inferred from a five-locus dataset, using maximum likelihood and parsimony, resolved the 151 strains as 24 phylogenetically distinct species, including nine that are new to science. Of the five genes analyzed, nearly full-length phosphate permease sequences contained the most phylogenetically informative characters, establishing its suitability for species-level phylogenetics within the FTSC. Fifteen of the species produced ENNs, MON, the sphingosine analog 2-amino-14,16-dimethyloctadecan-3-ol (AOD), and the toxic pigment aurofusarin (AUR) on a cracked corn kernel substrate. Interestingly, the five earliest diverging species in the FTSC phylogeny (i.e., F. iranicum, F. flocciferum, F. torulosum, and Fusarium spp. FTSC 8 and 24) failed to produce AOD and MON, but synthesized ENNs and/or AUR. Moreover, our reassessment of nine published phylogenetic studies on the FTSC identified 11 additional novel taxa, suggesting this complex comprises at least 36 species.


Asunto(s)
Fusarium , Micotoxinas , Grano Comestible , Fusarium/genética , Micotoxinas/genética , Filogenia , Enfermedades de las Plantas
2.
Plant Dis ; 106(6): 1597-1609, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34907805

RESUMEN

Accurate species-level identification of an etiological agent is crucial for disease diagnosis and management because knowing the agent's identity connects it with what is known about its host range, geographic distribution, and toxin production potential. This is particularly true in publishing peer-reviewed disease reports, where imprecise and/or incorrect identifications weaken the public knowledge base. This can be a daunting task for phytopathologists and other applied biologists that need to identify Fusarium in particular, because published and ongoing multilocus molecular systematic studies have highlighted several confounding issues. Paramount among these are: (i) this agriculturally and clinically important genus is currently estimated to comprise more than 400 phylogenetically distinct species (i.e., phylospecies), with more than 80% of these discovered within the past 25 years; (ii) approximately one-third of the phylospecies have not been formally described; (iii) morphology alone is inadequate to distinguish most of these species from one another; and (iv) the current rapid discovery of novel fusaria from pathogen surveys and accompanying impact on the taxonomic landscape is expected to continue well into the foreseeable future. To address the critical need for accurate pathogen identification, our research groups are focused on populating two web-accessible databases (FUSARIUM-ID v.3.0 and the nonredundant National Center for Biotechnology Information nucleotide collection that includes GenBank) with portions of three phylogenetically informative genes (i.e., TEF1, RPB1, and RPB2) that resolve at or near the species level in every Fusarium species. The objectives of this Special Report, and its companion in this issue (Torres-Cruz et al. 2022), are to provide a progress report on our efforts to populate these databases and to outline a set of best practices for DNA sequence-based identification of fusaria.


Asunto(s)
Fusarium , Secuencia de Bases , Fusarium/genética , Filogenia
3.
Plant Dis ; 106(6): 1610-1616, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34879732

RESUMEN

Species within Fusarium are of global agricultural, medical, and food/feed safety concern and have been extensively characterized. However, accurate identification of species is challenging and usually requires DNA sequence data. FUSARIUM-ID (http://isolate.fusariumdb.org/blast.php) is a publicly available database designed to support the identification of Fusarium species using sequences of multiple phylogenetically informative loci, especially the highly informative ∼680-bp 5' portion of the translation elongation factor 1-alpha (TEF1) gene that has been adopted as the primary barcoding locus in the genus. However, FUSARIUM-ID v.1.0 and 2.0 had several limitations, including inconsistent metadata annotation for the archived sequences and poor representation of some species complexes and marker loci. Here, we present FUSARIUM-ID v.3.0, which provides the following improvements: (i) additional and updated annotation of metadata for isolates associated with each sequence, (ii) expanded taxon representation in the TEF1 sequence database, (iii) availability of the sequence database as a downloadable file to enable local BLAST queries, and (iv) a tutorial file for users to perform local BLAST searches using either freely available software, such as SequenceServer, BLAST+ executable in the command line, and Galaxy, or the proprietary Geneious software. FUSARIUM-ID will be updated on a regular basis by archiving sequences of TEF1 and other loci from newly identified species and greater in-depth sampling of currently recognized species.


Asunto(s)
Fusarium , ADN de Hongos/genética , Fusarium/genética , Filogenia
4.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33200960

RESUMEN

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Asunto(s)
Fusarium , Fusarium/genética , Filogenia , Enfermedades de las Plantas , Plantas
5.
Annu Rev Microbiol ; 67: 399-416, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24024636

RESUMEN

Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed that the Fusarium genome is compartmentalized into regions responsible for primary metabolism and reproduction (core genome), and pathogen virulence, host specialization, and possibly other functions (adaptive genome). Genes involved in virulence and host specialization are located on pathogenicity chromosomes within strains pathogenic to tomato (Fusarium oxysporum f. sp. lycopersici) and pea (Fusarium 'solani' f. sp. pisi). The experimental transfer of pathogenicity chromosomes from F. oxysporum f. sp. lycopersici into a nonpathogen transformed the latter into a tomato pathogen. Thus, horizontal transfer may explain the polyphyletic origins of host specificity within the genus. Additional genome-scale comparative and functional studies are needed to elucidate the evolution and diversity of pathogenicity mechanisms, which may help inform novel disease management strategies against fusarial pathogens.


Asunto(s)
Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidad , Genoma Fúngico , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fusarium/clasificación , Fusarium/metabolismo , Filogenia , Virulencia
6.
Fungal Genet Biol ; 103: 34-41, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28392426

RESUMEN

Surveys for crown rot (FCR) and head blight (FHB) of Algerian wheat conducted during 2014 and 2015 revealed that Fusarium culmorum strains producing 3-acetyl-deoxynivalenol (3ADON) or nivalenol (NIV) were the causal agents of these important diseases. Morphological identification of the isolates (n FCR=110, n FHB=30) was confirmed by sequencing a portion of TEF1. To assess mating type idiomorph, trichothecene chemotype potential and global population structure, the Algerian strains were compared with preliminary sample of F. culmorum from Italy (n=27), Australia (n=30) and the United States (n=28). A PCR assay for MAT idiomorph revealed that MAT1-1 and MAT1-2 strains were segregating in nearly equal proportions, except within Algeria where two-thirds of the strains were MAT1-2. An allele-specific PCR assay indicated that the 3ADON trichothecene genotype was predominant globally (83.8% 3ADON) and in each of the four countries sampled. In vitro toxin analyses confirmed trichothecene genotype PCR data and demonstrated that most of the strains tested (77%) produced culmorin. Global population genetic structure of 191 strains was assessed using nine microsatellite markers (SSRs). AMOVA of the clone corrected data indicated that 89% of the variation was within populations. Bayesian analysis of the SSR data identified two globally distributed, sympatric populations within which both trichothecene chemotypes and mating types were represented.


Asunto(s)
Fusarium/genética , Genética de Población , Micotoxinas/genética , Argelia , Fusarium/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/microbiología
7.
J Clin Microbiol ; 54(11): 2813-2819, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27605713

RESUMEN

Multilocus DNA sequence data were used to assess the genetic diversity and evolutionary relationships of 67 Fusarium strains from veterinary sources, most of which were from the United States. Molecular phylogenetic analyses revealed that the strains comprised 23 phylogenetically distinct species, all but two of which were previously known to infect humans, distributed among eight species complexes. The majority of the veterinary isolates (47/67 = 70.1%) were nested within the Fusarium solani species complex (FSSC), and these included 8 phylospecies and 33 unique 3-locus sequence types (STs). Three of the FSSC species (Fusarium falciforme, Fusarium keratoplasticum, and Fusarium sp. FSSC 12) accounted for four-fifths of the veterinary strains (38/47) and STs (27/33) within this clade. Most of the F. falciforme strains (12/15) were recovered from equine keratitis infections; however, strains of F. keratoplasticum and Fusarium sp. FSSC 12 were mostly (25/27) isolated from marine vertebrates and invertebrates. Our sampling suggests that the Fusarium incarnatum-equiseti species complex (FIESC), with eight mycoses-associated species, may represent the second most important clade of veterinary relevance within Fusarium Six of the multilocus STs within the FSSC (3+4-eee, 1-b, 12-a, 12-b, 12-f, and 12-h) and one each within the FIESC (1-a) and the Fusarium oxysporum species complex (ST-33) were widespread geographically, including three STs with transoceanic disjunctions. In conclusion, fusaria associated with veterinary mycoses are phylogenetically diverse and typically can only be identified to the species level using DNA sequence data from portions of one or more informative genes.


Asunto(s)
Fusariosis/veterinaria , Fusarium/aislamiento & purificación , Animales , Análisis por Conglomerados , Fusariosis/epidemiología , Fusariosis/microbiología , Fusarium/clasificación , Fusarium/genética , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Filogenia , Homología de Secuencia , Estados Unidos
9.
Mycologia ; 108(4): 806-19, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27055573

RESUMEN

Fusisporium solani was described as the causal agent of a dry rot of potato in Germany in the mid 19th century. As Fusarium solani, the species became known as a plurivorous plant pathogen, endophyte, decomposer, and opportunistic pathogen of humans and nutritional symbiont of insects. In parallel, it became evident that the morphologically defined species F. solani represents a phylogenetically and biologically complex group of often morphologically cryptic species that has come to be known in part as the F. solani species complex (FSSC), accommodating several formae speciales and mating populations/biological species. The FSSC currently includes more than 60 phylogenetic species. Several of these have been named, but the majority remains unnamed and the identity of F. solani sensu stricto is unclear. To promote further taxonomic developments in the FSSC, lectoand epitypification is proposed for Fusisporium solani Although no type material for F. solani is known to exist, the species was abundantly illustrated in the protologue. Thus, a relevant illustration provided by von Martius is selected as the lectotype. The epitype selected here originates from a rotting potato collected in a field in Slovenia. This strain causes a dry rot of artificially inoculated potatoes. It groups in the heretofore unnamed phylogenetic species 5, which is nested within clade 3 of the FSSC (FSSC 5). Members of this phylogenetic species have a wide geographic distribution and include soil saprotrophs and plant and opportunistic human pathogens. This typification is consistent with the original description of Fusisporium solani and the concept of F. solani as a widely distributed soil inhabitant and pathogen.


Asunto(s)
Fusarium/clasificación , Filogenia , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Fusarium/citología , Fusarium/genética , Microscopía , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/genética , Enfermedades de las Plantas/microbiología , ARN Polimerasa II/genética , ARN Ribosómico 28S/genética , ARN Ribosómico 5.8S/genética , Análisis de Secuencia de ADN , Eslovenia , Solanum tuberosum/microbiología
10.
Mycologia ; 108(6): 1049-1068, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27760854

RESUMEN

Fungal taxonomy and ecology have been revolutionized by the application of molecular methods and both have increasing connections to genomics and functional biology. However, data streams from traditional specimen- and culture-based systematics are not yet fully integrated with those from metagenomic and metatranscriptomic studies, which limits understanding of the taxonomic diversity and metabolic properties of fungal communities. This article reviews current resources, needs, and opportunities for sequence-based classification and identification (SBCI) in fungi as well as related efforts in prokaryotes. To realize the full potential of fungal SBCI it will be necessary to make advances in multiple areas. Improvements in sequencing methods, including long-read and single-cell technologies, will empower fungal molecular ecologists to look beyond ITS and current shotgun metagenomics approaches. Data quality and accessibility will be enhanced by attention to data and metadata standards and rigorous enforcement of policies for deposition of data and workflows. Taxonomic communities will need to develop best practices for molecular characterization in their focal clades, while also contributing to globally useful datasets including ITS. Changes to nomenclatural rules are needed to enable validPUBLICation of sequence-based taxon descriptions. Finally, cultural shifts are necessary to promote adoption of SBCI and to accord professional credit to individuals who contribute to community resources.


Asunto(s)
Hongos/clasificación , Hongos/genética , Metagenómica/métodos , Filogenia , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética
11.
Fungal Genet Biol ; 82: 277-90, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25445310

RESUMEN

The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symbionts in paired mandibular mycangia from their natal gallery to woody hosts where they are cultivated in galleries as a source of food. Native to Asia, several exotic Euwallacea species were introduced into the United States and Israel within the past two decades and they now threaten urban landscapes, forests and avocado production. To assess species limits and to date the evolutionary diversification of the mutualists, we reconstructed the evolutionary histories of key representatives of the Fusarium and Euwallacea clades using maximum parsimony and maximum likelihood methods. Twelve species-level lineages, termed AF 1-12, were identified within the monophyletic AFC and seven among the Fusarium-farming Euwallacea. Bayesian diversification-time estimates placed the origin of the Euwallacea-Fusarium mutualism near the Oligocene-Miocene boundary ∼19-24 Mya. Most Euwallacea spp. appear to be associated with one species of Fusarium, but two species farmed two closely related fusaria. Euwallacea sp. #2 in Miami-Dade County, Florida cultivated Fusarium spp. AF-6 and AF-8 on avocado, and Euwallacea sp. #4 farmed Fusarium ambrosium AF-1 and Fusarium sp. AF-11 on Chinese tea in Sri Lanka. Cophylogenetic analyses indicated that the Euwallacea and Fusarium phylogenies were largely incongruent, apparently due to the beetles switching fusarial symbionts (i.e., host shifts) at least five times during the evolution of this mutualism. Three cospeciation events between Euwallacea and their AFC symbionts were detected, but randomization tests failed to reject the null hypothesis that the putative parallel cladogenesis is a stochastic pattern. Lastly, two collections of Euwallacea sp. #2 from Miami-Dade County, Florida shared an identical cytochrome oxidase subunit 1 (CO1) allele with Euwallacea validus, suggesting introgressive hybridization between these species and/or pseudogenous nature of this marker. Results of the present study highlight the importance of understanding the potential for and frequency of host-switching between Euwallacea and members of the AFC, and that these shifts may bring together more aggressive and virulent combinations of these invasive mutualists.


Asunto(s)
Escarabajos/genética , Escarabajos/microbiología , Fusarium/clasificación , Fusarium/genética , Filogenia , Simbiosis , Animales , Escarabajos/clasificación , Evolución Molecular , Femenino , Genes Fúngicos , Genes de Insecto , Variación Genética
12.
Mycologia ; 107(2): 409-18, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25550300

RESUMEN

The B trichothecene toxin-producing clade (B clade) of Fusarium includes the etiological agents of Fusarium head blight, crown rot of wheat and barley and stem and ear rot of maize. B clade isolates also have been recovered from several wild and cultivated grasses, including Dactylis glomerata (orchard grass or cock's foot), one of the world's most important forage grasses. Two isolates from the latter host are formally described here as F. dactylidis. Phenotypically F. dactylidis most closely resembles F. ussurianum from the Russian Far East. Both species produce symmetrical sporodochial conidia that are similar in size and curved toward both ends. However, conidia of F. ussurianum typically end in a narrow apical beak while the apical cell of F. dactylidis is acute. Fusarium dactylidis produced nivalenol mycotoxin in planta as well as low but detectable amounts of the estrogenic mycotoxin zearalenone in vitro. Results of a pathogenicity test revealed that F. dactylidis induced mild head blight on wheat.


Asunto(s)
Dactylis/microbiología , Fusarium/aislamiento & purificación , Micotoxinas/biosíntesis , Tricotecenos/biosíntesis , Fusarium/clasificación , Fusarium/genética , Fusarium/metabolismo , Datos de Secuencia Molecular , Nueva Zelanda , Oregon , Filogenia , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/clasificación , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/aislamiento & purificación , Triticum/microbiología , Zea mays/microbiología
13.
BMC Evol Biol ; 14: 91, 2014 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-24766947

RESUMEN

BACKGROUND: Recent work has shown that Fusarium species and genotypes most commonly associated with human infections, particularly of the cornea (mycotic keratitis), are the same as those most commonly isolated from plumbing systems. The species most dominant in plumbing biofilms is Fusarium keratoplasticum, a cosmopolitan fungus known almost exclusively from animal infections and biofilms. To better understand its diversity and population dynamics, we developed and utilized a nine-locus sequence-based typing system to make inferences about clonality, recombination, population structure, species boundaries and hybridization. RESULTS: High levels of genetic diversity and evidence for recombination and clonality were detected among 75 clinical and 156 environmental isolates of Fusarium keratoplasticum. The multilocus sequence typing system (MLST) resolved 111 unique nine-locus sequence types (STs). The single locus bifactorial determinants of mating compatibility (mating types MAT1-1 and MAT1-2), were found in a ratio of 70:30. All but one of the 49 isolates of the most common ST (FSSC 2d-2) came from human infections, mostly of the cornea, and from biofilms associated with contact lenses and plumbing surfaces. Significant levels of phylogenetic incongruence were found among loci. Putative clonal relationships among genotypes were estimated, showing a mixture of large clonal complexes and unrelated singletons. Discordance between the nuclear ribosomal rRNA and other gene genealogies is consistent with introgression of ribosomal RNA alleles of phylogenetic species FSSC 9 into F. keratoplasticum. No significant population subdivision based on clinical versus non-clinical sources was found. CONCLUSIONS: Incongruent phylogenetic trees and the presence of both mating types within otherwise identical STs were observed, providing evidence for sexuality in F. keratoplasticum. Cryptic speciation suggested in a published three-locus MLST system was not supported with the addition of new loci, but evidence of introgression of ribosomal RNA genes from another strongly supported phylogenetic species (FSSC 9), also known from plumbing systems and human infections, was detected in two isolates. Overall, F. keratoplasticum is a diverse and geographically unstructured species with a mixed clonal and recombinant life history.


Asunto(s)
Fusariosis/microbiología , Fusarium/genética , Fusarium/aislamiento & purificación , Microbiología del Agua , Lentes de Contacto/microbiología , Hongos/genética , Fusarium/clasificación , Genes de ARNr , Variación Genética , Humanos , Hibridación Genética , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Filogenia , Recombinación Genética
14.
Microbiol Spectr ; 12(4): e0398023, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38445873

RESUMEN

Modern taxonomic classification is often based on phylogenetic analyses of a few molecular markers, although single-gene studies are still common. Here, we leverage genome-scale molecular phylogenetics (phylogenomics) of species and populations to reconstruct evolutionary relationships in a dense data set of 710 fungal genomes from the biomedically and technologically important genus Aspergillus. To do so, we generated a novel set of 1,362 high-quality molecular markers specific for Aspergillus and provided profile Hidden Markov Models for each, facilitating their use by others. Examining the resulting phylogeny helped resolve ongoing taxonomic controversies, identified new ones, and revealed extensive strain misidentification (7.59% of strains were previously misidentified), underscoring the importance of population-level sampling in species classification. These findings were corroborated using the current standard, taxonomically informative loci. These findings suggest that phylogenomics of species and populations can facilitate accurate taxonomic classifications and reconstructions of the Tree of Life.IMPORTANCEIdentification of fungal species relies on the use of molecular markers. Advances in genomic technologies have made it possible to sequence the genome of any fungal strain, making it possible to use genomic data for the accurate assignment of strains to fungal species (and for the discovery of new ones). We examined the usefulness and current limitations of genomic data using a large data set of 710 publicly available genomes from multiple strains and species of the biomedically, agriculturally, and industrially important genus Aspergillus. Our evolutionary genomic analyses revealed that nearly 8% of publicly available Aspergillus genomes are misidentified. Our work highlights the usefulness of genomic data for fungal systematic biology and suggests that systematic genome sequencing of multiple strains, including reference strains (e.g., type strains), of fungal species will be required to reduce misidentification errors in public databases.


Asunto(s)
Aspergillus , Hongos , Filogenia , Hongos/genética , Aspergillus/genética , Evolución Biológica , Genómica , Genoma Fúngico
15.
Fungal Genet Biol ; 53: 59-70, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23396261

RESUMEN

Fusarium species are frequently associated with mycotic keratitis and, to a lesser extent, cases of localized and disseminated infections. The Fusarium solani species complex (FSSC) is the most common group of fusaria associated with human infectious diseases. Several studies to date have revealed dozens of strongly supported phylogenetic species within this important evolutionary clade, though little work has been done to improve the taxonomy and understanding of the reproductive mode and phenotypes of the predominant clinically relevant species. Here we described Fusarium keratoplasticum sp. nov., and Fusarium petroliphilum stat. nov., two phylogenetic species that are among the most frequently isolated fusaria in plumbing drain biofilms and outbreaks of contact lens-associated mycotic keratitis. F. keratoplasticum isolates were highly variable and showed a range of morphological characteristics typical for most classical concepts of 'F. solani.' Many isolates failed to produce sporodochia and macroconidia. Although most attempts to sexually cross F. keratoplasticum isolates failed, a heterothallic sexual stage typical for the FSSC was discovered by pairing isolates of opposite mating type on V-8 agar, the ascospores of which showed molecular evidence of recombination. Secondary metabolite profiles of FSSC species defined through molecular data were compared for the first time and revealed the production of bioactive compounds including cyclosporines and several novel compounds of unknown function. We speculate that the inferred phenotypic variability in these species is the result of the almost entirely anthropogenic sources from which they are derived, including biofilms on plumbing systems.


Asunto(s)
Fusarium/clasificación , Fusarium/genética , Filogenia , Fusariosis/microbiología , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Humanos , Metabolómica , Tipificación de Secuencias Multilocus , Esporas Fúngicas
16.
Fungal Genet Biol ; 52: 20-31, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23357352

RESUMEN

Fusarium (Hypocreales, Nectriaceae) is one of the most economically important and systematically challenging groups of mycotoxigenic phytopathogens and emergent human pathogens. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial DNA-directed RNA polymerase II largest (RPB1) and second largest subunit (RPB2) nucleotide sequences of 93 fusaria to infer the first comprehensive and well-supported phylogenetic hypothesis of evolutionary relationships within the genus and 20 of its near relatives. Our analyses revealed that Cylindrocarpon formed a basal monophyletic sister to a 'terminal Fusarium clade' (TFC) comprising 20 strongly supported species complexes and nine monotypic lineages, which we provisionally recognize as Fusarium (hypothesis F1). The basal-most divergences within the TFC were only significantly supported by Bayesian posterior probabilities (B-PP 0.99-1). An internode of the remaining TFC, however, was strongly supported by MP and ML bootstrapping and B-PP (hypothesis F2). Analysis of seven Fusarium genome sequences and Southern analysis of fusaria elucidated the distribution of genes required for synthesis of 26 families of secondary metabolites within the phylogenetic framework. Diversification time estimates date the origin of the TFC to the middle Cretaceous 91.3 million years ago. We also dated the origin of several agriculturally important secondary metabolites as well as the lineage responsible for Fusarium head blight of cereals. Dating of several plant-associated species complexes suggests their evolution may have been driven by angiosperm diversification during the Miocene. Our results support two competing hypotheses for the circumscription of Fusarium and provide a framework for future comparative phylogenetic and genomic analyses of this agronomically and medically important genus.


Asunto(s)
ADN Polimerasa II/genética , ADN Polimerasa I/genética , Fusarium/genética , Filogenia , Secuencia de Bases , ADN Polimerasa Dirigida por ADN , Evolución Molecular , Fusarium/clasificación , Fusarium/patogenicidad , Humanos , Subunidades de Proteína/genética
17.
Fungal Genet Biol ; 56: 147-57, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23608321

RESUMEN

Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naïve natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Clade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene ∼21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization.


Asunto(s)
Fusarium/clasificación , Fusarium/aislamiento & purificación , Variación Genética , Persea/parasitología , Simbiosis , Gorgojos/microbiología , Estructuras Animales/microbiología , Animales , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Fusarium/genética , Fusarium/fisiología , Genes de ARNr , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/genética , Filogenia , ARN Polimerasa II/genética , ARN de Hongos/genética , ARN Ribosómico/genética , Análisis de Secuencia de ADN , Gorgojos/crecimiento & desarrollo
18.
Phytopathology ; 103(12): 1204-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23961810

RESUMEN

The online community resource Phytophthora database (PD) was developed to support accurate and rapid identification of Phytophthora and to help characterize and catalog the diversity and evolutionary relationships within the genus. Since its release in 2008, the sequence database has grown to cover 1 to 12 loci for ≈2,600 isolates (representing 138 described and provisional species). Sequences of multiple mitochondrial loci were added to complement nuclear loci-based phylogenetic analyses and diagnostic tool development. Key characteristics of most newly described and provisional species have been summarized. Other additions to improve the PD functionality include: (i) geographic information system tools that enable users to visualize the geographic origins of chosen isolates on a global-scale map, (ii) a tool for comparing genetic similarity between isolates via microsatellite markers to support population genetic studies, (iii) a comprehensive review of molecular diagnostics tools and relevant references, (iv) sequence alignments used to develop polymerase chain reaction-based diagnostics tools to support their utilization and new diagnostic tool development, and (v) an online community forum for sharing and preserving experience and knowledge accumulated in the global Phytophthora community. Here we present how these improvements can support users and discuss the PD's future direction.


Asunto(s)
Bases de Datos Genéticas , Phytophthora/genética , Biología Computacional , ADN Mitocondrial/genética , Bases de Datos Genéticas/tendencias , Genotipo , Geografía , Internet , Repeticiones de Microsatélite/genética , Filogenia , Phytophthora/clasificación , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
19.
Phytopathology ; 103(5): 400-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23379853

RESUMEN

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.


Asunto(s)
Fusarium/clasificación , Plantas/microbiología , Fusarium/genética , Filogenia , Enfermedades de las Plantas/microbiología
20.
Nucleic Acids Res ; 39(Database issue): D640-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21087991

RESUMEN

The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education.


Asunto(s)
Bases de Datos Genéticas , Fusarium/clasificación , Fusarium/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Genómica , Familia de Multigenes , Filogenia , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA