Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Learn Mem ; 31(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38862170

RESUMEN

Drosophila larvae are an established model system for studying the mechanisms of innate and simple forms of learned behavior. They have about 10 times fewer neurons than adult flies, and it was the low total number of their neurons that allowed for an electron microscopic reconstruction of their brain at synaptic resolution. Regarding the mushroom body, a central brain structure for many forms of associative learning in insects, it turned out that more than half of the classes of synaptic connection had previously escaped attention. Understanding the function of these circuit motifs, subsequently confirmed in adult flies, is an important current research topic. In this context, we test larval Drosophila for their cognitive abilities in three tasks that are characteristically more complex than those previously studied. Our data provide evidence for (i) conditioned inhibition, as has previously been reported for adult flies and honeybees. Unlike what is described for adult flies and honeybees, however, our data do not provide evidence for (ii) sensory preconditioning or (iii) second-order conditioning in Drosophila larvae. We discuss the methodological features of our experiments as well as four specific aspects of the organization of the larval brain that may explain why these two forms of learning are observed in adult flies and honeybees, but not in larval Drosophila.


Asunto(s)
Drosophila , Larva , Animales , Drosophila/fisiología , Cognición/fisiología , Cuerpos Pedunculados/fisiología , Inhibición Psicológica , Condicionamiento Clásico/fisiología , Encéfalo/fisiología , Aprendizaje por Asociación/fisiología , Drosophila melanogaster/fisiología
2.
J Neurosci ; 43(44): 7393-7428, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734947

RESUMEN

Larvae of the fruit fly Drosophila melanogaster are a powerful study case for understanding the neural circuits underlying behavior. Indeed, the numerical simplicity of the larval brain has permitted the reconstruction of its synaptic connectome, and genetic tools for manipulating single, identified neurons allow neural circuit function to be investigated with relative ease and precision. We focus on one of the most complex neurons in the brain of the larva (of either sex), the GABAergic anterior paired lateral neuron (APL). Using behavioral and connectomic analyses, optogenetics, Ca2+ imaging, and pharmacology, we study how APL affects associative olfactory memory. We first provide a detailed account of the structure, regional polarity, connectivity, and metamorphic development of APL, and further confirm that optogenetic activation of APL has an inhibiting effect on its main targets, the mushroom body Kenyon cells. All these findings are consistent with the previously identified function of APL in the sparsening of sensory representations. To our surprise, however, we found that optogenetically activating APL can also have a strong rewarding effect. Specifically, APL activation together with odor presentation establishes an odor-specific, appetitive, associative short-term memory, whereas naive olfactory behavior remains unaffected. An acute, systemic inhibition of dopamine synthesis as well as an ablation of the dopaminergic pPAM neurons impair reward learning through APL activation. Our findings provide a study case of complex circuit function in a numerically simple brain, and suggest a previously unrecognized capacity of central-brain GABAergic neurons to engage in dopaminergic reinforcement.SIGNIFICANCE STATEMENT The single, identified giant anterior paired lateral (APL) neuron is one of the most complex neurons in the insect brain. It is GABAergic and contributes to the sparsening of neuronal activity in the mushroom body, the memory center of insects. We provide the most detailed account yet of the structure of APL in larval Drosophila as a neurogenetically accessible study case. We further reveal that, contrary to expectations, the experimental activation of APL can exert a rewarding effect, likely via dopaminergic reward pathways. The present study both provides an example of unexpected circuit complexity in a numerically simple brain, and reports an unexpected effect of activity in central-brain GABAergic circuits.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila/fisiología , Larva/fisiología , Encéfalo/fisiología , Olfato/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas , Dopamina , Recompensa , Cuerpos Pedunculados/fisiología
3.
Nature ; 548(7666): 175-182, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28796202

RESUMEN

Associating stimuli with positive or negative reinforcement is essential for survival, but a complete wiring diagram of a higher-order circuit supporting associative memory has not been previously available. Here we reconstruct one such circuit at synaptic resolution, the Drosophila larval mushroom body. We find that most Kenyon cells integrate random combinations of inputs but that a subset receives stereotyped inputs from single projection neurons. This organization maximizes performance of a model output neuron on a stimulus discrimination task. We also report a novel canonical circuit in each mushroom body compartment with previously unidentified connections: reciprocal Kenyon cell to modulatory neuron connections, modulatory neuron to output neuron connections, and a surprisingly high number of recurrent connections between Kenyon cells. Stereotyped connections found between output neurons could enhance the selection of learned behaviours. The complete circuit map of the mushroom body should guide future functional studies of this learning and memory centre.


Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Conectoma , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Memoria/fisiología , Animales , Retroalimentación Fisiológica , Femenino , Larva/citología , Larva/fisiología , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/fisiología , Vías Nerviosas , Sinapsis/metabolismo
4.
J Exp Biol ; 225(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36373856

RESUMEN

Memory scores are dynamic across developmental stages. In particular, memory scores typically decrease from late adolescence into old age, reflecting complex changes in mnemonic and sensory-motor faculties, metabolic and motivational changes, and changes in cognitive strategy as well. In Drosophila melanogaster, such age-related decreases in memory scores have been studied intensely for the association of odours with electric shock punishment. We report that odour-sucrose reward memory scores likewise decrease as the flies age. This was observed after one-trial and after two-trial conditioning, and for both immediate testing and recall tests 1 day later. This decrease was particularly pronounced in relatively young animals, in the first 2-3 weeks after adult hatching, and was more pronounced in female than in male flies.


Asunto(s)
Drosophila melanogaster , Memoria , Animales , Femenino , Masculino , Drosophila , Castigo , Odorantes
5.
J Exp Biol ; 225(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35924545

RESUMEN

Animals, including humans, form oppositely valenced memories for stimuli that predict the occurrence versus the termination of a reward: appetitive 'reward' memory for stimuli associated with the occurrence of a reward and aversive 'frustration' memory for stimuli that are associated with its termination. We characterized these memories in larval Drosophila melanogaster using a combination of Pavlovian conditioning, optogenetic activation of the dopaminergic central-brain DAN-i1864 neuron, and high-resolution video-tracking. This reveals their dependency on the number of training trials and the duration of DAN-i1864 activation, their temporal stability, and the parameters of locomotion that are modulated during memory expression. Together with previous results on 'punishment' versus 'relief' learning by DAN-f1 neuron activation, this reveals a 2×2 matrix of timing-dependent memory valence for the occurrence/termination of reward/punishment. These findings should aid the understanding and modelling of how brains decipher the predictive, causal structure of events around a target reinforcing occurrence.


Asunto(s)
Drosophila melanogaster , Cuerpos Pedunculados , Animales , Neuronas Dopaminérgicas/fisiología , Drosophila melanogaster/fisiología , Humanos , Larva/fisiología , Recompensa
6.
J Neurosci ; 40(31): 5990-6006, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32586949

RESUMEN

An adaptive transition from exploring the environment in search of vital resources to exploiting these resources once the search was successful is important to all animals. Here we study the neuronal circuitry that allows larval Drosophila melanogaster of either sex to negotiate this exploration-exploitation transition. We do so by combining Pavlovian conditioning with high-resolution behavioral tracking, optogenetic manipulation of individually identified neurons, and EM data-based analyses of synaptic organization. We find that optogenetic activation of the dopaminergic neuron DAN-i1 can both establish memory during training and acutely terminate learned search behavior in a subsequent recall test. Its activation leaves innate behavior unaffected, however. Specifically, DAN-i1 activation can establish associative memories of opposite valence after paired and unpaired training with odor, and its activation during the recall test can terminate the search behavior resulting from either of these memories. Our results further suggest that in its behavioral significance DAN-i1 activation resembles, but does not equal, sugar reward. Dendrogram analyses of all the synaptic connections between DAN-i1 and its two main targets, the Kenyon cells and the mushroom body output neuron MBON-i1, further suggest that the DAN-i1 signals during training and during the recall test could be delivered to the Kenyon cells and to MBON-i1, respectively, within previously unrecognized, locally confined branching structures. This would provide an elegant circuit motif to terminate search on its successful completion.SIGNIFICANCE STATEMENT In the struggle for survival, animals have to explore their environment in search of food. Once food is found, however, it is adaptive to prioritize exploiting it over continuing a search that would now be as pointless as searching for the glasses you are wearing. This exploration-exploitation trade-off is important for animals and humans, as well as for technical search devices. We investigate which of the only 10,000 neurons of a fruit fly larva can tip the balance in this trade-off, and identify a single dopamine neuron called DAN-i1 that can do so. Given the similarities in dopamine neuron function across the animal kingdom, this may reflect a general principle of how search is terminated once it is successful.


Asunto(s)
Aprendizaje por Asociación/fisiología , Conducta Animal/fisiología , Neuronas Dopaminérgicas/fisiología , Memoria/fisiología , Animales , Condicionamiento Clásico , Drosophila melanogaster , Femenino , Masculino , Recuerdo Mental/fisiología , Cuerpos Pedunculados/fisiología , Optogenética , Desempeño Psicomotor/fisiología , Olfato/fisiología , Sinapsis/fisiología
7.
J Neurogenet ; 35(3): 306-319, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33688796

RESUMEN

Larval Drosophila are used as a genetically accessible study case in many areas of biological research. Here we report a fast, robust and user-friendly procedure for the whole-body multi-fluorescence imaging of Drosophila larvae; the protocol has been optimized specifically for larvae by systematically tackling the pitfalls associated with clearing this small but cuticularized organism. Tests on various fluorescent proteins reveal that the recently introduced monomeric infrared fluorescent protein (mIFP) is particularly suitable for our approach. This approach comprises an effective, low-cost clearing protocol with minimal handling time and reduced toxicity in the reagents employed. It combines a success rate high enough to allow for small-scale screening approaches and a resolution sufficient for cellular-level analyses with light sheet and confocal microscopy. Given that publications and database documentations typically specify expression patterns of transgenic driver lines only within a given organ system of interest, the present procedure should be versatile enough to extend such documentation systematically to the whole body. As examples, the expression patterns of transgenic driver lines covering the majority of neurons, or subsets of chemosensory, central brain or motor neurons, are documented in the context of whole larval body volumes (using nsyb-Gal4, IR76b-Gal4, APL-Gal4 and mushroom body Kenyon cells, or OK371-Gal4, respectively). Notably, the presented protocol allows for triple-color fluorescence imaging with near-infrared, red and yellow fluorescent proteins.


Asunto(s)
Animales Modificados Genéticamente , Imagenología Tridimensional/métodos , Imagen Óptica/métodos , Animales , Drosophila , Proteínas Fluorescentes Verdes , Larva , Microscopía Confocal/métodos , Transgenes
8.
J Neurogenet ; 34(1): 2-4, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32233836

RESUMEN

Troy D. Zars (1967-2018) was an American biologist. He studied the relationships between genes, neuronal circuits and behavior in the fruit fly Drosophila melanogaster. Zars co-pioneered the use of transgene expression to locally restore gene function in memory-defective fly mutants, an approach that provided breakthrough insights into the localization of memory traces in the fly brain. With ensuing refinements of the methods of transgene expression and the broadening in the range of transgenes to be expressed, this shaped the field of modern behavioral neurogenetics.


Asunto(s)
Genética/historia , Neurología/historia , Animales , Conducta/fisiología , Encéfalo/fisiología , Drosophila melanogaster , Historia del Siglo XX , Historia del Siglo XXI , Humanos
9.
J Exp Biol ; 223(Pt 16)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848044

RESUMEN

Preparations of Rhodiola rosea root are widely used in traditional medicine. They can increase life span in worms and flies, and have various effects related to nervous system function in different animal species and humans. However, which of the compounds in R. rosea is mediating any one of these effects has remained unknown in most cases. Here, an analysis of the volatile and non-volatile low-molecular-weight constituents of R. rosea root samples was accompanied by an investigation of their behavioral impact on Drosophila melanogaster larvae. Rhodiola rosea root samples have an attractive smell and taste to the larvae, and exert a rewarding effect. This rewarding effect was also observed for R. rosea root extracts, and did not require activity of dopamine neurons that mediate known rewards such as sugar. Based on the chemical profiles of R. rosea root extracts and resultant fractions, a bioactivity-correlation analysis (AcorA) was performed to identify candidate rewarding compounds. This suggested positive correlations for - among related compounds - ferulic acid eicosyl ester (FAE-20) and ß-sitosterol glucoside. A validation using these as pure compounds confirmed that the correlations were causal. Their rewarding effects can be observed even at low micromolar concentrations and thus at remarkably lower doses than for any known taste reward in the larva. We discuss whether similar rewarding effects, should they be observed in humans, would indicate a habit-forming or addictive potential.


Asunto(s)
Plantas Medicinales , Rhodiola , Animales , Drosophila melanogaster , Extractos Vegetales/farmacología , Recompensa
10.
Learn Mem ; 26(4): 109-120, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30898973

RESUMEN

Animals of many species are capable of "small data" learning, that is, of learning without repetition. Here we introduce larval Drosophila melanogaster as a relatively simple study case for such one-trial learning. Using odor-food associative conditioning, we first show that a sugar that is both sweet and nutritious (fructose) and sugars that are only sweet (arabinose) or only nutritious (sorbitol) all support appetitive one-trial learning. The same is the case for the optogenetic activation of a subset of dopaminergic neurons innervating the mushroom body, the memory center of the insects. In contrast, no one-trial learning is observed for an amino acid reward (aspartic acid). As regards the aversive domain, one-trial learning is demonstrated for high-concentration sodium chloride, but is not observed for a bitter tastant (quinine). Second, we provide follow-up, parametric analyses of odor-fructose learning. Specifically, we ascertain its dependency on the number and duration of training trials, the requirements for the behavioral expression of one-trial odor-fructose memory, its temporal stability, and the feasibility of one-trial differential conditioning. Our results set the stage for a neurogenetic analysis of one-trial learning and define the requirements for modeling mnemonic processes in the larva.


Asunto(s)
Aprendizaje por Asociación/fisiología , Memoria/fisiología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , 1-Octanol/administración & dosificación , Animales , Ácido Aspártico/administración & dosificación , Drosophila melanogaster , Larva , Odorantes , Optogenética , Castigo , Quinina/administración & dosificación , Recompensa , Cloruro de Sodio/administración & dosificación , Azúcares/administración & dosificación
11.
Learn Mem ; 26(11): 424-435, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31615854

RESUMEN

Adjusting behavior to changed environmental contingencies is critical for survival, and reversal learning provides an experimental handle on such cognitive flexibility. Here, we investigate reversal learning in larval Drosophila Using odor-taste associations, we establish olfactory reversal learning in the appetitive and the aversive domain, using either fructose as a reward or high-concentration sodium chloride as a punishment, respectively. Reversal learning is demonstrated both in differential and in absolute conditioning, in either valence domain. In differential conditioning, the animals are first trained such that an odor A is paired, for example, with the reward whereas odor B is not (A+/B); this is followed by a second training phase with reversed contingencies (A/B+). In absolute conditioning, odor B is omitted, such that the animals are first trained with paired presentations of A and reward, followed by unpaired training in the second training phase. Our results reveal "true" reversal learning in that the opposite associative effects of both the first and the second training phase are detectable after reversed-contingency training. In what is a surprisingly quick, one-trial contingency adjustment in the Drosophila larva, the present study establishes a simple and genetically easy accessible study case of cognitive flexibility.


Asunto(s)
Aprendizaje por Asociación/fisiología , Conducta Animal/fisiología , Condicionamiento Psicológico/fisiología , Drosophila/fisiología , Larva/fisiología , Aprendizaje Inverso/fisiología , Animales , Conducta Apetitiva/fisiología , Reacción de Prevención/fisiología , Percepción Olfatoria/fisiología , Recompensa , Percepción del Gusto/fisiología
12.
J Exp Biol ; 222(Pt 23)2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31672727

RESUMEN

Amino acids are important nutrients for animals because they are necessary for protein synthesis in particular during growth, as well as for neurotransmission. However, little is known about how animals use past experience to guide their search for amino-acid-rich food. We reasoned that the larvae of Drosophila melanogaster are suitable for investigating this topic because they are the feeding and growth stages in the life cycle of these holometabolous insects. Specifically, we investigated whether experiencing an odour with a 20 amino-acid mixture as a semi-natural tastant during training establishes odour-tastant associative memories. Across a broad concentration range (0.01-20 mmol l-1), such an amino-acid mixture was found to have a rewarding effect, establishing appetitive memory for the odour. To our surprise, however, manipulation of the test conditions revealed that relatively high concentrations of the amino-acid mixture (3.3 mmol l-1 and higher) in addition establish aversive memory for the odour. We then characterized both of these oppositely valenced memories in terms of their dependency on the number of training trials, their temporal stability, their modulation through starvation and the specific changes in locomotion underlying them. Collectively, and in the light of what is known about the neuronal organization of odour-food memory in larval D. melanogaster, our data suggest that these memories are established in parallel. We discuss the similarity of our results to what has been reported for sodium chloride, and the possible neurogenetic bases for concentration-dependent changes in valence when these tastants are used as reinforcers.


Asunto(s)
Aminoácidos/metabolismo , Drosophila melanogaster/fisiología , Odorantes/análisis , Animales , Aprendizaje por Asociación , Drosophila melanogaster/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Castigo , Recompensa
13.
J Exp Biol ; 222(Pt 19)2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31488622

RESUMEN

The Sap47 gene of Drosophila melanogaster encodes a highly abundant 47 kDa synaptic vesicle-associated protein. Sap47 null mutants show defects in synaptic plasticity and larval olfactory associative learning but the molecular function of Sap47 at the synapse is unknown. We demonstrate that Sap47 modulates the phosphorylation of another highly abundant conserved presynaptic protein, synapsin. Site-specific phosphorylation of Drosophila synapsin has repeatedly been shown to be important for behavioural plasticity but it was not known where these phospho-synapsin isoforms are localized in the brain. Here, we report the distribution of serine-6-phosphorylated synapsin in the adult brain and show that it is highly enriched in rings of synapses in the ellipsoid body and in large synapses near the lateral triangle. The effects of knockout of Sap47 or synapsin on olfactory associative learning/memory support the hypothesis that both proteins operate in the same molecular pathway. We therefore asked if this might also be true for other aspects of their function. We show that knockout of Sap47 but not synapsin reduces lifespan, whereas knockout of Sap47 and synapsin, either individually or together, affects climbing proficiency, as well as plasticity in circadian rhythms and sleep. Furthermore, electrophysiological assessment of synaptic properties at the larval neuromuscular junction (NMJ) reveals increased spontaneous synaptic vesicle fusion and reduced paired pulse facilitation in Sap47 and synapsin single and double mutants. Our results imply that Sap47 and synapsin cooperate non-uniformly in the control of synaptic properties in different behaviourally relevant neuronal networks of the fruitfly.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Locomoción/genética , Longevidad/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Sinapsinas/metabolismo , Animales , Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Drosophila melanogaster/genética , Larva/metabolismo , Unión Neuromuscular/metabolismo , Fosforilación , Fosfoserina/metabolismo , Isoformas de Proteínas/metabolismo , Sinapsinas/genética
14.
Biol Lett ; 15(7): 20190084, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31266421

RESUMEN

In insects, odours are coded by the combinatorial activation of ascending pathways, including their third-order representation in mushroom body Kenyon cells. Kenyon cells also receive intersecting input from ascending and mostly dopaminergic reinforcement pathways. Indeed, in Drosophila, presenting an odour together with activation of the dopaminergic mushroom body input neuron PPL1-01 leads to a weakening of the synapse between Kenyon cells and the approach-promoting mushroom body output neuron MBON-11. As a result of such weakened approach tendencies, flies avoid the shock-predicting odour in a subsequent choice test. Thus, increased activity in PPL1-01 stands for punishment, whereas reduced activity in MBON-11 stands for predicted punishment. Given that punishment-predictors can themselves serve as punishments of second order, we tested whether presenting an odour together with the optogenetic silencing of MBON-11 would lead to learned odour avoidance, and found this to be the case. In turn, the optogenetic activation of MBON-11 together with odour presentation led to learned odour approach. Thus, manipulating activity in MBON-11 can be an analogue of predicted, second-order reinforcement.


Asunto(s)
Drosophila , Optogenética , Animales , Drosophila melanogaster , Aprendizaje , Cuerpos Pedunculados , Odorantes
15.
Learn Mem ; 25(6): 247-257, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29764970

RESUMEN

Painful events establish opponent memories: cues that precede pain are remembered negatively, whereas cues that follow pain, thus coinciding with relief are recalled positively. How do individual reinforcement-signaling neurons contribute to this "timing-dependent valence-reversal?" We addressed this question using an optogenetic approach in the fruit fly. Two types of fly dopaminergic neuron, each comprising just one paired cell, indeed established learned avoidance of odors that preceded their photostimulation during training, and learned approach to odors that followed the photostimulation. This is in striking parallel to punishment versus relief memories reinforced by a real noxious event. For only one of these neuron types, both effects were strong enough for further analyses. Notably, interfering with dopamine biosynthesis in these neurons partially impaired the punishing effect, but not the relieving after-effect of their photostimulation. We discuss how this finding constraints existing computational models of punishment versus relief memories and introduce a new model, which also incorporates findings from mammals. Furthermore, whether using dopaminergic neuron photostimulation or a real noxious event, more prolonged punishment led to stronger relief. This parametric feature of relief may also apply to other animals and may explain particular aspects of related behavioral dysfunction in humans.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Dolor/metabolismo , Castigo , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Dopamina/metabolismo , Drosophila melanogaster , Memoria/fisiología , Optogenética , Dolor/patología , Percepción del Dolor/fisiología
16.
J Exp Biol ; 220(Pt 13): 2452-2475, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28679796

RESUMEN

Mapping brain function to brain structure is a fundamental task for neuroscience. For such an endeavour, the Drosophila larva is simple enough to be tractable, yet complex enough to be interesting. It features about 10,000 neurons and is capable of various taxes, kineses and Pavlovian conditioning. All its neurons are currently being mapped into a light-microscopical atlas, and Gal4 strains are being generated to experimentally access neurons one at a time. In addition, an electron microscopic reconstruction of its nervous system seems within reach. Notably, this electron microscope-based connectome is being drafted for a stage 1 larva - because stage 1 larvae are much smaller than stage 3 larvae. However, most behaviour analyses have been performed for stage 3 larvae because their larger size makes them easier to handle and observe. It is therefore warranted to either redo the electron microscopic reconstruction for a stage 3 larva or to survey the behavioural faculties of stage 1 larvae. We provide the latter. In a community-based approach we called the Ol1mpiad, we probed stage 1 Drosophila larvae for free locomotion, feeding, responsiveness to substrate vibration, gentle and nociceptive touch, burrowing, olfactory preference and thermotaxis, light avoidance, gustatory choice of various tastants plus odour-taste associative learning, as well as light/dark-electric shock associative learning. Quantitatively, stage 1 larvae show lower scores in most tasks, arguably because of their smaller size and lower speed. Qualitatively, however, stage 1 larvae perform strikingly similar to stage 3 larvae in almost all cases. These results bolster confidence in mapping brain structure and behaviour across developmental stages.


Asunto(s)
Conducta Animal , Drosophila melanogaster/fisiología , Animales , Encéfalo/citología , Encéfalo/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología
17.
Learn Mem ; 23(1): 9-20, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26670182

RESUMEN

Synapsin is an evolutionarily conserved presynaptic phosphoprotein. It is encoded by only one gene in the Drosophila genome and is expressed throughout the nervous system. It regulates the balance between reserve and releasable vesicles, is required to maintain transmission upon heavy demand, and is essential for proper memory function at the behavioral level. Task-relevant sensorimotor functions, however, remain intact in the absence of Synapsin. Using an odor-sugar reward associative learning paradigm in larval Drosophila, we show that memory scores in mutants lacking Synapsin (syn(97)) are lower than in wild-type animals only when more salient, higher concentrations of odor or of the sugar reward are used. Furthermore, we show that Synapsin is selectively required for larval short-term memory. Thus, without Synapsin Drosophila larvae can learn and remember, but Synapsin is required to form memories that match in strength to event salience-in particular to a high saliency of odors, of rewards, or the salient recency of an event. We further show that the residual memory scores upon a lack of Synapsin are not further decreased by an additional lack of the Sap47 protein. In combination with mass spectrometry data showing an up-regulated phosphorylation of Synapsin in the larval nervous system upon a lack of Sap47, this is suggestive of a functional interdependence of Synapsin and Sap47.


Asunto(s)
Trastornos de la Memoria/metabolismo , Memoria/fisiología , Mutación/genética , Sinapsinas/metabolismo , Animales , Animales Modificados Genéticamente , Aprendizaje por Asociación , Cromatografía Liquida , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva , Espectrometría de Masas , Trastornos de la Memoria/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Odorantes , Fosforilación/genética , ARN Mensajero/metabolismo , Sinapsinas/genética
18.
J Neurosci ; 35(19): 7487-502, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25972175

RESUMEN

Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: "negative" memories for stimuli preceding them and "positive" memories for stimuli experienced at the moment of "relief." Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training ("forward conditioning" of the odor), whereas after shock-odor training ("backward conditioning" of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences.


Asunto(s)
Aprendizaje por Asociación/fisiología , Reacción de Prevención/fisiología , Encéfalo/metabolismo , Memoria/fisiología , Castigo , Sinapsinas/fisiología , Factores de Edad , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/fisiología , Discriminación en Psicología , Proteínas de Drosophila/genética , Drosophila melanogaster , Electrochoque/efectos adversos , Femenino , Masculino , Mutación/genética , Odorantes , Fosforilación , Interferencia de ARN/fisiología , Sinapsinas/genética
19.
Learn Mem ; 22(5): 267-77, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25887280

RESUMEN

How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the Drosophila larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii) where to direct a turn. We first report how odor-source intensities modulate these decisions to bring about higher levels of chemotactic performance for higher odor-source intensities during innate chemotaxis. We then examine whether the same modulations are responsible for alterations of chemotactic performance by learned odor "valence" (understood throughout as level of attractiveness). We find that run speed (i) is neither modulated by the innate nor by the learned valence of an odor. Turn rate (ii), however, is modulated by both: the higher the innate or learned valence of the odor, the less often larvae turn whenever heading toward the odor source, and the more often they turn when heading away. Likewise, turning direction (iii) is modulated concordantly by innate and learned valence: turning is biased more strongly toward the odor source when either innate or learned valence is high. Using numerical simulations, we show that a modulation of both turn rate and of turning direction is sufficient to account for the empirically found differences in preference scores across experimental conditions. Our results suggest that innate and learned valence organize adaptive olfactory search behavior by their summed effects on turn rate and turning direction, but not on run speed. This work should aid studies into the neural mechanisms by which memory impacts specific aspects of behavior.


Asunto(s)
Quimiotaxis/fisiología , Memoria/fisiología , Odorantes , Recompensa , Olfato/fisiología , Animales , Conducta Animal/fisiología , Drosophila , Larva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA