Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 22(12): 1531-1539, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932334

RESUMEN

Liquid electrolytes in batteries are typically treated as macroscopically homogeneous ionic transport media despite having a complex chemical composition and atomistic solvation structures, leaving a knowledge gap of the microstructural characteristics. Here, we reveal a unique micelle-like structure in a localized high-concentration electrolyte, in which the solvent acts as a surfactant between an insoluble salt in a diluent. The miscibility of the solvent with the diluent and simultaneous solubility of the salt results in a micelle-like structure with a smeared interface and an increased salt concentration at the centre of the salt-solvent clusters that extends the salt solubility. These intermingling miscibility effects have temperature dependencies, wherein a typical localized high-concentration electrolyte peaks in localized cluster salt concentration near room temperature and is used to form a stable solid-electrolyte interphase on a Li metal anode. These findings serve as a guide to predicting a stable ternary phase diagram and connecting the electrolyte microstructure with electrolyte formulation and formation protocols of solid-electrolyte interphases for enhanced battery cyclability.

2.
J Chem Phys ; 152(18): 184301, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32414258

RESUMEN

In the electrode/electrolyte interface of a typical lithium-ion battery, a solid electrolyte interphase layer is formed as a result of electrolyte decomposition during the initial charge/discharge cycles. Electron leakage from the anode to the electrolyte reduces the Li+-ion and makes it more reactive, resulting in decomposition of the organic electrolyte. To study the Li-electrolyte solvation, solvent exchange, and subsequent solvent decomposition reactions at the anode/electrolyte interface, we have extended the existing ReaxFF reactive force field parameter sets to organic electrolyte species, such as ethylene carbonate, ethyl methyl carbonate, vinylene carbonate, and LiPF6 salt. Density Functional Theory (DFT) data describing Li-associated initiation reactions for the organic electrolytes and binding energies of Li-electrolyte solvation structures were generated and added to the existing ReaxFF training data, and subsequently, we trained the ReaxFF parameters with the aim of finding the optimal reproduction of the DFT data. In order to discern the characteristics of the Li neutral and cation, we have introduced a second Li parameter set to describe the Li+-ion. ReaxFF is trained for Li-neutral and Li+-cation to have similar solvation energies, but unlike the neutral Li, Li+ will not induce reactivity in the organic electrolyte. Solvent decomposition reactions are presumed to happen once Li+-ions are reduced to Li-atoms, which can be simulated using a Monte Carlo type atom modification within ReaxFF. This newly developed force field is capable of distinguishing between a Li-atom and a Li+-ion properly. Moreover, it is found that the solvent decomposition reaction barrier is a function of the number of ethylene carbonate molecules solvating the Li-atom.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA