Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 185(25): 4770-4787.e20, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36493755

RESUMEN

The ATP-dependent ring-shaped chaperonin TRiC/CCT is essential for cellular proteostasis. To uncover why some eukaryotic proteins can only fold with TRiC assistance, we reconstituted the folding of ß-tubulin using human prefoldin and TRiC. We find unstructured ß-tubulin is delivered by prefoldin to the open TRiC chamber followed by ATP-dependent chamber closure. Cryo-EM resolves four near-atomic-resolution structures containing progressively folded ß-tubulin intermediates within the closed TRiC chamber, culminating in native tubulin. This substrate folding pathway appears closely guided by site-specific interactions with conserved regions in the TRiC chamber. Initial electrostatic interactions between the TRiC interior wall and both the folded tubulin N domain and its C-terminal E-hook tail establish the native substrate topology, thus enabling C-domain folding. Intrinsically disordered CCT C termini within the chamber promote subsequent folding of tubulin's core and middle domains and GTP-binding. Thus, TRiC's chamber provides chemical and topological directives that shape the folding landscape of its obligate substrates.


Asunto(s)
Chaperonina con TCP-1 , Tubulina (Proteína) , Humanos , Chaperonina con TCP-1/química , Tubulina (Proteína)/metabolismo , Pliegue de Proteína , Proteostasis , Adenosina Trifosfato/metabolismo
2.
Cell ; 177(3): 751-765.e15, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30955883

RESUMEN

Maintaining proteostasis in eukaryotic protein folding involves cooperation of distinct chaperone systems. To understand how the essential ring-shaped chaperonin TRiC/CCT cooperates with the chaperone prefoldin/GIMc (PFD), we integrate cryoelectron microscopy (cryo-EM), crosslinking-mass-spectrometry and biochemical and cellular approaches to elucidate the structural and functional interplay between TRiC/CCT and PFD. We find these hetero-oligomeric chaperones associate in a defined architecture, through a conserved interface of electrostatic contacts that serves as a pivot point for a TRiC-PFD conformational cycle. PFD alternates between an open "latched" conformation and a closed "engaged" conformation that aligns the PFD-TRiC substrate binding chambers. PFD can act after TRiC bound its substrates to enhance the rate and yield of the folding reaction, suppressing non-productive reaction cycles. Disrupting the TRiC-PFD interaction in vivo is strongly deleterious, leading to accumulation of amyloid aggregates. The supra-chaperone assembly formed by PFD and TRiC is essential to prevent toxic conformations and ensure effective cellular proteostasis.


Asunto(s)
Chaperonina con TCP-1/metabolismo , Chaperonas Moleculares/metabolismo , Proteostasis/fisiología , Actinas/química , Actinas/metabolismo , Chaperonina con TCP-1/química , Chaperonina con TCP-1/genética , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Saccharomyces cerevisiae/metabolismo , Electricidad Estática
4.
Mol Cell ; 83(17): 3123-3139.e8, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37625406

RESUMEN

How the essential eukaryotic chaperonin TRiC/CCT assembles from eight distinct subunits into a unique double-ring architecture remains undefined. We show TRiC assembly involves a hierarchical pathway that segregates subunits with distinct functional properties until holocomplex (HC) completion. A stable, likely early intermediate arises from small oligomers containing CCT2, CCT4, CCT5, and CCT7, contiguous subunits that constitute the negatively charged hemisphere of the TRiC chamber, which has weak affinity for unfolded actin. The remaining subunits CCT8, CCT1, CCT3, and CCT6, which comprise the positively charged chamber hemisphere that binds unfolded actin more strongly, join the ring individually. Unincorporated late-assembling subunits are highly labile in cells, which prevents their accumulation and premature substrate binding. Recapitulation of assembly in a recombinant system demonstrates that the subunits in each hemisphere readily form stable, noncanonical TRiC-like HCs with aberrant functional properties. Thus, regulation of TRiC assembly along a biochemical axis disfavors the formation of stable alternative chaperonin complexes.


Asunto(s)
Chaperonina con TCP-1 , Actinas , Chaperonina con TCP-1/química , Chaperonina con TCP-1/metabolismo , Humanos , Animales
5.
Cell ; 136(5): 865-75, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19269365

RESUMEN

Kinetochores couple chromosomes to the assembling and disassembling tips of microtubules, a dynamic behavior that is fundamental to mitosis in all eukaryotes but poorly understood. Genetic, biochemical, and structural studies implicate the Ndc80 complex as a direct point of contact between kinetochores and microtubules, but these approaches provide only a static view. Here, using techniques for manipulating and tracking individual molecules in vitro, we demonstrate that the Ndc80 complex is capable of forming the dynamic, load-bearing attachments to assembling and disassembling tips required for coupling in vivo. We also establish that Ndc80-based coupling likely occurs through a biased diffusion mechanism and that this activity is conserved from yeast to humans. Our findings demonstrate how an ensemble of Ndc80 complexes may provide the combination of plasticity and strength that allows kinetochores to maintain load-bearing tip attachments during both microtubule assembly and disassembly.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología
6.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836586

RESUMEN

Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.


Asunto(s)
Proteínas de la Cápside/metabolismo , Chaperonina con TCP-1/metabolismo , Chaperonas Moleculares/metabolismo , Reoviridae/metabolismo , Proteínas de la Cápside/química , Chaperonina con TCP-1/química , Microscopía por Crioelectrón , Espectrometría de Masas , Chaperonas Moleculares/química , Conformación Proteica , Pliegue de Proteína , Proteostasis
7.
Proc Natl Acad Sci U S A ; 112(41): E5583-9, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26430240

RESUMEN

Multiple protein subcomplexes of the kinetochore cooperate as a cohesive molecular unit that forms load-bearing microtubule attachments that drive mitotic chromosome movements. There is intriguing evidence suggesting that central kinetochore components influence kinetochore-microtubule attachment, but the mechanism remains unclear. Here, we find that the conserved Mis12/MIND (Mtw1, Nsl1, Nnf1, Dsn1) and Ndc80 (Ndc80, Nuf2, Spc24, Spc25) complexes are connected by an extensive network of contacts, each essential for viability in cells, and collectively able to withstand substantial tensile load. Using a single-molecule approach, we demonstrate that an individual MIND complex enhances the microtubule-binding affinity of a single Ndc80 complex by fourfold. MIND itself does not bind microtubules. Instead, MIND binds Ndc80 complex far from the microtubule-binding domain and confers increased microtubule interaction of the complex. In addition, MIND activation is redundant with the effects of a mutation in Ndc80 that might alter its ability to adopt a folded conformation. Together, our results suggest a previously unidentified mechanism for regulating microtubule binding of an outer kinetochore component by a central kinetochore complex.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Complejos Multiproteicos/genética , Mutación , Estructura Terciaria de Proteína
8.
Proc Natl Acad Sci U S A ; 109(40): 16113-8, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22908300

RESUMEN

The conserved Ndc80 complex is an essential microtubule-binding component of the kinetochore. Recent findings suggest that the Ndc80 complex influences microtubule dynamics at kinetochores in vivo. However, it was unclear if the Ndc80 complex mediates these effects directly, or by affecting other factors localized at the kinetochore. Using a reconstituted system in vitro, we show that the human Ndc80 complex directly stabilizes the tips of disassembling microtubules and promotes rescue (the transition from microtubule shortening to growth). In vivo, an N-terminal domain in the Ndc80 complex is phosphorylated by the Aurora B kinase. Mutations that mimic phosphorylation of the Ndc80 complex prevent stable kinetochore-microtubule attachment, and mutations that block phosphorylation damp kinetochore oscillations. We find that the Ndc80 complex with Aurora B phosphomimetic mutations is defective at promoting microtubule rescue, even when robustly coupled to disassembling microtubule tips. This impaired ability to affect dynamics is not simply because of weakened microtubule binding, as an N-terminally truncated complex with similar binding affinity is able to promote rescue. Taken together, these results suggest that in addition to regulating attachment stability, Aurora B controls microtubule dynamics through phosphorylation of the Ndc80 complex.


Asunto(s)
Segregación Cromosómica/fisiología , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Aurora Quinasa B , Aurora Quinasas , Proteínas del Citoesqueleto , Humanos , Técnicas In Vitro , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mutación/genética , Proteínas Nucleares/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
9.
Nat Cell Biol ; 9(7): 832-7, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17572669

RESUMEN

In dividing cells, kinetochores couple chromosomes to the tips of growing and shortening microtubule fibres and tension at the kinetochore-microtubule interface promotes fibre elongation. Tension-dependent microtubule fibre elongation is thought to be essential for coordinating chromosome alignment and separation, but the mechanism underlying this effect is unknown. Using optical tweezers, we applied tension to a model of the kinetochore-microtubule interface composed of the yeast Dam1 complex bound to individual dynamic microtubule tips. Higher tension decreased the likelihood that growing tips would begin to shorten, slowed shortening, and increased the likelihood that shortening tips would resume growth. These effects are similar to the effects of tension on kinetochore-attached microtubule fibres in many cell types, suggesting that we have reconstituted a direct mechanism for microtubule-length control in mitosis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Fúngicas/fisiología , Cinetocoros/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/fisiología , Mitosis/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Fenómenos Biomecánicos , Proteínas de Ciclo Celular/genética , Microesferas , Proteínas Asociadas a Microtúbulos/genética , Pinzas Ópticas , Proteínas de Saccharomyces cerevisiae/genética
10.
Nat Commun ; 15(1): 1007, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307855

RESUMEN

Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. PhLP2A binds to open apo-TRiC through polyvalent domain-specific contacts with its chamber's equatorial and apical regions. PhLP2A N-terminal H3-domain binding to subunits CCT3/4 apical domains displace PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to positively charged inner surface residues from CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.


Asunto(s)
Actinas , Proteínas del Ojo , Reguladores de Proteínas de Unión al GTP , Fosfoproteínas , Pliegue de Proteína , Actinas/metabolismo , Proteínas Portadoras/metabolismo , Chaperoninas/metabolismo , Adenosina Trifosfato/metabolismo , Chaperonina con TCP-1/metabolismo
11.
bioRxiv ; 2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37016670

RESUMEN

Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate the folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. In the open TRiC state, PhLP2A binds to the chamber's equator while its N-terminal H3-domain binds to the apical domains of CCT3/4, thereby displacing PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to the positively charged inner surfaces formed by CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.

12.
Nat Cell Biol ; 25(5): 699-713, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081164

RESUMEN

Effective protein quality control (PQC), essential for cellular health, relies on spatial sequestration of misfolded proteins into defined inclusions. Here we reveal the coordination of nuclear and cytoplasmic spatial PQC. Cytoplasmic misfolded proteins concentrate in a cytoplasmic juxtanuclear quality control compartment, while nuclear misfolded proteins sequester into an intranuclear quality control compartment (INQ). Particle tracking reveals that INQ and the juxtanuclear quality control compartment converge to face each other across the nuclear envelope at a site proximal to the nuclear-vacuolar junction marked by perinuclear ESCRT-II/III protein Chm7. Strikingly, convergence at nuclear-vacuolar junction contacts facilitates VPS4-dependent vacuolar clearance of misfolded cytoplasmic and nuclear proteins, the latter entailing extrusion of nuclear INQ into the vacuole. Finding that nuclear-vacuolar contact sites are cellular hubs of spatial PQC to facilitate vacuolar clearance of nuclear and cytoplasmic inclusions highlights the role of cellular architecture in proteostasis maintenance.


Asunto(s)
Núcleo Celular , Vacuolas , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Nucleares/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
13.
Methods ; 51(2): 242-50, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20096784

RESUMEN

We detail our use of computer-controlled optical traps to study interactions between kinetochore components and dynamic microtubules. Over the last two decades optical traps have helped uncover the working principles of conventional molecular motors, such as kinesin and dynein, but only recently have they been applied to study kinetochore function. The most useful traps combine sensitive position detectors and servo-control, allowing them to be operated as force clamps that maintain constant loads on objects as they move. Our instrument, which is among the simplest designs that permits force clamping, relies on a computer-controlled piezoelectric stage and a single laser for trapping and position detection. We apply it in motility assays where beads coated with pure microtubule-binding kinetochore components are attached to the tips of individual dynamic microtubules. Like kinetochores in vivo, the beads remain tip-attached, undergoing movements coupled to filament assembly and disassembly. The force clamp provides many benefits over instruments that lack feedback control. It allows tension to be applied continuously during both assembly- and disassembly-driven movement, providing a close match to the physiological situation. It also enables tracking with high resolution, and simplifies data interpretation by eliminating artifacts due to molecular compliance. The formation of persistent, load-bearing attachments to dynamic microtubule tips is fundamental to all kinetochore activities. Our direct, physical study of kinetochore-microtubule coupling may therefore furnish insights into many vital kinetochore functions, including correction of aberrant attachments and generation of the 'wait-anaphase' signals that delay mitosis until all kinetochores are properly attached.


Asunto(s)
Cinetocoros/fisiología , Rayos Láser , Microtúbulos , Óptica y Fotónica/métodos
14.
Anal Chem ; 82(15): 6643-51, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20614870

RESUMEN

Here we report the use of capillary isoelectric focusing under native conditions for the separation of protein complex isoforms and subcomplexes. Using biologically relevant HIS-tag and FLAG-tag purified protein complexes, we demonstrate the separations of protein complex isoforms of the mammalian target of rapamycin complex (mTORC1 and 2) and the subcomplexes and different phosphorylation states of the Dam1 complex. The high efficiency capillary isoelectric focusing separation allowed for resolution of protein complexes and subcomplexes similar in size and biochemical composition. By performing separations with native buffers and reduced temperature (15 degrees C) we were able to maintain the complex integrity of the more thermolabile mTORC2 during isoelectric focusing and detection (<45 min). Increasing the separation temperature allowed us to monitor dissociation of the Dam1 complex into its subcomplexes (25 degrees C) and eventually its individual protein components (30 degrees C). The separation of two different phosphorylation states of the Dam1 complex, generated from an in vitro kinase assay with Mps1 kinase, was straightforward due to the large pI shift upon multiple phosphorylation events. The separation of the protein complex isoforms of mTORC, on the other hand, required the addition of a small pI range (4-6.5) of ampholytes to improve resolution and stability of the complexes. We show that native capillary isoelectric focusing is a powerful method for the difficult separations of large, similar, unstable protein complexes. This method shows potential for differentiation of protein complex isoform and subcomplex compositions, post-translational modifications, architectures, stabilities, equilibria, and relative abundances under biologically relevant conditions.


Asunto(s)
Focalización Isoeléctrica/métodos , Complejos Multiproteicos/aislamiento & purificación , Tampones (Química) , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/aislamiento & purificación , Línea Celular , Histidina/química , Humanos , Concentración de Iones de Hidrógeno , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Complejos Multiproteicos/química , Oligopéptidos/química , Péptidos/química , Fosforilación , Isoformas de Proteínas/química , Isoformas de Proteínas/aislamiento & purificación , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Serina-Treonina Quinasas TOR , Temperatura , Factores de Transcripción/química , Factores de Transcripción/aislamiento & purificación , Viscosidad
15.
Curr Opin Struct Biol ; 55: 50-58, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30978594

RESUMEN

The eukaryotic chaperonin TRiC/CCT is a large hetero-oligomeric complex that plays an essential role assisting cellular protein folding and suppressing protein aggregation. It consists of two rings, and each composed of eight different subunits; non-native polypeptides bind and fold in an ATP-dependent manner within their central chamber. Here, we review recent advances in our understanding of TRiC structure and mechanism enabled by application of hybrid structural methods including the integration of cryo-electron microscopy with distance constraints from crosslinking mass spectrometry. These new insights are revealing how the different TRiC/CCT subunits create asymmetry in its ATP-driven conformational cycle and its interaction with non-native polypeptides, which ultimately underlie its unique ability to fold proteins that cannot be folded by other chaperones.


Asunto(s)
Adenosina Trifosfato/metabolismo , Chaperonina con TCP-1/química , Células Eucariotas/metabolismo , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Pliegue de Proteína , Subunidades de Proteína/química
16.
Mol Biol Cell ; 16(7): 3341-52, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15872084

RESUMEN

The spindle pole body (SPB) is the microtubule organizing center of Saccharomyces cerevisiae. Its core includes the proteins Spc42, Spc110 (kendrin/pericentrin ortholog), calmodulin (Cmd1), Spc29, and Cnm67. Each was tagged with CFP and YFP and their proximity to each other was determined by fluorescence resonance energy transfer (FRET). FRET was measured by a new metric that accurately reflected the relative extent of energy transfer. The FRET values established the topology of the core proteins within the architecture of SPB. The N-termini of Spc42 and Spc29, and the C-termini of all the core proteins face the gap between the IL2 layer and the central plaque. Spc110 traverses the central plaque and Cnm67 spans the IL2 layer. Spc42 is a central component of the central plaque where its N-terminus is closely associated with the C-termini of Spc29, Cmd1, and Spc110. When the donor-acceptor pairs were ordered into five broad categories of increasing FRET, the ranking of the pairs specified a unique geometry for the positions of the core proteins, as shown by a mathematical proof. The geometry was integrated with prior cryoelectron tomography to create a model of the interwoven network of proteins within the central plaque. One prediction of the model, the dimerization of the calmodulin-binding domains of Spc110, was confirmed by in vitro analysis.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Huso Acromático , Calmodulina/química , Proteínas de Unión a Calmodulina , Centriolos/ultraestructura , Microscopía por Crioelectrón , Proteínas del Citoesqueleto , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fúngicas , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Microscopía Electrónica , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Modelos Biológicos , Modelos Moleculares , Modelos Teóricos , Proteínas Nucleares/química , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
ACS Synth Biol ; 7(8): 1874-1885, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29920209

RESUMEN

Methanogenic archaea can be integrated into a sustainable, carbon-neutral cycle for producing organic chemicals from C1 compounds if the rate, yield, and titer of product synthesis can be improved using metabolic engineering. However, metabolic engineering techniques are limited in methanogens by insufficient methods for controlling cellular protein levels. We conducted a systematic approach to tune protein levels in Methanosarcina acetivorans C2A, a model methanogen, by regulating transcription and translation initiation. Rationally designed core promoter and ribosome binding site mutations in M. acetivorans C2A resulted in a predicable change in protein levels over a 60 fold range. The overall range of protein levels was increased an additional 3 fold by introducing the 5' untranslated region of the mcrB transcript. This work demonstrates a wide range of precisely controlled protein levels in M. acetivorans C2A, which will help facilitate systematic metabolic engineering efforts in methanogens.


Asunto(s)
Methanosarcina/genética , Regiones no Traducidas 5'/genética , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional/genética , Ribosomas/metabolismo
18.
Nat Microbiol ; 3(4): 481-493, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29531365

RESUMEN

Viruses are molecular machines sustained through a life cycle that requires replication within host cells. Throughout the infectious cycle, viral and cellular components interact to advance the multistep process required to produce progeny virions. Despite progress made in understanding the virus-host protein interactome, much remains to be discovered about the cellular factors that function during infection, especially those operating at terminal steps in replication. In an RNA interference screen, we identified the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC; also called CCT for chaperonin containing TCP-1) as a cellular factor required for late events in the replication of mammalian reovirus. We discovered that TRiC functions in reovirus replication through a mechanism that involves folding the viral σ3 major outer-capsid protein into a form capable of assembling onto virus particles. TRiC also complexes with homologous capsid proteins of closely related viruses. Our data define a critical function for TRiC in the viral assembly process and raise the possibility that this mechanism is conserved in related non-enveloped viruses. These results also provide insight into TRiC protein substrates and establish a rationale for the development of small-molecule inhibitors of TRiC as potential antiviral therapeutics.


Asunto(s)
Proteínas de la Cápside/genética , Cápside/metabolismo , Chaperonina con TCP-1/genética , Orthoreovirus de los Mamíferos/genética , Ensamble de Virus/genética , Animales , Células CACO-2 , Proteínas de la Cápside/metabolismo , Línea Celular Tumoral , Células Endoteliales/virología , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Orthoreovirus de los Mamíferos/crecimiento & desarrollo , Pliegue de Proteína , Interferencia de ARN , ARN Interferente Pequeño/genética
19.
Methods Cell Biol ; 95: 641-56, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20466157

RESUMEN

Kinetochores are multifunctional supercomplexes that link chromosomes to dynamic microtubule tips. Groups of proteins from the kinetochore are arranged into distinct subcomplexes that copurify under stringent conditions and cause similar phenotypes when mutated. By coexpressing all the components of a given subcomplex from a polycistronic plasmid in bacteria, many laboratories have had great success in purifying active subcomplexes. This has enabled the study of how the microtubule-binding subcomplexes of the kinetochore interact with both the microtubule lattice and dynamic microtubule tips. Here we outline methods for rapid cloning of polycistronic vectors for expression of kinetochore subcomplexes, their purification, and techniques for functional analysis using total internal reflection fluorescence microscopy (TIRFM).


Asunto(s)
Técnicas de Laboratorio Clínico , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Calibración , Técnicas de Laboratorio Clínico/instrumentación , Técnicas de Laboratorio Clínico/normas , Clonación Molecular , Humanos , Cinetocoros/química , Cinetocoros/fisiología , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Sustancias Macromoleculares/farmacología , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/fisiología , Modelos Biológicos , Huso Acromático/química , Huso Acromático/genética , Huso Acromático/fisiología
20.
J Cell Biol ; 189(4): 713-23, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20479468

RESUMEN

The coupling of kinetochores to dynamic spindle microtubules is crucial for chromosome positioning and segregation, error correction, and cell cycle progression. How these fundamental attachments are made and persist under tensile forces from the spindle remain important questions. As microtubule-binding elements, the budding yeast Ndc80 and Dam1 kinetochore complexes are essential and not redundant, but their distinct contributions are unknown. In this study, we show that the Dam1 complex is a processivity factor for the Ndc80 complex, enhancing the ability of the Ndc80 complex to form load-bearing attachments to and track with dynamic microtubule tips in vitro. Moreover, the interaction between the Ndc80 and Dam1 complexes is abolished when the Dam1 complex is phosphorylated by the yeast aurora B kinase Ipl1. This provides evidence for a mechanism by which aurora B resets aberrant kinetochore-microtubule attachments. We propose that the action of the Dam1 complex as a processivity factor in kinetochore-microtubule attachment is regulated by conserved signals for error correction.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Aurora Quinasas , Proteínas de Ciclo Celular/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA