Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(19): e108863, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459017

RESUMEN

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Asunto(s)
Autofagia , Susceptibilidad a Enfermedades , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Autofagia/inmunología , Biomarcadores , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Especificidad de Órganos , Transducción de Señal
2.
Mol Pharmacol ; 105(5): 313-327, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38458774

RESUMEN

Artificial intelligence (AI) platforms, such as Generative Pretrained Transformer (ChatGPT), have achieved a high degree of popularity within the scientific community due to their utility in providing evidence-based reviews of the literature. However, the accuracy and reliability of the information output and the ability to provide critical analysis of the literature, especially with respect to highly controversial issues, has generally not been evaluated. In this work, we arranged a question/answer session with ChatGPT regarding several unresolved questions in the field of cancer research relating to therapy-induced senescence (TIS), including the topics of senescence reversibility, its connection to tumor dormancy, and the pharmacology of the newly emerging drug class of senolytics. ChatGPT generally provided responses consistent with the available literature, although occasionally overlooking essential components of the current understanding of the role of TIS in cancer biology and treatment. Although ChatGPT, and similar AI platforms, have utility in providing an accurate evidence-based review of the literature, their outputs should still be considered carefully, especially with respect to unresolved issues in tumor biology. SIGNIFICANCE STATEMENT: Artificial Intelligence platforms have provided great utility for researchers to investigate biomedical literature in a prompt manner. However, several issues arise when it comes to certain unresolved biological questions, especially in the cancer field. This work provided a discussion with ChatGPT regarding some of the yet-to-be-fully-elucidated conundrums of the role of therapy-induced senescence in cancer treatment and highlights the strengths and weaknesses in utilizing such platforms for analyzing the scientific literature on this topic.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Reproducibilidad de los Resultados , Senoterapéuticos
3.
J Pharmacol Exp Ther ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453523

RESUMEN

The advent of HER2-targeted monoclonal antibodies such as trastuzumab has significantly improved the clinical outcomes for patients with breast cancer overexpressing HER2, and more recently also for gastric cancers. However, the development of resistance, as is frequently the case for other antineoplastic modalities, constrains clinical efficacy. Multiple molecular mechanisms and signaling pathways have been investigated for their potential involvement in the development of resistance to HER2-targeted therapies, among which is autophagy. Autophagy is an inherent cellular mechanism whereby cytoplasmic components are selectively degraded to maintain cellular homeostasis via the generation of energy and metabolic intermediates. Although the cytoprotective form of autophagy is thought to predominate, other forms of autophagy have also been identified in response to chemotherapeutic agents in various tumor models; these include cytotoxic, cytostatic, and non-protective functional forms of autophagy. In this review, we provide an overview of the autophagic machinery induced in response to HER2-targeted monoclonal antibodies, with a focus on trastuzumab and trastuzumab-emtansine, in an effort to determine whether autophagy targeting or modulation could be translated clinically to increase their effectiveness and/or overcome resistance development. Significance Statement This manuscript is one in a series of papers that investigate the different roles of the autophagic machinery induced in response to versatile anti-neoplastic agents in various cancer models. This series designed in an attempt to build a conclusion whether autophagy targeting or modulation is an effective adjuvant strategy to increase the efficacy of chemotherapeutic agents. In this review, we shed the light on the relationship between the autophagic machinery and HER2 targeted therapies.

4.
J Pharmacol Exp Ther ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168649

RESUMEN

Fatty acid amide hydrolase (FAAH) serves as the primary enzyme responsible for degrading the endocannabinoid anandamide (AEA). Inhibition of FAAH, either through pharmacological means or genetic manipulation, can effectively reduce inflammation in various organs, including the brain, colon, heart, and kidneys. Infusion of a FAAH inhibitor into the kidney medulla has been shown to induce diuretic and natriuretic effects. FAAH knockout mice have shown protection against both post-ischemia reperfusion injury and cisplatin-induced acute kidney injury (AKI), although through distinct mechanisms. The present study was based on the hypothesis that pharmacological inhibition of FAAH activity could mitigate cisplatin-induced AKI, exploring potential renoprotective mechanism. Male wild type C57BL/6 were administered an oral gavage of a FAAH inhibitor (PF-04457845, 5mg/kg) or vehicle (10% PEG200+5% Tween80+normal saline) at 72, 48, 24, and 2 hours before and 24 and 48 hours after a single intraperitoneal injection of cisplatin (Cis, 25 mg/kg). Mice were euthanatized 72 hours after cisplatin treatment. Compared to vehicle-treated mice, PF-04457845-treated mice showed a decrease of cisplatin-induced plasma creatinine, blood urea nitrogen levels, kidney injury biomarkers (NGAL and KIM-1) and renal tubular damage. The renal protection from oral gavage of PF-04457845 against cisplatin-induced nephrotoxicity was associated with an enhanced AEA tone and reduced levels of DNA damage response biomarkers p53 and p21. Our work demonstrates that PF-04457845 effectively alleviates cisplatin-induced nephrotoxicity in mice, underscoring the potential of orally targeting FAAH as a novel strategy to prevent cisplatin nephrotoxicity. Significance Statement Oral administration of FAAH inhibitor, can reduce cisplatin-induced DNA damage response, tubular damages, and kidney dysfunction. Inactivation of FAAH could be a potential strategy to prevent cisplatin-induced nephrotoxicity.

5.
Semin Cancer Biol ; 81: 37-47, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33358748

RESUMEN

Senescence is a unique state of growth arrest that develops in response to a plethora of cellular stresses, including replicative exhaustion, oxidative injury, and genotoxic insults. Senescence has been implicated in the pathogenesis of multiple aging-related pathologies, including cancer. In cancer, senescence plays a dual role, initially acting as a barrier against tumor progression by enforcing a durable growth arrest in premalignant cells, but potentially promoting malignant transformation in neighboring cells through the secretion of pro-tumorigenic drivers. Moreover, senescence is induced in tumor cells upon exposure to a wide variety of conventional and targeted anticancer drugs (termed Therapy-Induced Senescence-TIS), representing a critical contributing factor to therapeutic outcomes. As with replicative or oxidative senescence, TIS manifests as a complex phenotype of macromolecular damage, energetic dysregulation, and altered gene expression. Senescent cells are also frequently polyploid. In vitro studies have suggested that polyploidy may confer upon senescent tumor cells the ability to escape from growth arrest, thereby providing an additional avenue whereby tumor cells escape the lethality of anticancer treatment. Polyploidy in tumor cells is also associated with persistent energy production, chromatin remodeling, self-renewal, stemness and drug resistance - features that are also associated with escape from senescence and conversion to a more malignant phenotype. However, senescent cells are highly heterogenous and can present with variable phenotypes, where polyploidy is one component of a complex reversion process. Lastly, emerging efforts to pharmacologically target polyploid tumor cells might pave the way towards the identification of novel targets for the elimination of senescent tumor cells by the incorporation of senolytic agents into cancer therapeutic strategies.


Asunto(s)
Antineoplásicos , Neoplasias , Envejecimiento/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Senescencia Celular/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Poliploidía
6.
Mol Pharmacol ; 103(4): 230-240, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36702548

RESUMEN

Cisplatin is a potent first-line therapy for many solid malignancies, such as breast, ovarian, lung, testicular, and head and neck cancer. However, acute kidney injury (AKI) is a major dose-limiting toxicity in cisplatin therapy, which often hampers the continuation of cisplatin treatment. The endocannabinoid system, consisting of anandamide (AEA) and 2-arachidonoylglycerol and cannabinoid receptors, participates in different kidney diseases. Inhibition of fatty acid amide hydrolase (FAAH), the primary enzyme for the degradation of AEA and AEA-related N-acylethanolamines, elicits anti-inflammatory effects; however, little is known about its role in cisplatin nephrotoxicity. The current study tested the hypothesis that genetic deletion of Faah mitigates cisplatin-induced AKI. Male wild-type C57BL6 (WT) and Faah-/- mice were administered a single dose of intraperitoneal injection of cisplatin (30 mg/kg) and euthanatized 72 hours later. Faah-/- mice showed a reduction of cisplatin-induced blood urea nitrogen, plasma creatinine levels, kidney injury markers, and tubular damage in comparison with WT mice. The renal protection from Faah deletion was associated with enhanced tone of AEA-related N-acylethanolamines (palmitoylethanolamide and oleoylethanolamide), attenuated nuclear factor-κB/p65 activity, DNA damage markers p53 and p21, and decreased expression of the inflammatory cytokine interleukin-1ß, as well as infiltration of macrophages and leukocytes in the kidneys. Notably, a selective FAAH inhibitor (PF-04457845) did not interfere with or perturb the antitumor effects of cisplatin in two head and neck squamous cell carcinoma cell lines, HN30 and HN12. Our work highlights that FAAH inactivation prevents cisplatin-induced nephrotoxicity in mice and that targeting FAAH could provide a novel strategy to mitigate cisplatin-induced nephrotoxicity. SIGNIFICANCE STATEMENT: Mice lacking the Faah gene are protected from cisplatin-induced inflammation, DNA damage response, tubular damage, and kidney dysfunction. Inactivation of FAAH could be a potential strategy to mitigate cisplatin-induced nephrotoxicity.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Animales , Masculino , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/genética , Endocannabinoides/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834222

RESUMEN

BRAF-targeted therapies are widely used for the treatment of melanoma patients with BRAF V600 mutations. Vemurafenib, dabrafenib as well as encorafenib have demonstrated substantial therapeutic activity; however, as is the case with other chemotherapeutic agents, the frequent development of resistance limits their efficacy. Autophagy is one tumor survival mechanism that could contribute to BRAF inhibitor resistance, and multiple studies support an association between vemurafenib-induced and dabrafenib-induced autophagy and tumor cell survival. Clinical trials have also demonstrated a potential benefit from the inclusion of autophagy inhibition as an adjuvant therapy. This review of the scientific literature relating to the role of autophagy that is induced in response to BRAF-inhibitors supports the premise that autophagy targeting or modulation could be an effective adjuvant therapy.


Asunto(s)
Neoplasias Cutáneas , Humanos , Vemurafenib/uso terapéutico , Neoplasias Cutáneas/patología , Proteínas Proto-Oncogénicas B-raf/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Autofagia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
8.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628849

RESUMEN

The bromodomain and extra-terminal domain (BET) family inhibitors are small molecules that target the dysregulated epigenetic readers, BRD2, BRD3, BRD4 and BRDT, at various transcription-related sites, including super-enhancers. BET inhibitors are currently under investigation both in pre-clinical cell culture and tumor-bearing animal models, as well as in clinical trials. However, as is the case with other chemotherapeutic modalities, the development of resistance is likely to constrain the therapeutic benefits of this strategy. One tumor cell survival mechanism that has been studied for decades is autophagy. Although four different functions of autophagy have been identified in the literature (cytoprotective, cytotoxic, cytostatic and non-protective), primarily the cytoprotective and cytotoxic forms appear to function in different experimental models exposed to BET inhibitors (with some evidence for the cytostatic form). This review provides an overview of the cytoprotective, cytotoxic and cytostatic functions of autophagy in response to BET inhibitors in various tumor models. Our aim is to determine whether autophagy targeting or modulation could represent an effective therapeutic strategy to enhance the response to these modalities and also potentially overcome resistance to BET inhibition.


Asunto(s)
Antineoplásicos , Citostáticos , Animales , Proteínas Nucleares , Factores de Transcripción , Antineoplásicos/farmacología , Autofagia
9.
Mol Pharmacol ; 101(3): 168-180, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34907000

RESUMEN

Therapeutic outcomes achieved in head and neck squamous cell carcinoma (HNSCC) patients by concurrent cisplatin-based chemoradiotherapy initially reflect both tumor regression and tumor stasis. However, local and distant metastasis and disease relapse are common in HNSCC patients. In the current work, we demonstrate that cisplatin treatment induces senescence in both p53 wild-type HN30 and p53 mutant HN12 head and neck cancer models. We also show that tumor cells can escape from senescence both in vitro and in vivo. We further establish the effectiveness of the senolytic, ABT-263 (Navitoclax), in elimination of senescent tumor cells after cisplatin treatment. Navitoclax increased apoptosis by 3.3-fold (P ≤ 0.05) at day 7 compared with monotherapy by cisplatin. Additionally, we show that ABT-263 interferes with the interaction between B-cell lymphoma-x large (BCL-XL) and BAX, anti- and pro-apoptotic proteins, respectively, followed by BAX activation, suggesting that ABT-263-induced apoptotic cell death is mediated through BAX. Our in vivo studies also confirm senescence induction in tumor cells by cisplatin, and the promotion of apoptosis coupled with a significant delay of tumor growth after sequential treatment with ABT-263. Sequential treatment with cisplatin followed by ABT-263 extended the humane endpoint to ∼130 days compared with cisplatin alone, where mice survived ∼75 days. These results support the premise that senolytic agents could be used to eliminate residual senescent tumor cells after chemotherapy and thereby potentially delay disease recurrence in head and neck cancer patients. SIGNIFICANCE STATEMENT: Disease recurrence is the most common cause of death in head and neck cancer patients. B-cell lymphoma-x large inhibitors such as ABT-263 (Navitoclax) have the capacity to be used in combination with cisplatin in head and neck cancer patients to eliminate senescent cells and possibly prevent disease relapse.


Asunto(s)
Compuestos de Anilina/administración & dosificación , Antineoplásicos/administración & dosificación , Senescencia Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Sulfonamidas/administración & dosificación , Proteína p53 Supresora de Tumor/genética , Proteína X Asociada a bcl-2/genética , Compuestos de Anilina/farmacología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Ratones , Mutación , Sulfonamidas/farmacología , Proteína X Asociada a bcl-2/metabolismo
10.
Am J Physiol Renal Physiol ; 323(3): F322-F334, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834271

RESUMEN

Cisplatin is an established chemotherapeutic drug for treatment of solid-organ cancers and is the primary drug used in the treatment of head and neck cancer; however, cisplatin-induced nephrotoxicity largely limits its clinical use. Inhibition of sphingosine kinase 2 (SphK2) has been demonstrated to alleviate various kidney diseases. Therefore, we hypothesized that inhibition of SphK2 could also protect against cisplatin-induced nephrotoxicity. Results from the present study showed that the SphK2 inhibitor ABC294640 or knockdown of SphK2 by siRNA blocked the cisplatin-induced increase of cellular injury markers (neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, and cleaved caspase-3) by Western blot analysis in HK-2 cells, a human renal tubular cell line. In addition, SphK2 inhibition blocked cisplatin-induced activation of NF-κB by Western blot analysis and immunostaining analysis. Furthermore, SphK2 inhibition suppressed cisplatin-induced increases of proinflammatory markers (NLR family pyrin domain containing 3, interleukin-1ß, and interleukin-6). Genetic deletion of the SphK2 gene in mice further confirmed that inhibition of SphK2 protected against cisplatin-induced kidney damage in vivo. Compared with wild-type mice, SphK2 knockout mice exhibited less renal dysfunction and reduced promotion of kidney injury markers, inflammatory factors, tubular morphology damage, and fibrotic staining. At the same time, the SphK2 inhibitor ABC294640 failed to interfere with the activity of cisplatin or radiation in two cell culture models of head and neck cancer. It is concluded that inhibition of Sphk2 protects against cisplatin-induced kidney injury. SphK2 may be used as a potential therapeutic target for the prevention or treatment of cisplatin-induced kidney injury.NEW & NOTEWORTHY The present study provides new findings that sphingosine kinase 2 (SphK2) is highly expressed in renal tubules, cisplatin treatment increases the expression of SphK2 in proximal tubular cells and kidneys, and inhibition of SphK2 alleviates cisplatin-induced kidney injury by suppressing the activation of NF-κB, production of inflammatory factors, and apoptosis. SphK2 may serve as a potential therapeutic target for the prevention or treatment of cisplatin-induced nephrotoxicity.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Fosfotransferasas (Aceptor de Grupo Alcohol) , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Animales , Apoptosis , Cisplatino/efectos adversos , Humanos , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
11.
Br J Cancer ; 126(10): 1363-1365, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35304605

RESUMEN

The capability of tumour cells to escape from therapy-induced senescence, as well as cell-non-autonomous functions of senescence, support the premise that senescence could serve as one pathway to tumour dormancy (among others that include quiescence and diapause) that is permissive for disease recurrence. Consequently, the pharmacologic targeting of senescent tumour cells could mitigate the risk for cancer resurgence, thereby enhancing the therapeutic efficacy of cancer chemotherapy.


Asunto(s)
Senescencia Celular , Neoplasias , Humanos , Neoplasias/patología
12.
Cell Mol Life Sci ; 78(23): 7435-7449, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34716768

RESUMEN

Lysosomes are single membrane-bound organelles containing acid hydrolases responsible for the degradation of cellular cargo and maintenance of cellular homeostasis. Lysosomes could originate from pre-existing endolysosomes or autolysosomes, acting as a critical juncture between autophagy and endocytosis. Stress that triggers lysosomal membrane permeabilization can be altered by ESCRT complexes; however, irreparable damage to the membrane results in the induction of a selective lysosomal degradation pathway, specifically lysophagy. Lysosomes play an indispensable role in different types of autophagy, including microautophagy, macroautophagy, and chaperone-mediated autophagy, and various cell death pathways such as lysosomal cell death, apoptotic cell death, and autophagic cell death. In this review, we discuss lysosomal reformation, maintenance, and degradation pathways following the involvement of the lysosome in autophagy and cell death, which are related to several pathophysiological conditions observed in humans.


Asunto(s)
Apoptosis/inmunología , Autofagia/inmunología , Endocitosis/inmunología , Lisosomas/inmunología , Envejecimiento/patología , Animales , Membrana Celular/metabolismo , Humanos , Membranas Intracelulares/metabolismo
13.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36555154

RESUMEN

Senescence represents a unique cellular stress response characterized by a stable growth arrest, macromolecular alterations, and wide spectrum changes in gene expression. Classically, senescence is the end-product of progressive telomeric attrition resulting from the repetitive division of somatic cells. In addition, senescent cells accumulate in premalignant lesions, in part, as a product of oncogene hyperactivation, reflecting one element of the tumor suppressive function of senescence. Oncogenic processes that induce senescence include overexpression/hyperactivation of H-Ras, B-Raf, and cyclin E as well as inactivation of PTEN. Oncogenic viruses, such as Human Papilloma Virus (HPV), have also been shown to induce senescence. High-risk strains of HPV drive the immortalization, and hence transformation, of cervical epithelial cells via several mechanisms, but primarily via deregulation of the cell cycle, and possibly, by facilitating escape from senescence. Despite the wide and successful utilization of HPV vaccines in reducing the incidence of cervical cancer, this measure is not effective in preventing cancer development in individuals already positive for HPV. Accordingly, in this commentary, we focus on the potential contribution of oncogene and HPV-induced senescence (OIS) in cervical cancer. We further consider the potential utility of senolytic agents for the elimination of HPV-harboring senescent cells as a strategy for reducing HPV-driven transformation and the risk of cervical cancer development.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Senescencia Celular/genética , Senoterapéuticos , Neoplasias del Cuello Uterino/patología , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Oncogenes
14.
Saudi Pharm J ; 30(1): 91-101, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35145348

RESUMEN

Emerging evidence has shown that the therapy-induced senescent growth arrest in cancer cells is of durable nature whereby a subset of cells can reinstate proliferative capacity. Promising new drugs named senolytics selectively target senescent cells and commit them into apoptosis. Accordingly, senolytics have been proposed as adjuvant cancer treatment to cull senescent tumor cells, and thus, screening for agents that exhibit senolytic properties is highly warranted. Our study aimed to investigate three agents, sorafenib, rapamycin, and venetoclax for their senolytic potential in doxorubicin-induced senescence in HCT116 cells. HCT116 cells were treated with one of the three agents, sorafenib (5 µM), rapamycin (100 nM), or venetoclax (10 µM), in the absence or presence of doxorubicin (1 µM). Senescence was evaluated using microscopy-based and flow cytometry-based Senescence-associated-ß-galactosidase staining (SA-ß-gal), while apoptosis was assessed using annexin V-FITC/PI, and Muse caspase-3/-7 activity assays. We screened for potential genes through which the three drugs exerted senolytic-like action using the Human Cancer Pathway Finder PCR array. The three agents reduced doxorubicin-induced senescent cell subpopulations and significantly enhanced the apoptotic effect of doxorubicin compared with those treated only with doxorubicin. The senescence genes IGFBP5 and BMI1 and the apoptosis genes CASP7 and CASP9 emerged as candidate genes through which the three drugs exhibited senolytic-like properties. These results suggest that the attenuation of doxorubicin-induced senescence might have shifted HCT116 cells to apoptosis by exposure to the tested pharmacological agents. Our work argues for the use of senolytics to reduce senescence-mediated resistance in tumor cells and to enhance chemotherapy efficacy.

15.
Semin Cancer Biol ; 66: 155-162, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31887364

RESUMEN

Despite the availability of largely effective treatments for breast cancer, such as the combination of aromatase inhibitors or anti-estrogens with cdk4/6 inhibitors for estrogen receptor positive/Her 2 negative breast cancer, breast cancer remains a significant cause of morbidity and mortality. This is due, in large part, to a very limited understanding of the mechanisms underlying the failure of conventional therapies and disease recurrence after tumor dormancy. One cellular process that is activated in response to the majority of breast cancer treatments is autophagy. Proven to be an indispensable cellular function, autophagy is largely accepted as a pro-survival mechanism in tumor cells and has consequently generated significant interest in cancer research and treatment strategies. Autophagy plays multiple and often disparate roles during different stages of tumorigenesis and in response to anti-tumor treatments; in fact, autophagy is induced by almost all conventional treatments of breast cancer and is considered a target for pharmacologic blockade in the clinic. Consequently, it is important to further our understanding of this process and its role in breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Animales , Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Femenino , Humanos , Receptores de Estrógenos/antagonistas & inhibidores
16.
EMBO J ; 36(13): 1811-1836, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28596378

RESUMEN

Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.


Asunto(s)
Autofagia , Terminología como Asunto , Animales , Caenorhabditis elegans/fisiología , Drosophila melanogaster/fisiología , Redes Reguladoras de Genes , Ratones , Saccharomyces cerevisiae/fisiología
17.
Brain Behav Immun ; 93: 172-185, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33434562

RESUMEN

BACKGROUND AND PURPOSE: Paclitaxel, a widely used anti-cancer drug, is frequently associated with prolonged and severe peripheral neuropathies (PIPN), associated with neuroinflammation. Currently, PIPN effective treatments are lacking. Peroxisome Proliferator-Activated Receptor-α (PPAR-⍺) can modulate inflammatory responses. Thus, the use of PPAR-⍺ agonists, such as fibrates (fenofibrate and choline-fenofibrate), currently used in dyslipidemia treatment, could represent an interesting therapeutic approach in PIPN. EXPERIMENTAL APPROACH: Our studies tested the efficacy of fenofibrate (150 mg/kg, daily, i.p.) and choline fenofibrate (60 mg/kg daily, p.o.) in reversing and preventing the development of PIPN (paclitaxel: 8 mg/kg, i.p., every other day for 4 days) in male and female C57BL/6J mice. Mechanical and cold hypersensitivity, conditioned place preference, sensory nerve action potential (SNAP), as well as the expression of PPAR-⍺, TNF-⍺, IL-1ß and IL-6 mRNA were evaluated. KEY RESULTS: While fenofibrate treatment partially reversed and prevented the development of mechanical hypersensitivity, this was completely reversed and prevented by choline-fenofibrate. Both fibrates were able to completely reverse and prevent cold hypersensitivity induced by paclitaxel. The reduction of SNAP amplitude induced by paclitaxel was also reversed by both fenofibrate and choline-fenofibrate. Our results indicate that suppression of paclitaxel-induced hypersensitivity by fibrates involves the regulation of PPAR-⍺ expression and decrease neuroinflammation in DRG. Finally, the co-treatment of Paclitaxel and fenofibric acid (fibrates active metabolite) was tested on different cancer cell lines, no decrease in the antitumoral effect of paclitaxel was observed. CONCLUSIONS AND IMPLICATIONS: Taken together, our results show for the first time the therapeutic potential (prevention and reversal) of fibrates in PIPN and opens to a potential pharmacological repurposing of these drugs.


Asunto(s)
PPAR alfa , Enfermedades del Sistema Nervioso Periférico , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Paclitaxel , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico
18.
J Pharmacol Exp Ther ; 374(1): 104-112, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32434944

RESUMEN

Statin drugs are widely employed in the clinic to reduce serum cholesterol. Because of their hydroxymethylglutaryl coenzyme A reductase antagonism, statins also reduce isoprenyl lipids necessary for the membrane anchorage and signaling of small G-proteins in the Ras superfamily. We previously found that statins suppress immunoglobulin E (IgE)-mediated mast cell activation, suggesting these drugs might be useful in treating allergic disease. Although IgE-induced function is critical to allergic inflammation, mast cell proliferation and survival also impact atopic disease and mast cell neoplasia. In this study, we describe fluvastatin-mediated apoptosis in primary and transformed mast cells. An IC50 was achieved between 0.8 and 3.5 µM in both cell types, concentrations similar to the reported fluvastatin serum Cmax value. Apoptosis was correlated with reduced stem cell factor (SCF)-mediated signal transduction, mitochondrial dysfunction, and caspase activation. Complementing these data, we found that p53 deficiency or Bcl-2 overexpression reduced fluvastatin-induced apoptosis. We also noted evidence of cytoprotective autophagy in primary mast cells treated with fluvastatin. Finally, we found that intraperitoneal fluvastatin treatment reduced peritoneal mast cell numbers in vivo These findings offer insight into the mechanisms of mast cell survival and support the possible utility of statins in mast cell-associated allergic and neoplastic diseases. SIGNIFICANCE STATEMENT: Fluvastatin, a statin drug used to lower cholesterol, induces apoptosis in primary and transformed mast cells by antagonizing protein isoprenylation, effectively inhibiting stem cell factor (SCF)-induced survival signals. This drug may be an effective means of suppressing mast cell survival.


Asunto(s)
Apoptosis/efectos de los fármacos , Fluvastatina/farmacología , Mastocitos/citología , Mastocitos/efectos de los fármacos , Animales , Células de la Médula Ósea/citología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Mastocitos/metabolismo , Ratones
19.
FASEB J ; 33(2): 3063-3073, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30383439

RESUMEN

Aging is often associated with a decreased autophagic activity that contributes to the high sensitivity of aged livers to ischemia reperfusion injury (IRI). Blood from young animals can positively affect aged animals. This study was designed to evaluate the effect of young plasma in a model of liver IRI in aged rats. Aged rats were treated with pooled plasma collected from young rats before ischemia. Administration of young plasma restored aging-induced suppression in hepatic autophagic activity and reduced liver IRI. Inhibition of the young-plasma-restored autophagic activity abrogated the beneficial effect of young plasma against liver IRI. Similarly, young serum restored autophagic activity and reduced cellular injury after hypoxia/reoxygenation (H/R) in primary old rat hepatocytes. Mechanistic studies showed thatadministration of young plasma increased AMPK phosphorylation and led to unc-51-like autophagy activating kinase (ULK)1 activation. Furthermore, AMPK-inhibition abrogated the young serum-induced ULK1 activation and autophagic activity and diminished the protective action of young serum against H/R injury in primary old rat hepatocytes, whereas AMPK-activation potentiated the effects of young serum. Young plasma could restore age-impaired autophagy, at least in part, via AMPK/ULK1 signaling. Restoration of age-impaired autophagic activity may be a critical contributing mechanism to young-plasma-afforded protection against liver IRI in aged rats.-Liu, A., Yang, J., Hu, Q., Dirsch, O., Dahmen, U., Zhang, C., Gewirtz, D. A., Fang, H., Sun, J. Young plasma attenuates age-dependent liver ischemia reperfusion injury.


Asunto(s)
Envejecimiento , Autofagia , Hepatopatías/prevención & control , Plasma/química , Daño por Reperfusión/prevención & control , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Hepatopatías/metabolismo , Hepatopatías/patología , Masculino , Plasma/metabolismo , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal
20.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256191

RESUMEN

Chemotherapy and radiation often induce a number of cellular responses, such as apoptosis, autophagy, and senescence. One of the major regulators of these processes is p53, an essential tumor suppressor that is often mutated or lost in many cancer types and implicated in early tumorigenesis. Gain of function (GOF) p53 mutations have been implicated in increased susceptibility to drug resistance, by compromising wildtype anti-tumor functions of p53 or modulating key p53 processes that confer chemotherapy resistance, such as autophagy. Autophagy, a cellular survival mechanism, is initially induced in response to chemotherapy and radiotherapy, and its cytoprotective nature became the spearhead of a number of clinical trials aimed to sensitize patients to chemotherapy. However, increased pre-clinical studies have exemplified the multifunctional role of autophagy. Additionally, compartmental localization of p53 can modulate induction or inhibition of autophagy and may play a role in autophagic function. The duality in p53 function and its effects on autophagic function are generally not considered in clinical trial design or clinical therapeutics; however, ample pre-clinical studies suggest they play a role in tumor responses to therapy and drug resistance. Further inquiry into the interconnection between autophagy and p53, and its effects on chemotherapeutic responses may provide beneficial insights on multidrug resistance and novel treatment regimens for chemosensitization.


Asunto(s)
Autofagia , Resistencia a Antineoplásicos , Proteína p53 Supresora de Tumor/metabolismo , Animales , Resistencia a Múltiples Medicamentos , Humanos , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA