Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Basic Res Cardiol ; 119(3): 481-503, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38517482

RESUMEN

Hypercholesterolemia is a major risk factor for coronary artery diseases and cardiac ischemic events. Cholesterol per se could also have negative effects on the myocardium, independently from hypercholesterolemia. Previously, we reported that myocardial ischemia-reperfusion induces a deleterious build-up of mitochondrial cholesterol and oxysterols, which is potentiated by hypercholesterolemia and prevented by translocator protein (TSPO) ligands. Here, we studied the mechanism by which sterols accumulate in cardiac mitochondria and promote mitochondrial dysfunction. We performed myocardial ischemia-reperfusion in rats to evaluate mitochondrial function, TSPO, and steroidogenic acute regulatory protein (STAR) levels and the related mitochondrial concentrations of sterols. Rats were treated with the cholesterol synthesis inhibitor pravastatin or the TSPO ligand 4'-chlorodiazepam. We used Tspo deleted rats, which were phenotypically characterized. Inhibition of cholesterol synthesis reduced mitochondrial sterol accumulation and protected mitochondria during myocardial ischemia-reperfusion. We found that cardiac mitochondrial sterol accumulation is the consequence of enhanced influx of cholesterol and not of the inhibition of its mitochondrial metabolism during ischemia-reperfusion. Mitochondrial cholesterol accumulation at reperfusion was related to an increase in mitochondrial STAR but not to changes in TSPO levels. 4'-Chlorodiazepam inhibited this mechanism and prevented mitochondrial sterol accumulation and mitochondrial ischemia-reperfusion injury, underlying the close cooperation between STAR and TSPO. Conversely, Tspo deletion, which did not alter cardiac phenotype, abolished the effects of 4'-chlorodiazepam. This study reveals a novel mitochondrial interaction between TSPO and STAR to promote cholesterol and deleterious sterol mitochondrial accumulation during myocardial ischemia-reperfusion. This interaction regulates mitochondrial homeostasis and plays a key role during mitochondrial injury.


Asunto(s)
Mitocondrias Cardíacas , Daño por Reperfusión Miocárdica , Fosfoproteínas , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/efectos de los fármacos , Masculino , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Colesterol/metabolismo , Ratas , Receptores de GABA/metabolismo , Receptores de GABA/genética , Ratas Wistar , Modelos Animales de Enfermedad , Benzodiazepinonas , Proteínas Portadoras , Receptores de GABA-A
2.
Basic Res Cardiol ; 118(1): 26, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400630

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a major public health concern. Its outcome is poor and, as of today, barely any treatments have been able to decrease its morbidity or mortality. Cardiosphere-derived cells (CDCs) are heart cell products with anti-fibrotic, anti-inflammatory and angiogenic properties. Here, we tested the efficacy of CDCs in improving left ventricular (LV) structure and function in pigs with HFpEF. Fourteen chronically instrumented pigs received continuous angiotensin II infusion for 5 weeks. LV function was investigated through hemodynamic measurements and echocardiography at baseline, after 3 weeks of angiotensin II infusion before three-vessel intra-coronary CDC (n = 6) or placebo (n = 8) administration and 2 weeks after treatment (i.e., at completion of the protocol). As expected, arterial pressure was significantly and similarly increased in both groups. This was accompanied by LV hypertrophy that was not affected by CDCs. LV systolic function remained similarly preserved during the whole protocol in both groups. In contrast, LV diastolic function was impaired (increases in Tau, LV end-diastolic pressure as well as E/A, E/E'septal and E/E'lateral ratios) but CDC treatment significantly improved all of these parameters. The beneficial effect of CDCs on LV diastolic function was not explained by reduced LV hypertrophy or increased arteriolar density; however, interstitial fibrosis was markedly reduced. Three-vessel intra-coronary administration of CDCs improves LV diastolic function and reduces LV fibrosis in this hypertensive model of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Animales , Angiotensina II , Fibrosis , Hipertrofia Ventricular Izquierda , Volumen Sistólico , Porcinos , Función Ventricular Izquierda
3.
Rheumatology (Oxford) ; 61(4): 1487-1495, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-34270707

RESUMEN

OBJECTIVE: The factors contributing to long-term remission in axial SpA (axSpA) are unclear. We aimed to characterize individuals with axSpA at the 5-year follow-up to identify baseline factors associated with remission. METHODS: We included all patients from the DESIR cohort (with recent-onset axSpA) with an available Ankylosing Spondylitis Disease Activity Score-CRP (ASDAS-CRP) at 5-year follow-up. Patients in remission (ASDAS-CRP < 1.3) were compared with those with active disease by demographic, clinical, biological and imaging characteristics. A logistic model stratified on TNF inhibitor (TNFi) exposure was used. RESULTS: Overall, 111/449 patients (25%) were in remission after 5 years. Among those never exposed to TNFi, 31% (77/247) were in remission compared with 17% (34/202) of those exposed to TNFi. Patients in remission after 5 years were more likely to be male, HLA-B27+, have a lower BMI, and a higher education level. Baseline factors associated with 5-year remission in patients never exposed to TNFi included lower BASDAI [adjusted odds ratio (ORa) 0.9, 95% CI: 0.8, 0.9) and history of peripheral arthritis (ORa 2.1, 95% CI: 1.2, 5.3). In those exposed to TNFi, remission was associated with higher education level (ORa 2.9, 95% CI: 1.6, 5.1), lower enthesitis index (ORa 0.8, 95% CI: 0.7, 0.9), lower BASDAI (ORa 0.9, 95% CI: 0.9, 0.9) and lower BMI (ORa 0.8, 95% CI: 0.7, 0.9). CONCLUSION: This study highlights the difficulty in achieving 5-year remission in those with recent-onset axSpA, especially for the more active cases, despite the use of TNFi. Socio-economic factors and BMI are implicated in the outcome at 5 years.


Asunto(s)
Espondiloartritis Axial , Espondiloartritis , Espondilitis Anquilosante , Femenino , Estudios de Seguimiento , Humanos , Masculino , Índice de Severidad de la Enfermedad , Espondiloartritis/tratamiento farmacológico , Resultado del Tratamiento , Inhibidores del Factor de Necrosis Tumoral
4.
Catheter Cardiovasc Interv ; 99(3): 836-843, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34080778

RESUMEN

OBJECTIVE: To assess the accuracy of coronary thermodilution measurements made with the RayFlow® infusion catheter. BACKGROUND: Measurements of absolute coronary blood flow (ABF) and absolute microvascular resistance (Rµ ) by continuous coronary thermodilution can be obtained in humans but their accuracy using a novel dedicated infusion catheter has not yet been validated. We compared ABF values obtained at different infusion rates to coronary blood flow (CBF) values obtained using flow probes, in swine. METHODS: Twelve domestic swine were instrumented with coronary flow probes placed around the left anterior descending and circumflex coronary arteries. ABF was assessed with the RayFlow® infusion catheter during continuous saline infusion at fixed rates of 5 (n = 14), 10 (n = 15), 15 (n = 19), and 20 (n = 12) ml/min. RESULTS: In the 60 measurements, ABF measured using thermodilution averaged 41 ± 17 ml/min (range from 17 to 90) and CBF values obtained with the coronary flow probes averaged 37 ± 18 ml/min (range from 8 to 87). The corresponding Rµ values were 1532 ± 791 (range from 323 to 5103) and 1903 ± 1162 (range from 287 to 6000) Woods units using thermodilution and coronary flow probe assessments, respectively. ABF and Rµ values measured using thermodilution were significantly correlated with the corresponding measurements obtained using coronary flow probes (R = 0.84 [0.73-0.95] and R = 0.80 [0.69-0.88], respectively). CONCLUSIONS: ABF and Rµ assessed by continuous saline infusion through a RayFlow® catheter closely correlate with measurements obtained with the gold standard coronary flow probes in a swine model.


Asunto(s)
Circulación Coronaria , Termodilución , Animales , Velocidad del Flujo Sanguíneo , Circulación Coronaria/fisiología , Vasos Coronarios , Humanos , Porcinos , Resultado del Tratamiento
5.
Eur Heart J ; 42(18): 1760-1769, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33580685

RESUMEN

AIMS: The rapid endothelialization of bare metal stents (BMS) is counterbalanced by inflammation-induced neointimal growth. Drug-eluting stents (DES) prevent leukocyte activation but impair endothelialization, delaying effective device integration into arterial walls. Previously, we have shown that engaging the vascular CD31 co-receptor is crucial for endothelial and leukocyte homeostasis and arterial healing. Furthermore, we have shown that a soluble synthetic peptide (known as P8RI) acts like a CD31 agonist. The aim of this study was to evaluate the effect of CD31-mimetic metal stent coating on the in vitro adherence of endothelial cells (ECs) and blood elements and the in vivo strut coverage and neointimal growth. METHODS AND RESULTS: We produced Cobalt Chromium discs and stents coated with a CD31-mimetic peptide through two procedures, plasma amination or dip-coating, both yielding comparable results. We found that CD31-mimetic discs significantly reduced the extent of primary human coronary artery EC and blood platelet/leukocyte activation in vitro. In vivo, CD31-mimetic stent properties were compared with those of DES and BMS by coronarography and microscopy at 7 and 28 days post-implantation in pig coronary arteries (n = 9 stents/group/timepoint). Seven days post-implantation, only CD31-mimetic struts were fully endothelialized with no activated platelets/leukocytes. At day 28, neointima development over CD31-mimetic stents was significantly reduced compared to BMS, appearing as a normal arterial media with the absence of thrombosis contrary to DES. CONCLUSION: CD31-mimetic coating favours vascular homeostasis and arterial wall healing, preventing in-stent stenosis and thrombosis. Hence, such coatings seem to improve the metal stent biocompatibility.


Asunto(s)
Stents Liberadores de Fármacos , Neointima , Animales , Vasos Coronarios , Células Endoteliales , Inflamación/prevención & control , Neointima/prevención & control , Diseño de Prótesis , Stents , Porcinos
6.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142751

RESUMEN

Exercise induces cardioprotection against myocardial infarction, despite obesity, by restoring pro-survival pathways and increasing resistance of mitochondrial permeability transition pore (mPTP) opening at reperfusion. Among the mechanisms involved in the inactivation of these pathways, oxysterols appear interesting. Thus, we investigated the influence of regular exercise on the reperfusion injury salvage kinase (RISK) pathway, oxysterols, and mitochondria, in the absence of ischemia-reperfusion. We also studied 7ß-hydroxycholesterol (7ßOH) concentration (mass spectrometry) in human lean and obese subjects. Wild-type (WT) and obese (ob/ob) mice were assigned to sedentary conditions or regular treadmill exercise. Exercise significantly increased Akt phosphorylation, whereas 7ßOH concentration was reduced. Moreover, exercise induced the translocation of PKCε from the cytosol to mitochondria. However, exercise did not affect the calcium concentration required to open mPTP in the mitochondria, neither in WT nor in ob/ob animals. Finally, human plasma 7ßOH concentration was consistent with observations made in mice. In conclusion, regular exercise enhanced the RISK pathway by increasing kinase phosphorylation and PKCε translocation and decreasing 7ßOH concentration. This activation needs the combination with stress conditions, i.e., ischemia-reperfusion, in order to inhibit mPTP opening at the onset of reperfusion. The human findings suggest 7ßOH as a candidate marker for evaluating cardiovascular risk factors in obesity.


Asunto(s)
Daño por Reperfusión Miocárdica , Oxiesteroles , Animales , Humanos , Ratones , Calcio/metabolismo , Ratones Obesos , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica/metabolismo , Obesidad/metabolismo , Oxiesteroles/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
7.
J Pharmacol Exp Ther ; 376(3): 348-357, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33303698

RESUMEN

Mitochondrial permeability transition pore (mPTP) opening is a key event in cell death during myocardial ischemia reperfusion. Inhibition of its modulator cyclophilin D (CypD) by cyclosporine A (CsA) reduces ischemia-reperfusion injury. The use of cyclosporine A in this indication is debated; however, targeting mPTP remains a major goal to achieve. We investigated the protective effects of a new original small-molecule cyclophilin inhibitor C31, which was specifically designed to target CypD. CypD peptidylprolyl cis-trans isomerase (PPIase) activity was assessed by the standard chemotrypsin-coupled assay. The effects of C31 on mPTP opening were investigated in isolated mouse cardiac mitochondria by measuring mitochondrial swelling and calcium retention capacity (CRC) in rat H9C2 cardiomyoblasts and in adult mouse cardiomyocytes by fluorescence microscopy in isolated perfused mouse hearts and ex vivo after drug infusion in mice. C31 potently inhibited CypD PPIase activity and mitochondrial swelling. C31 was more effective at increasing mitochondrial CRC than CsA and was still able to increase CRC in Ppif -/- (CypD-inactivated) cardiac mitochondria. C31 delayed both mPTP opening and cell death in cardiomyocytes subjected to hypoxia reoxygenation. However, high concentrations of both drugs were necessary to reduce mPTP opening in isolated perfused hearts, and neither CsA nor C31 inhibited mPTP opening in heart after in vivo infusion, underlying the importance of myocardial drug distribution for cardioprotection. C31 is an original inhibitor of mPTP opening involving both CypD-dependent and -independent mechanisms. It constitutes a promising new cytoprotective agent. Optimization of its pharmacokinetic properties is now required prior to its use against cardiac ischemia-reperfusion injury. SIGNIFICANCE STATEMENT: This study demonstrates that the new cyclophilin inhibitor C31 potently inhibits cardiac mitochondrial permeability transition pore (mPTP) opening in vitro and ex vivo. The dual mechanism of action of C31 allows the prevention of mPTP opening beyond cyclophilin D inhibition. Further development of the compound might bring promising drug candidates for cardioprotection. However, the lack of effect of both C31 and cyclosporine A after systemic administration demonstrates the difficulties of targeting myocardial mitochondria in vivo and should be taken into account in cardioprotective strategies.


Asunto(s)
Corazón/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/antagonistas & inhibidores , Miocardio/metabolismo , Pirrolidinas/química , Pirrolidinas/farmacología , Animales , Transporte Biológico , Citosol/efectos de los fármacos , Citosol/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocardio/citología , Pirrolidinas/metabolismo
8.
Crit Care ; 25(1): 369, 2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34774087

RESUMEN

BACKGROUND: Extracorporeal cardiopulmonary resuscitation (E-CPR) is used for the treatment of refractory cardiac arrest. However, the optimal target to reach for mean arterial pressure (MAP) remains to be determined. We hypothesized that MAP levels critically modify cerebral hemodynamics during E-CPR and tested two distinct targets (65-75 vs 80-90 mmHg) in a porcine model. METHODS: Pigs were submitted to 15 min of untreated ventricular fibrillation followed by 30 min of E-CPR. Defibrillations were then delivered until return of spontaneous circulation (ROSC). Extracorporeal circulation was initially set to an average flow of 40 ml/kg/min. The dose of epinephrine was set to reach a standard or a high MAP target level (65-75 vs 80-90 mmHg, respectively). Animals were followed during 120-min after ROSC. RESULTS: Six animals were included in both groups. During E-CPR, high MAP improved carotid blood flow as compared to standard MAP. After ROSC, this was conversely decreased in high versus standard MAP, while intra-cranial pressure was superior. The pressure reactivity index (PRx), which is the correlation coefficient between arterial blood pressure and intracranial pressure, also demonstrated inverted patterns of alteration according to MAP levels during E-CPR and after ROSC. In standard-MAP, PRx was transiently positive during E-CPR before returning to negative values after ROSC, demonstrating a reversible alteration of cerebral autoregulation during E-CPR. In high-MAP, PRx was negative during E-CPR but became sustainably positive after ROSC, demonstrating a prolonged alteration in cerebral autoregulation after ROSC. It was associated with a significant decrease in cerebral oxygen consumption in high- versus standard-MAP after ROSC. CONCLUSIONS: During early E-CPR, MAP target above 80 mmHg is associated with higher carotid blood flow and improved cerebral autoregulation. This pattern is inverted after ROSC with a better hemodynamic status with standard versus high-MAP.


Asunto(s)
Presión Arterial , Reanimación Cardiopulmonar , Circulación Cerebrovascular , Oxigenación por Membrana Extracorpórea , Animales , Presión Arterial/fisiología , Reanimación Cardiopulmonar/métodos , Circulación Cerebrovascular/fisiología , Hemodinámica , Porcinos , Resultado del Tratamiento
9.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806919

RESUMEN

Argon inhalation attenuates multiorgan failure (MOF) after experimental ischemic injury. We hypothesized that this protection could involve decreased High Mobility Group Box 1 (HMGB1) systemic release. We investigated this issue in an animal model of MOF induced by aortic cross-clamping. Anesthetized rabbits were submitted to supra-coeliac aortic cross-clamping for 30 min, followed by 300 min of reperfusion. They were randomly divided into three groups (n = 7/group). The Control group inhaled nitrogen (70%) and oxygen (30%). The Argon group was exposed to a mixture of argon (70%) and oxygen (30%). The last group inhaled nitrogen/oxygen (70/30%) with an administration of the HMGB1 inhibitor glycyrrhizin (4 mg/kg i.v.) 5 min before aortic unclamping. At the end of follow-up, cardiac output was significantly higher in Argon and Glycyrrhizin vs. Control (60 ± 4 and 49 ± 4 vs. 33 ± 8 mL/kg/min, respectively). Metabolic acidosis was attenuated in Argon and Glycyrrhizin vs. Control, along with reduced amount of norepinephrine to reverse arterial hypotension. This was associated with reduced interleukin-6 and HMGB1 plasma concentration in Argon and Glycyrrhizin vs. Control. End-organ damages were also attenuated in the liver and kidney in Argon and Glycyrrhizin vs. Control, respectively. Argon inhalation reduced HMGB1 blood level after experimental aortic cross-clamping and provided similar benefits to direct HMGB1 inhibition.


Asunto(s)
Argón/farmacología , Proteína HMGB1/antagonistas & inhibidores , Insuficiencia Multiorgánica/tratamiento farmacológico , Insuficiencia Multiorgánica/metabolismo , Animales , Biopsia , Presión Sanguínea/efectos de los fármacos , Gasto Cardíaco/efectos de los fármacos , Citocinas/sangre , Modelos Animales de Enfermedad , Pruebas de Función Cardíaca , Hemodinámica/efectos de los fármacos , Inmunohistoquímica , Masculino , Insuficiencia Multiorgánica/diagnóstico , Insuficiencia Multiorgánica/etiología , Conejos
10.
Gastroenterology ; 157(5): 1368-1382, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31336123

RESUMEN

BACKGROUND & AIMS: Hepatic ischemia/reperfusion injury is a complication of liver surgery that involves mitochondrial dysfunction resulting from mitochondrial permeability transition pore (mPTP) opening. Cyclophilin D (PPIF or CypD) is a peptidyl-prolyl cis-trans isomerase that regulates mPTP opening in the inner mitochondrial membrane. We investigated whether and how recently created small-molecule inhibitors of CypD prevent opening of the mPTP in hepatocytes and the resulting effects in cell models and livers of mice undergoing ischemia/reperfusion injury. METHODS: We measured the activity of 9 small-molecule inhibitors of cyclophilins in an assay of CypD activity. The effects of the small-molecule CypD inhibitors or vehicle on mPTP opening were assessed by measuring mitochondrial swelling and calcium retention in isolated liver mitochondria from C57BL/6J (wild-type) and Ppif-/- (CypD knockout) mice and in primary mouse and human hepatocytes by fluorescence microscopy. We induced ischemia/reperfusion injury in livers of mice given a small-molecule CypD inhibitor or vehicle before and during reperfusion and collected samples of blood and liver for histologic analysis. RESULTS: The compounds inhibited peptidyl-prolyl isomerase activity (half maximal inhibitory concentration values, 0.2-16.2 µmol/L) and, as a result, calcium-induced mitochondrial swelling, by preventing mPTP opening (half maximal inhibitory concentration values, 1.4-132 µmol/L) in a concentration-dependent manner. The most potent inhibitor (C31) bound CypD with high affinity and inhibited swelling in mitochondria from livers of wild-type and Ppif-/- mice (indicating an additional, CypD-independent effect on mPTP opening) and in primary human and mouse hepatocytes. Administration of C31 in mice with ischemia/reperfusion injury before and during reperfusion restored hepatic calcium retention capacity and oxidative phosphorylation parameters and reduced liver damage compared with vehicle. CONCLUSIONS: Recently created small-molecule inhibitors of CypD reduced calcium-induced swelling in mitochondria from mouse and human liver tissues. Administration of these compounds to mice during ischemia/reperfusion restored hepatic calcium retention capacity and oxidative phosphorylation parameters and reduced liver damage. These compounds might be developed to protect patients from ischemia/reperfusion injury after liver surgery or for other hepatic or nonhepatic disorders related to abnormal mPTP opening.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Hepatopatías/prevención & control , Hígado/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Peptidil-Prolil Isomerasa F/antagonistas & inhibidores , Daño por Reperfusión/prevención & control , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Peptidil-Prolil Isomerasa F/genética , Peptidil-Prolil Isomerasa F/metabolismo , Citoprotección , Modelos Animales de Enfermedad , Humanos , Hígado/enzimología , Hígado/patología , Hepatopatías/enzimología , Hepatopatías/genética , Hepatopatías/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Dilatación Mitocondrial/efectos de los fármacos , Daño por Reperfusión/enzimología , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Transducción de Señal
11.
J Mol Cell Cardiol ; 131: 155-163, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31051181

RESUMEN

The mechanical and cellular relationships between systole and diastole during left ventricular (LV) dysfunction remain to be established. LV contraction-relaxation coupling was examined during LV hypertrophy induced by chronic hypertension. Chronically instrumented pigs received angiotensin II infusion for4weeks to induce chronic hypertension (133 ±â€¯7 mmHg vs 98 ±â€¯5 mmHg for mean arterial pressure at Day 28 vs 0, respectively) and LV hypertrophy. LV function was investigated with the instrumentation and echocardiography for LV twist-untwist assessment before and after dobutamine infusion. The cellular mechanisms were investigated by exploring the intracellular Ca2+ handling. At Day 28, pigs exhibited LV hypertrophy with LV diastolic dysfunction (impaired LV isovolumic relaxation, increased LV end-diastolic pressure, decreased and delayed LV untwisting rate) and LV systolic dysfunction (impaired LV isovolumic contraction and twist) although LV ejection fraction was preserved. Isolated cardiomyocytes exhibited altered shortening and lengthening. Interestingly, contraction-relaxation coupling remained preserved both in vivo and in vitro during LV hypertrophy. LV systolic and diastolic dysfunctions were associated to post-translational remodeling and dysfunction of the type 2 cardiac ryanodine receptor/Ca2+ release channel (RyR2), i.e., PKA hyperphosphorylation of RyR2, depletion of calstabin 2 (FKBP12.6), RyR2 leak and hypersensitivity of RyR2 to cytosolic Ca2+ during both contraction and relaxation phases. In conclusion, LV contraction-relaxation coupling remained preserved during chronic hypertension despite LV systolic and diastolic dysfunctions. This implies that LV diastolic dysfunction is accompanied by LV systolic dysfunction. At the cellular level, this is linked to sarcoplasmic reticulum Ca2+ leak through PKA-mediated RyR2 hyperphosphorylation and depletion of its stabilizing partner.


Asunto(s)
Diástole/fisiología , Hipertensión/fisiopatología , Sístole/fisiología , Animales , Western Blotting , Ecocardiografía , Frecuencia Cardíaca/fisiología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Inmunoprecipitación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Porcinos , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/fisiología
12.
Circ Res ; 120(4): 645-657, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28096195

RESUMEN

RATIONALE: Although the second messenger cyclic AMP (cAMP) is physiologically beneficial in the heart, it largely contributes to cardiac disease progression when dysregulated. Current evidence suggests that cAMP is produced within mitochondria. However, mitochondrial cAMP signaling and its involvement in cardiac pathophysiology are far from being understood. OBJECTIVE: To investigate the role of MitEpac1 (mitochondrial exchange protein directly activated by cAMP 1) in ischemia/reperfusion injury. METHODS AND RESULTS: We show that Epac1 (exchange protein directly activated by cAMP 1) genetic ablation (Epac1-/-) protects against experimental myocardial ischemia/reperfusion injury with reduced infarct size and cardiomyocyte apoptosis. As observed in vivo, Epac1 inhibition prevents hypoxia/reoxygenation-induced adult cardiomyocyte apoptosis. Interestingly, a deleted form of Epac1 in its mitochondrial-targeting sequence protects against hypoxia/reoxygenation-induced cell death. Mechanistically, Epac1 favors Ca2+ exchange between the endoplasmic reticulum and the mitochondrion, by increasing interaction with a macromolecular complex composed of the VDAC1 (voltage-dependent anion channel 1), the GRP75 (chaperone glucose-regulated protein 75), and the IP3R1 (inositol-1,4,5-triphosphate receptor 1), leading to mitochondrial Ca2+ overload and opening of the mitochondrial permeability transition pore. In addition, our findings demonstrate that MitEpac1 inhibits isocitrate dehydrogenase 2 via the mitochondrial recruitment of CaMKII (Ca2+/calmodulin-dependent protein kinase II), which decreases nicotinamide adenine dinucleotide phosphate hydrogen synthesis, thereby, reducing the antioxidant capabilities of the cardiomyocyte. CONCLUSIONS: Our results reveal the existence, within mitochondria, of different cAMP-Epac1 microdomains that control myocardial cell death. In addition, our findings suggest Epac1 as a promising target for the treatment of ischemia-induced myocardial damage.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/biosíntesis , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Muerte Celular/fisiología , Células Cultivadas , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Microdominios de Membrana/metabolismo , Microdominios de Membrana/patología , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología , Ratas
13.
J Mol Cell Cardiol ; 114: 345-353, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29275006

RESUMEN

AIM: Duchenne Muscular Dystrophy (DMD) is associated with progressive depressed left ventricular (LV) function. However, DMD effects on myofilament structure and function are poorly understood. Golden Retriever Muscular Dystrophy (GRMD) is a dog model of DMD recapitulating the human form of DMD. OBJECTIVE: The objective of this study is to evaluate myofilament structure and function alterations in GRMD model with spontaneous cardiac failure. METHODS AND RESULTS: We have employed synchrotron X-rays diffraction to evaluate myofilament lattice spacing at various sarcomere lengths (SL) on permeabilized LV myocardium. We found a negative correlation between SL and lattice spacing in both sub-epicardium (EPI) and sub-endocardium (ENDO) LV layers in control dog hearts. In the ENDO of GRMD hearts this correlation is steeper due to higher lattice spacing at short SL (1.9µm). Furthermore, cross-bridge cycling indexed by the kinetics of tension redevelopment (ktr) was faster in ENDO GRMD myofilaments at short SL. We measured post-translational modifications of key regulatory contractile proteins. S-glutathionylation of cardiac Myosin Binding Protein-C (cMyBP-C) was unchanged and PKA dependent phosphorylation of the cMyBP-C was significantly reduced in GRMD ENDO tissue and more modestly in EPI tissue. CONCLUSIONS: We found a gradient of contractility in control dogs' myocardium that spreads across the LV wall, negatively correlated with myofilament lattice spacing. Chronic stress induced by dystrophin deficiency leads to heart failure that is tightly associated with regional structural changes indexed by increased myofilament lattice spacing, reduced phosphorylation of regulatory proteins and altered myofilament contractile properties in GRMD dogs.


Asunto(s)
Cardiomiopatías/patología , Distrofia Muscular de Duchenne/patología , Miofibrillas/patología , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Perros , Electrocardiografía , Espacio Intracelular/metabolismo , Distrofia Muscular de Duchenne/diagnóstico por imagen , Miocardio/patología , Miofibrillas/metabolismo , Fosforilación , Sarcómeros/metabolismo , Transducción de Señal , Troponina/metabolismo
14.
Br J Clin Pharmacol ; 84(6): 1170-1179, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29388238

RESUMEN

AIMS: Argon has been shown to prevent ischaemic injuries in several scenarios of regional ischaemia. We determined whether it could provide a systemic effect in a model of multiorgan failure (MOF) induced by aortic cross-clamping. METHODS: Anaesthetized rabbits were submitted to aortic cross-clamping (30 min) and subsequent reperfusion (300 min). They were either ventilated with oxygen-enriched air throughout the protocol [fraction of inspired oxygen (FiO2 ) = 30%; control group) or with a mixture of 30% oxygen and 70% argon (argon groups). In a first group treated with argon ('Argon-Total'), its administration was started 30 min before ischaemia and maintained throughout the protocol. In the two other groups, the administration was started either 30 min before ischaemia ('Argon-Pre') or at the onset of reperfusion ('Argon-Post'), for a total duration of 2 h. Cardiovascular, renal and inflammatory endpoints were assessed throughout protocol. RESULTS: Compared with control, shock was significantly attenuated in Argon-Total and Argon-Pre but not Argon-Post groups (e.g. cardiac output = 62±5 vs. 29 ± 5 ml min-1 kg-1 in Argon-Total and control groups at the end of the follow-up). Shock and renal failure were reduced in all argon vs. control groups. Histopathological examination of the gut showed attenuation of ischaemic lesions in all argon vs. control groups. Blood transcription levels of interleukin (IL) 1ß, IL-8, IL-10 and hypoxia-inducible factor 1α were not significantly different between groups. CONCLUSION: Argon attenuated clinical and biological modifications of cardiovascular, renal and intestinal systems, but not the inflammatory response, after aortic cross-clamping. The window of administration was crucial to optimize organ protection.


Asunto(s)
Lesión Renal Aguda/prevención & control , Aorta/cirugía , Argón/administración & dosificación , Isquemia Mesentérica/prevención & control , Insuficiencia Multiorgánica/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Insuficiencia Renal/prevención & control , Choque Cardiogénico/prevención & control , Lesión Renal Aguda/sangre , Lesión Renal Aguda/etiología , Lesión Renal Aguda/fisiopatología , Administración por Inhalación , Animales , Aorta/fisiopatología , Constricción , Modelos Animales de Enfermedad , Hemodinámica , Subunidad alfa del Factor 1 Inducible por Hipoxia/sangre , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inflamación/sangre , Inflamación/etiología , Mediadores de Inflamación/sangre , Interleucinas/sangre , Interleucinas/genética , Masculino , Isquemia Mesentérica/sangre , Isquemia Mesentérica/etiología , Isquemia Mesentérica/fisiopatología , Insuficiencia Multiorgánica/sangre , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/fisiopatología , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/fisiopatología , Conejos , Flujo Sanguíneo Regional , Insuficiencia Renal/sangre , Insuficiencia Renal/etiología , Insuficiencia Renal/fisiopatología , Choque Cardiogénico/sangre , Choque Cardiogénico/etiología , Choque Cardiogénico/fisiopatología , Factores de Tiempo
15.
BMC Cardiovasc Disord ; 18(1): 193, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30340532

RESUMEN

BACKGROUND: Experimental studies suggest that morphine may protect the myocardium against ischemia-reperfusion injury by activating salvage kinase pathways. The objective of this two-center, randomized, double-blind, controlled trial was to assess potential cardioprotective effects of intra-coronary morphine in patients with ST-segment elevation myocardial infarction (STEMI) referred for primary percutaneous intervention. METHODS: Ninety-one patients with STEMI were randomly assigned to intracoronary morphine (1 mg) or placebo at reperfusion of the culprit coronary artery. The primary endpoint was infarct size/left ventricular mass ratio assessed by magnetic resonance imaging on day 3-5. Secondary endpoints included the areas under the curve (AUC) for troponin T and creatine kinase over three days, left ventricular ejection fraction assessed by echocardiography on days 1 and 6, and clinical outcomes. RESULTS: Infarct size/left ventricular mass ratio was not significantly reduced by intracoronary morphine compared to placebo (27.2% ± 15.0% vs. 30.5% ± 10.6%, respectively, p = 0.28). Troponin T and creatine kinase AUCs were similar in the two groups. Morphine did not improve left ventricular ejection fraction on day 1 (49.7 ± 10.3% vs. 49.3 ± 9.3% with placebo, p = 0.84) or day 6 (48.5 ± 10.2% vs. 49.0 ± 8.5% with placebo, p = 0.86). The number of major adverse cardiac events, including stent thrombosis, during the one-year follow-up was similar in the two groups. CONCLUSIONS: Intracoronary morphine at reperfusion did not significantly reduce infarct size or improve left ventricular systolic function in patients with STEMI. Presence of comorbidities in some patients may contribute to explain these results. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01186445 (date of registration: August 23, 2010).


Asunto(s)
Morfina/administración & dosificación , Intervención Coronaria Percutánea , Sustancias Protectoras/administración & dosificación , Anciano , Método Doble Ciego , Femenino , Francia , Humanos , Inyecciones Intraarteriales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Morfina/efectos adversos , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/patología , Intervención Coronaria Percutánea/efectos adversos , Sustancias Protectoras/efectos adversos , Recuperación de la Función , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/fisiopatología , Infarto del Miocardio con Elevación del ST/terapia , Volumen Sistólico/efectos de los fármacos , Factores de Tiempo , Resultado del Tratamiento , Función Ventricular Izquierda/efectos de los fármacos
16.
Eur Heart J ; 38(3): 201-211, 2017 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-28158410

RESUMEN

Aims: Naturally secreted nanovesicles known as exosomes are required for the regenerative effects of cardiosphere-derived cells (CDCs), and exosomes mimic the benefits of CDCs in rodents. Nevertheless, exosomes have not been studied in a translationally realistic large-animal model. We sought to optimize delivery and assess the efficacy of CDC-secreted exosomes in pig models of acute (AMI) and convalescent myocardial infarction (CMI). Methods and Results: In AMI, pigs received human CDC exosomes (or vehicle) by intracoronary (IC) or open-chest intramyocardial (IM) delivery 30 min after reperfusion. No-reflow area and infarct size (IS) were assessed histologically at 48 h. Intracoronary exosomes were ineffective, but IM exosomes decreased IS from 80 ± 5% to 61 ± 12% (P= 0.001) and preserved left ventricular ejection fraction (LVEF). In a randomized placebo-controlled study of CMI, pigs 4 weeks post-myocardial infarction (MI) underwent percutaneous IM delivery of vehicle (n = 6) or CDC exosomes (n = 6). Magnetic resonance imaging (MRI) performed before and 1 month after treatment revealed that exosomes (but not vehicle) preserved LV volumes and LVEF (−0.1 ± 2.2% vs. −5.4 ± 3.6%, P= 0.01) while decreasing scar size. Histologically, exosomes decreased LV collagen content and cardiomyocyte hypertrophy while increasing vessel density. Conclusion: Cardiosphere-derived cell exosomes delivered IM decrease scarring, halt adverse remodelling and improve LVEF in porcine AMI and CMI. While conceptually attractive as cell-free therapeutic agents for myocardial infarction, exosomes have the disadvantage that IM delivery is necessary.


Asunto(s)
Cicatriz/prevención & control , Exosomas/trasplante , Infarto del Miocardio/terapia , Enfermedad Aguda , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Angiografía por Resonancia Magnética , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Neovascularización Fisiológica/fisiología , Distribución Aleatoria , Regeneración/fisiología , Esferoides Celulares/metabolismo , Porcinos , Porcinos Enanos , Función Ventricular/fisiología , Remodelación Ventricular/fisiología
17.
Br J Haematol ; 179(1): 142-153, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28643346

RESUMEN

The severity of ß-thalassaemia (ß-thal) intermedia is mainly correlated to the degree of imbalanced α/non α-globin chain synthesis. The phenotypic diversity of ß-thal depends on this imbalance and reflects all possible combinations of α- and ß-globin genotypes, levels of fetal haemoglobin (HbF) and co-inheritance of other modulating factors. This study aimed to demonstrate the validity of a new surrogate of α/non α-globin biosynthetic ratio by measuring the soluble α-Hb pool in lysed red blood cells. Our results confirm that the α-Hb pool measurement allows a good discrimination between ß-thal intermedia patients, controls and α-thal patients (P < 0·003). Receiver operator characteristic analyses revealed an area under the curve of 0·978 for the α-Hb pool measurement at a threshold of 120 ng free α-Hb/mg of total Hb/ml of haemolysate (ppm) with a sensitivity and specificity of 86% and 100%, respectively, to discriminate between ß-thal and not ß-thal subjects. Significant correlations were observed between the α-Hb pool and biological parameters of ß-thal, the most significant association being observed with red cell hexokinase activity. This study indicates that the α-Hb pool could be a new marker for assistance in diagnostic orientation of ß-thal intermedia patients and may be clinically useful for monitoring the evolution of the disequilibrium of globin synthesis in response to treatments.


Asunto(s)
Eritrocitos/metabolismo , Globinas alfa/metabolismo , Talasemia beta/sangre , Talasemia beta/diagnóstico , Adolescente , Adulto , Anciano , Biomarcadores , Estudios de Casos y Controles , Femenino , Francia , Genotipo , Pruebas Hematológicas , Humanos , Masculino , Persona de Mediana Edad , Mutación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven , Globinas alfa/genética , Talasemia alfa/sangre , Talasemia alfa/genética , Globinas beta/genética , Talasemia beta/genética
18.
Basic Res Cardiol ; 111(3): 30, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27040115

RESUMEN

Chronic hypertension is associated with left ventricular (LV) hypertrophy and LV diastolic dysfunction with impaired isovolumic relaxation and abnormal LV filling. Increased heart rate (HR) worsens these alterations. We investigated whether the I f channel blocker ivabradine exerts beneficial effects on LV filling dynamic. In this setting, we also evaluated the relationship between LV filling and isovolumic contraction as a consequence of contraction-relaxation coupling. Therefore, hypertension was induced by a continuous infusion of angiotensin II during 28 days in 10 chronically instrumented pigs. LV function was investigated after stopping angiotensin II infusion to offset the changes in loading conditions. In the normal heart, LV relaxation filling, LV early filling, LV peak early filling rate were positively correlated to HR. In contrast, these parameters were significantly reduced at day 28 vs. day 0 (18, 42, and 26 %, respectively) despite the increase in HR (108 ± 6 beats/min vs. 73 ± 2 beats/min, respectively). These abnormalities were corrected by acute administration of ivabradine (1 mg/kg, iv). Ivabradine still exerted these effects when HR was controlled at 150 beats/min by atrial pacing. Interestingly, LV relaxation filling, LV early filling and LV peak early filling were strongly correlated with both isovolumic contraction and relaxation. In conclusion, ivabradine improves LV filling during chronic hypertension. The mechanism involves LV contraction-relaxation coupling through normalization of isovolumic contraction and relaxation as well as HR-independent mechanisms.


Asunto(s)
Benzazepinas/farmacología , Fármacos Cardiovasculares/farmacología , Hipertensión/fisiopatología , Función Ventricular Izquierda/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Hemodinámica/efectos de los fármacos , Hemodinámica/fisiología , Ivabradina , Porcinos , Función Ventricular Izquierda/fisiología
19.
Anesth Analg ; 123(3): 659-69, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27482772

RESUMEN

BACKGROUND: In animal models, whole-body cooling reduces end-organ injury after cardiac arrest and other hypoperfusion states. The benefits of cooling in humans, however, are uncertain, possibly because detrimental effects of prolonged cooling may offset any potential benefit. Total liquid ventilation (TLV) provides both ultrafast cooling and rewarming. In previous reports, ultrafast cooling with TLV potently reduced neurological injury after experimental cardiac arrest in animals. We hypothesized that a brief period of rapid cooling and rewarming via TLV could also mitigate multiorgan failure (MOF) after ischemia-reperfusion induced by aortic cross-clamping. METHODS: Anesthetized rabbits were submitted to 30 minutes of supraceliac aortic cross-clamping followed by 300 minutes of reperfusion. They were allocated either to a normothermic procedure with conventional ventilation (control group) or to hypothermic TLV (33°C) before, during, and after cross-clamping (pre-clamp, per-clamp, and post-clamp groups, respectively). In all TLV groups, hypothermia was maintained for 75 minutes and switched to a rewarming mode before resumption to conventional mechanical ventilation. End points included cardiovascular, renal, liver, and inflammatory parameters measured 300 minutes after reperfusion. RESULTS: In the normothermic (control) group, ischemia-reperfusion injury produced evidence of MOF including severe vasoplegia, low cardiac output, acute kidney injury, and liver failure. In the TLV group, we observed gradual improvements in cardiac output in post-clamp, per-clamp, and pre-clamp groups versus control (53 ± 8, 64 ± 12, and 90 ± 24 vs 36 ± 23 mL/min/kg after 300 minutes of reperfusion, respectively). Liver biomarker levels were also lower in pre-clamp and per-clamp groups versus control. However, acute kidney injury was prevented in pre-clamp, and to a limited extent in per-clamp groups, but not in the post-clamp group. For instance, creatinine clearance was 4.8 ± 3.1 and 0.5 ± 0.6 mL/kg/min at the end of the follow-up in pre-clamp versus control animals (P = .0004). Histological examinations of the heart, kidney, liver, and jejunum in TLV and control groups also demonstrated reduced injury with TLV. CONCLUSIONS: A brief period of ultrafast cooling with TLV followed by rapid rewarming attenuated biochemical and histological markers of MOF after aortic cross-clamping. Cardiovascular and liver dysfunctions were limited by a brief period of hypothermic TLV, even when started after reperfusion. Conversely, acute kidney injury was limited only when hypothermia was started before reperfusion. Further work is needed to determine the clinical significance of our results and to identify the optimal duration and timing of TLV-induced hypothermia for end-organ protection in hypoperfusion states.


Asunto(s)
Aorta/patología , Hipotermia Inducida/métodos , Ventilación Liquida/métodos , Insuficiencia Multiorgánica/patología , Insuficiencia Multiorgánica/prevención & control , Animales , Constricción , Masculino , Insuficiencia Multiorgánica/etiología , Conejos , Distribución Aleatoria , Factores de Tiempo
20.
Lancet ; 383(9923): 1138-46, 2014 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-24412048

RESUMEN

BACKGROUND: Parkinson's disease is typically treated with oral dopamine replacement therapies; however, long-term treatment leads to motor complications and, occasionally, impulse control disorders caused by intermittent stimulation of dopamine receptors and off-target effects, respectively. We aimed to assess the safety, tolerability, and efficacy of bilateral, intrastriatal delivery of ProSavin, a lentiviral vector-based gene therapy aimed at restoring local and continuous dopamine production in patients with advanced Parkinson's disease. METHODS: We undertook a phase 1/2 open-label trial with 12-month follow-up at two study sites (France and UK) to assess the safety and efficacy of ProSavin after bilateral injection into the putamen of patients with Parkinson's disease. All patients were then enrolled in a separate open-label follow-up study of long-term safety. Three doses were assessed in separate cohorts: low dose (1·9×10(7) transducing units [TU]); mid dose (4·0×10(7) TU); and high dose (1×10(8) TU). Inclusion criteria were age 48-65 years, disease duration 5 years or longer, motor fluctuations, and 50% or higher motor response to oral dopaminergic therapy. The primary endpoints of the phase 1/2 study were the number and severity of adverse events associated with ProSavin and motor responses as assessed with Unified Parkinson's Disease Rating Scale (UPDRS) part III (off medication) scores, at 6 months after vector administration. Both trials are registered at ClinicalTrials.gov, NCT00627588 and NCT01856439. FINDINGS: 15 patients received ProSavin and were followed up (three at low dose, six mid dose, six high dose). During the first 12 months of follow-up, 54 drug-related adverse events were reported (51 mild, three moderate). Most common were increased on-medication dyskinesias (20 events, 11 patients) and on-off phenomena (12 events, nine patients). No serious adverse events related to the study drug or surgical procedure were reported. A significant improvement in mean UPDRS part III motor scores off medication was recorded in all patients at 6 months (mean score 38 [SD 9] vs 26 [8], n=15, p=0·0001) and 12 months (38 vs 27 [8]; n=15, p=0·0001) compared with baseline. INTERPRETATION: ProSavin was safe and well tolerated in patients with advanced Parkinson's disease. Improvement in motor behaviour was observed in all patients. FUNDING: Oxford BioMedica.


Asunto(s)
Antiparkinsonianos/administración & dosificación , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Virus de la Anemia Infecciosa Equina/genética , Enfermedad de Parkinson/terapia , Transfección/métodos , Anciano , Antiparkinsonianos/efectos adversos , Dopa-Decarboxilasa/genética , Dopamina/biosíntesis , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/virología , Estudios de Seguimiento , GTP Ciclohidrolasa/administración & dosificación , GTP Ciclohidrolasa/efectos adversos , GTP Ciclohidrolasa/genética , Terapia Genética/efectos adversos , Vectores Genéticos/efectos adversos , Humanos , Inyecciones Intralesiones , Masculino , Persona de Mediana Edad , Putamen , Transgenes/genética , Tirosina 3-Monooxigenasa/administración & dosificación , Tirosina 3-Monooxigenasa/efectos adversos , Tirosina 3-Monooxigenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA