Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 241(2): 827-844, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37974472

RESUMEN

Strigolactones (SLs) are carotenoid-derived phytohormones that regulate plant growth and development. While root-secreted SLs are well-known to facilitate plant symbiosis with beneficial microbes, the role of SLs in plant interactions with pathogenic microbes remains largely unexplored. Using genetic and biochemical approaches, we demonstrate a negative role of SLs in rice (Oryza sativa) defense against the blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae). We found that SL biosynthesis and perception mutants, and wild-type (WT) plants after chemical inhibition of SLs, were less susceptible to P. oryzae. Strigolactone deficiency also resulted in a higher accumulation of jasmonates, soluble sugars and flavonoid phytoalexins in rice leaves. Likewise, in response to P. oryzae infection, SL signaling was downregulated, while jasmonate and sugar content increased markedly. The jar1 mutant unable to synthesize jasmonoyl-l-isoleucine, and the coi1-18 RNAi line perturbed in jasmonate signaling, both accumulated lower levels of sugars. However, when WT seedlings were sprayed with glucose or sucrose, jasmonate accumulation increased, suggesting a reciprocal positive interplay between jasmonates and sugars. Finally, we showed that functional jasmonate signaling is necessary for SL deficiency to induce rice defense against P. oryzae. We conclude that a reduction in rice SL content reduces P. oryzae susceptibility by activating jasmonate and sugar signaling pathways, and flavonoid phytoalexin accumulation.


Asunto(s)
Magnaporthe , Oryza , Azúcares/metabolismo , Oryza/metabolismo , Flavonoides/metabolismo , Fitoalexinas , Magnaporthe/fisiología , Enfermedades de las Plantas/microbiología
2.
New Phytol ; 242(6): 2787-2802, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38693568

RESUMEN

Root-knot nematodes (RKN; Meloidogyne species) are plant pathogens that introduce several effectors in their hosts to facilitate infection. The actual targets and functioning mechanism of these effectors largely remain unexplored. This study illuminates the role and interplay of the Meloidogyne javanica nematode effector ROS suppressor (Mj-NEROSs) within the host plant environment. Mj-NEROSs suppresses INF1-induced cell death as well as flg22-induced callose deposition and reactive oxygen species (ROS) production. A transcriptome analysis highlighted the downregulation of ROS-related genes upon Mj-NEROSs expression. NEROSs interacts with the plant Rieske's iron-sulfur protein (ISP) as shown by yeast-two-hybrid and bimolecular fluorescence complementation. Secreted from the subventral pharyngeal glands into giant cells, Mj-NEROSs localizes in the plastids where it interacts with ISP, subsequently altering electron transport rates and ROS production. Moreover, our results demonstrate that isp Arabidopsis thaliana mutants exhibit increased susceptibility to M. javanica, indicating ISP importance for plant immunity. The interaction of a nematode effector with a plastid protein highlights the possible role of root plastids in plant defense, prompting many questions on the details of this process.


Asunto(s)
Arabidopsis , Complejo III de Transporte de Electrones , Inmunidad de la Planta , Plastidios , Especies Reactivas de Oxígeno , Tylenchoidea , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/parasitología , Arabidopsis/inmunología , Arabidopsis/genética , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Animales , Plastidios/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Unión Proteica , Mutación/genética , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética
3.
New Phytol ; 242(1): 262-277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332248

RESUMEN

Plants are simultaneously attacked by different pests that rely on sugars uptake from plants. An understanding of the role of plant sugar allocation in these multipartite interactions is limited. Here, we characterized the expression patterns of sucrose transporter genes and evaluated the impact of targeted transporter gene mutants and brown planthopper (BPH) phloem-feeding and oviposition on root sugar allocation and BPH-reduced rice susceptibility to Meloidogyne graminicola. We found that the sugar transporter genes OsSUT1 and OsSUT2 are induced at BPH oviposition sites. OsSUT2 mutants showed a higher resistance to gravid BPH than to nymph BPH, and this was correlated with callose deposition, as reflected in a different effect on M. graminicola infection. BPH phloem-feeding caused inhibition of callose deposition that was counteracted by BPH oviposition. Meanwhile, this pivotal role of sugar allocation in BPH-reduced rice susceptibility to M. graminicola was validated on rice cultivar RHT harbouring BPH resistance genes Bph3 and Bph17. In conclusion, we demonstrated that rice susceptibility to M. graminicola is regulated by BPH phloem-feeding and oviposition on rice through differences in plant sugar allocation.


Asunto(s)
Hemípteros , Oryza , Tylenchoidea , Animales , Femenino , Hemípteros/fisiología , Azúcares/metabolismo , Oryza/metabolismo
4.
Plant Cell Environ ; 47(5): 1732-1746, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311858

RESUMEN

The root-knot nematode Meloidogyne graminicola secretes effectors into rice tissues to modulate host immunity. Here, we characterised MgCRT1, a calreticulin protein of M. graminicola, and identified its target in the plant. In situ hybridisation showed MgCRT1 mRNA accumulating in the subventral oesophageal gland in J2 nematodes. Immunolocalization indicated MgCRT1 localises in the giant cells during parasitism. Host-induced gene silencing of MgCRT1 reduced the infection ability of M. graminicola, while over-expressing MgCRT1 enhanced rice susceptibility to M. graminicola. A yeast two-hybrid approach identified the calmodulin-like protein OsCML31 as an interactor of MgCRT1. OsCML31 interacts with the high mobility group protein OsHMGB1 which is a conserved DNA binding protein. Knockout of OsCML31 or overexpression of OsHMGB1 in rice results in enhanced susceptibility to M. graminicola. In contrast, overexpression of OsCML31 or knockout of OsHMGB1 in rice decreases susceptibility to M. graminicola. The GST-pulldown and luciferase complementation imaging assay showed that MgCRT1 decreases the interaction of OsCML31 and OsHMGB1 in a competitive manner. In conclusion, when M. graminicola infects rice and secretes MgCRT1 into rice, MgCRT1 interacts with OsCML31 and decreases the association of OsCML31 with OsHMGB1, resulting in the release of OsHMGB1 to enhance rice susceptibility.


Asunto(s)
Oryza , Tylenchoidea , Animales , Enfermedades de las Plantas , Calmodulina/metabolismo , Oryza/metabolismo , Calreticulina/genética
5.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569502

RESUMEN

The burrowing nematode Radopholus similis is considered a major problem of intensive banana cultivation. It can cause extensive root damage resulting in the toppling disease of banana, which means that plants fall to the ground. Soaking R. similis in double-stranded (ds) RNA of the nematode genes Rps13, chitin synthase (Chs-2), Unc-87, Pat-10 or beta-1,4-endoglucanase (Eng1a) suppressed reproduction on carrot discs, from 2.8-fold (Chs-2) to 7-fold (Rps13). The East African Highland Banana cultivar Nakitembe was then transformed with constructs for expression of dsRNA against the same genes, and for each construct, 30 independent transformants were tested with nematode infection. Four months after transfer from in vitro culture to the greenhouse, the banana plants were transferred to a screenhouse and inoculated with 2000 nematodes per plant, and thirteen weeks later, they were analyzed for several parameters including plant growth, root necrosis and final nematode population. Plants with dsRNA constructs against the nematode genes were on average showing lower nematode multiplication and root damage than the nontransformed controls or the banana plants expressing dsRNA against the nonendogenous gene. In conclusion, RNAi seems to efficiently protect banana against damage caused by R. similis, opening perspectives to control this pest.

6.
Planta ; 255(3): 70, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35184234

RESUMEN

MAIN CONCLUSION: Three types of nematode-feeding sites (NFSs) caused by M. graminicola on rice were suggested, and the NFS polarized expansion stops before the full NFS maturation that occurs at adult female stage. Root-knot nematodes, Meloidogyne spp., secrete effectors and recruit host genes to establish their feeding sites giant cells, ensuring their nutrient acquisition. There is still a limited understanding of the mechanism underlying giant cell development. Here, the three-dimensional structures of M. graminicola-caused nematode-feeding sites (NFSs) on rice as well as changes in morphological features and cytoplasm density of the giant cells (GCs) during nematode parasitism were reconstructed and characterized by confocal microscopy and the Fiji software. Characterization of morphological features showed that three types of M. graminicola-caused NFSs, type I-III, were detected during parasitism at the second juvenile (J2), the third juvenile (J3), the fourth juvenile (J4) and adult female stages. Type I is the majority at all stages and type II develops into type I at J3 stage marked by its longitudinal growth. Meanwhile, NFSs underwent polarized expansion, where the lateral and longitudinal expansion ceased at later parasitic J2 stage and the non-feeding J4 stage, respectively. The investigation of giant cell cytoplasm density indicates that it reaches a peak at the midpoint of early parasitic J2 and adult female stages. Our data suggest the formation of three types of NFSs caused by M. graminicola on rice and the NFS polarized expansion stopping before full NFS maturation, which provides unprecedented spatio-temporal characterization of development of giant cells caused by a root-knot nematode.


Asunto(s)
Oryza , Tylenchoidea , Animales , Citoplasma/metabolismo , Células Gigantes , Oryza/genética , Enfermedades de las Plantas/parasitología , Tylenchoidea/genética
7.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-33860252

RESUMEN

Rotylenchus wimbii n. sp. was found associated with finger millet in Kenya and is described based on light microscopy, scanning electron microscopy, and molecular information. Sequence analysis was performed on ITS, 18S, and D2-D3 of 28S of ribosomal DNA and COI of mitochondrial DNA. This new species is characterized by a moderate female body size of 0.6 to 0.8 mm, a continuous hemispherical lip region with four annuli, 3 to 4 irregular blocks on the basal lip annule, absence of longitudinal cuticular striations in anterior region, four lateral lines forming three equal bands which are areolated mainly at pharynx level, a robust stylet of 23 to 27 µm of which 45 to 53% is cone part, and with rounded to sometimes indented knobs, a secretory-excretory pore around level of pharyngo-intestinal junction, didelphic-amphidelphic reproductive system, vulva without distinct epiptygma, indistinct to empty spermatheca, tail usually truncated with 5 to 9 annuli, phasmids located at 7 to 17 annuli anterior to anus, and absence of males. Molecular phylogenies, in combination with species delimitation, supported the distinctiveness of Rotylenchus wimbii n. sp. and revealed some mislabeled Rotylenchus brevicaudatus sequences in GenBank.

8.
New Phytol ; 227(1): 200-215, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32129890

RESUMEN

Root-knot nematodes (RKNs; Meloidogyne spp.) induce new post-embryogenic organs within the roots (galls) where they stablish and differentiate nematode feeding cells, giant cells (GCs). The developmental programmes and functional genes involved remain poorly defined. Arabidopsis root apical meristem (RAM), lateral root (LR) and callus marker lines, SHORT-ROOT/SHR, SCARECROW/SCR, SCHIZORIZA/SCZ, WUSCHEL-RELATED-HOMEOBOX-5/WOX5, AUXIN-RESPONSIVE-FACTOR-5/ARF5, ARABIDOPSIS-HISTIDINE PHOSPHOTRANSFER-PROTEIN-6/AHP6, GATA-TRANSCRIPTION FACTOR-23/GATA23 and S-PHASE-KINASE-ASSOCIATED-PROTEIN2B/SKP2B, were analysed for nematode-dependent expression. Their corresponding loss-of-function lines, including those for LR upstream regulators, SOLITARY ROOT/SLR/IAA14, BONDELOS/BDL/IAA12 and INDOLE-3-ACETIC-ACID-INDUCIBLE-28/IAA28, were tested for RKN resistance/tolerance. LR genes, for example ARF5 (key factor for root stem-cell niche regeneration), GATA23 (which specifies pluripotent founder cells) and AHP6 (cytokinin-signalling-inhibitor regulating pericycle cell-divisions orientation), show a crucial function during gall formation. RKNs do not compromise the number of founder cells or LR primordia but locally induce gall formation possibly by tuning the auxin/cytokinin balance in which AHP6 might be necessary. Key RAM marker genes were induced and functional in galls. Therefore, the activation of plant developmental programmes promoting transient-pluripotency/stemness leads to the generation of quiescent-centre and meristematic-like cell identities within the vascular cylinder of galls. Nematodes enlist developmental pathways of new organogenesis and/or root regeneration in the vascular cells of galls. This should determine meristematic cell identities with sufficient transient pluripotency for gall organogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas/metabolismo
9.
J Exp Bot ; 71(14): 4271-4284, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32242224

RESUMEN

Ascorbic acid (AA) is the major antioxidant buffer produced in the shoot tissue of plants. Previous studies on root-knot nematode (RKN; Meloidogyne graminicola)-infected rice (Oryza sativa) plants showed differential expression of AA-recycling genes, although their functional role was unknown. Our results confirmed increased dehydroascorbate (DHA) levels in nematode-induced root galls, while AA mutants were significantly more susceptible to nematode infection. External applications of ascorbate oxidase (AO), DHA, or reduced AA, revealed systemic effects of ascorbate oxidation on rice defence versus RKN, associated with a primed accumulation of H2O2 upon nematode infection. To confirm and further investigate these systemic effects, a transcriptome analysis was done on roots of foliar AO-treated plants, revealing activation of the ethylene (ET) response and jasmonic acid (JA) biosynthesis pathways in roots, which was confirmed by hormone measurements. Activation of these pathways by methyl-JA, or ethephon treatment can complement the susceptibility phenotype of the rice Vitamin C (vtc1) mutant. Experiments on the jasmonate signalling (jar1) mutant or using chemical JA/ET inhibitors confirm that the effects of ascorbate oxidation are dependent on both the JA and ET pathways. Collectively, our data reveal a novel pathway in which ascorbate oxidation induces systemic defence against RKNs.


Asunto(s)
Oryza , Tylenchoidea , Animales , Ácido Ascórbico , Peróxido de Hidrógeno , Enfermedades de las Plantas , Raíces de Plantas
10.
Phytopathology ; 110(9): 1572-1577, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32314949

RESUMEN

The sedentary root-knot nematodes, Meloidogyne spp., and the migratory root-lesion nematodes, Pratylenchus spp., cause significant yield losses, particularly in aerobic and upland rice production systems. Recently, the Asian rice Oryza sativa accessions LD 24 and Khao Pahk Maw (KPM) were shown to be highly resistant to M. graminicola. In this study, we have analyzed the responses and broadness of resistance of these two rice genotypes to another root-knot nematode M. javanica and a root-lesion nematode P. zeae. The penetration as well as post-penetration development and reproduction of nematodes were compared including known susceptible and resistant genotypes. Our results indicate that the genotype KPM confers strong resistance to both M. javanica and P. zeae, while LD 24 was resistant to M. javanica and susceptible to P. zeae. Detailed observations revealed that similar numbers of M. javanica or P. zeae penetrated the resistant and susceptible hosts during early infection stages. However, the development and reproduction of both nematodes were arrested or reduced in resistant genotypes, implying that resistance occurs at the post-penetration stage.


Asunto(s)
Oryza , Tylenchoidea , Animales , Genotipo , Enfermedades de las Plantas
11.
New Phytol ; 224(1): 454-465, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31125438

RESUMEN

Strigolactones (SLs) are carotenoid-derived plant hormones that also act in the rhizosphere to stimulate germination of root-parasitic plants and enhance plant symbiosis with beneficial microbes. Here, the role of SLs was investigated in the interaction of rice (Oryza sativa) roots with the root-knot nematode Meloidogyne graminicola. Genetic approaches and chemical sprays were used to manipulate SL signaling in rice before infection with M. graminicola. Then, nematode performance was evaluated and plant defense hormones were quantified. Meloidogyne graminicola infection induced SL biosynthesis and signaling and suppressed jasmonic acid (JA)-based defense in rice roots, suggesting a potential role of SLs during nematode infection. Whereas the application of a low dose of the SL analogue GR24 increased nematode infection and decreased jasmonate accumulation, the SL biosynthesis and signaling d mutants were less susceptible to M. graminicola, and constitutively accumulated JA and JA-isoleucine compared with wild-type plants. Spraying with 0.1 µM GR24 restored nematode susceptibility in SL-biosynthesis mutants but not in the signaling mutant. Furthermore, foliar application of the SL biosynthesis inhibitor TIS108 impeded nematode infection and increased jasmonate levels in rice roots. In conclusion, SL signaling in rice suppresses jasmonate accumulation and promotes root-knot nematode infection.


Asunto(s)
Ciclopentanos/metabolismo , Lactonas/farmacología , Oryza/metabolismo , Oryza/parasitología , Oxilipinas/metabolismo , Enfermedades de las Plantas/parasitología , Raíces de Plantas/parasitología , Tylenchoidea/fisiología , Animales , Vías Biosintéticas/efectos de los fármacos , Genes de Plantas , Hexanonas/farmacología , Modelos Biológicos , Mutación/genética , Oryza/efectos de los fármacos , Oryza/genética , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/parasitología , Raíces de Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Triazoles/farmacología , Tylenchoidea/efectos de los fármacos
12.
New Phytol ; 218(2): 646-660, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29464725

RESUMEN

Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice-Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant-pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA-JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode.


Asunto(s)
Ciclopentanos/farmacología , Giberelinas/farmacología , Oryza/inmunología , Oryza/parasitología , Oxilipinas/farmacología , Tylenchoidea/fisiología , Animales , Transporte Biológico/efectos de los fármacos , Susceptibilidad a Enfermedades , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Oryza/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Tumores de Planta/parasitología , Tylenchoidea/efectos de los fármacos
13.
Anal Bioanal Chem ; 410(18): 4527-4539, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29796899

RESUMEN

Phytohormones are signaling and regulating metabolites involved in numerous plant processes, including growth, development, and responses to stress. Currently, the focus is on the analysis of multiple phytohormones in order to characterize crosstalk and hormone signaling networks. In this paper, representative phytohormones of the major classes are simultaneously determined in rice tissues by a generic solid-liquid extraction, followed by liquid chromatography and electrospray ionization high-resolution tandem mass spectrometry using a Q-Exactive™ instrument. After a thorough optimization of the sample preparation, the analytical method was fully validated toward the ultra-trace quantification of six a priori selected plant hormones using three scan modes of the quadrupole-Orbitrap instrument: full-scan high-resolution mass spectrometry, targeted single ion monitoring (t-SIM), and t-SIM followed by data-dependent tandem mass spectrometry. Overall, a similar quantitative performance was noticed for the different scan modes. The analytical method was successfully applied to measure basal phytohormone levels in six different rice accessions, comprising Oryza sativa ssp. japonica, indica, and Oryza glaberrima. Hormone concentrations were higher in shoots than in roots or at least similar. Except for a lower level of salicylic acid in shoots of O. glaberrima versus O. sativa, no other differences in hormone levels could be noticed that were dependent of the (sub)species assignment of the analyzed accessions. Making use of the benefits of full-scan high-resolution mass spectrometry, a first post-run suspect screening was performed, suggesting - based on accurate mass measurements and isotopic patterns - the possible presence of about 50 additional plant hormones in the rice tissues. Graphical abstract ᅟ.


Asunto(s)
Oryza/química , Reguladores del Crecimiento de las Plantas/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Límite de Detección , Oryza/clasificación , Reguladores del Crecimiento de las Plantas/aislamiento & purificación , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Extracción en Fase Sólida/métodos , Especificidad de la Especie
14.
Proc Natl Acad Sci U S A ; 112(18): 5844-9, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25902487

RESUMEN

Agrobacterium rhizogenes and Agrobacterium tumefaciens are plant pathogenic bacteria capable of transferring DNA fragments [transfer DNA (T-DNA)] bearing functional genes into the host plant genome. This naturally occurring mechanism has been adapted by plant biotechnologists to develop genetically modified crops that today are grown on more than 10% of the world's arable land, although their use can result in considerable controversy. While assembling small interfering RNAs, or siRNAs, of sweet potato plants for metagenomic analysis, sequences homologous to T-DNA sequences from Agrobacterium spp. were discovered. Simple and quantitative PCR, Southern blotting, genome walking, and bacterial artificial chromosome library screening and sequencing unambiguously demonstrated that two different T-DNA regions (IbT-DNA1 and IbT-DNA2) are present in the cultivated sweet potato (Ipomoea batatas [L.] Lam.) genome and that these foreign genes are expressed at detectable levels in different tissues of the sweet potato plant. IbT-DNA1 was found to contain four open reading frames (ORFs) homologous to the tryptophan-2-monooxygenase (iaaM), indole-3-acetamide hydrolase (iaaH), C-protein (C-prot), and agrocinopine synthase (Acs) genes of Agrobacterium spp. IbT-DNA1 was detected in all 291 cultigens examined, but not in close wild relatives. IbT-DNA2 contained at least five ORFs with significant homology to the ORF14, ORF17n, rooting locus (Rol)B/RolC, ORF13, and ORF18/ORF17n genes of A. rhizogenes. IbT-DNA2 was detected in 45 of 217 genotypes that included both cultivated and wild species. Our finding, that sweet potato is naturally transgenic while being a widely and traditionally consumed food crop, could affect the current consumer distrust of the safety of transgenic food crops.


Asunto(s)
Agrobacterium/genética , Genoma de Planta , Ipomoea batatas/genética , Plantas Modificadas Genéticamente , ADN Bacteriano/genética , ADN de Plantas/genética , Inocuidad de los Alimentos , Transferencia de Gen Horizontal , Sistemas de Lectura Abierta , Filogenia , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Tallos de la Planta/metabolismo , ARN Interferente Pequeño/genética , Análisis de Secuencia de ADN
15.
Mol Plant Microbe Interact ; 30(3): 255-266, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28151048

RESUMEN

Magnaporthe oryzae (rice blast) and the root-knot nematode Meloidogyne graminicola are causing two of the most important pathogenic diseases jeopardizing rice production. Here, we show that root-knot nematode infestation on rice roots leads to important above-ground changes in plant immunity gene expression, which is correlated with significantly enhanced susceptibility to blast disease. A detailed metabolic analysis of oxidative stress responses and hormonal balances demonstrates that the above-ground tissues have a disturbed oxidative stress level, with accumulation of H2O2, as well as hormonal disturbances. Moreover, double infection experiments on an oxidative stress mutant and an auxin-deficient rice line indicate that the accumulation of auxin in the above-ground tissue is at least partly responsible for the blast-promoting effect of root-knot nematode infection.


Asunto(s)
Oryza/parasitología , Enfermedades de las Plantas/parasitología , Raíces de Plantas/parasitología , Tylenchoidea/fisiología , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Magnaporthe/fisiología , Oryza/genética , Oryza/microbiología , Estrés Oxidativo , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Brotes de la Planta/fisiología , Transcriptoma/genética
16.
Ann Bot ; 119(5): 885-899, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334204

RESUMEN

Background and Aims: The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Methods: Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype 'Nipponbare' were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Key Results: Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to 'Nipponbare'. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. Conclusions: This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice- M. graminicola pathosystem as a model to study plant-nematode incompatible interactions.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/parasitología , Enfermedades de las Plantas/parasitología , Tylenchoidea/fisiología , Animales , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN , Transcriptoma
17.
Int J Mol Sci ; 18(1)2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-28054982

RESUMEN

Nematodes are a very diverse phylum that has adapted to nearly every ecosystem. They have developed specialized lifestyles, dividing the phylum into free-living, animal, and plant parasitic species. Their sheer abundance in numbers and presence in nearly every ecosystem make them the most prevalent animals on earth. In this research nematode-specific profiles were designed to retrieve predicted lectin-like domains from the sequence data of nematode genomes and transcriptomes. Lectins are carbohydrate-binding proteins that play numerous roles inside and outside the cell depending on their sugar specificity and associated protein domains. The sugar-binding properties of the retrieved lectin-like proteins were predicted in silico. Although most research has focused on C-type lectin-like, galectin-like, and calreticulin-like proteins in nematodes, we show that the lectin-like repertoire in nematodes is far more diverse. We focused on C-type lectins, which are abundantly present in all investigated nematode species, but seem to be far more abundant in free-living species. Although C-type lectin-like proteins are omnipresent in nematodes, we have shown that only a small part possesses the residues that are thought to be essential for carbohydrate binding. Curiously, hevein, a typical plant lectin domain not reported in animals before, was found in some nematode species.


Asunto(s)
Proteínas del Helminto/genética , Lectinas Tipo C/genética , Nematodos/genética , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Genoma , Proteínas del Helminto/química , Lectinas Tipo C/química , Nematodos/química , Filogenia , Lectinas de Plantas/química , Lectinas de Plantas/genética , Dominios Proteicos , Alineación de Secuencia
18.
BMC Dev Biol ; 16: 10, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27122249

RESUMEN

BACKGROUND: Detailed descriptions of the early development of parasitic nematodes are seldom available. The embryonic development of the plant-parasitic nematode Meloidogyne incognita was studied, focusing on the early events. RESULTS: A fixed pattern of repeated cell cleavages was observed, resulting in the appearance of the six founder cells 3 days after the first cell division. Gastrulation, characterized by the translocation of cells from the ventral side to the center of the embryo, was seen 1 day later. Approximately 10 days after the first cell division a rapidly elongating two-fold stage was reached. The fully developed second stage juvenile hatched approximately 21 days after the first cell division. CONCLUSIONS: When compared to the development of the free-living nematode Caenorhabditis elegans, the development of M. incognita occurs approximately 35 times more slowly. Furthermore, M. incognita differs from C. elegans in the order of cell divisions, and the early cleavage patterns of the germ line cells. However, cytoplasmic ruffling and nuclear migration prior to the first cell division as well as the localization of microtubules are similar between C. elegans and M. incognita.


Asunto(s)
Desarrollo Embrionario , Raíces de Plantas/parasitología , Tylenchoidea/embriología , Animales , División Celular , Linaje de la Célula , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , ADN/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Femenino , Gastrulación , Óvulo/citología , Filogenia , Tylenchoidea/citología
19.
J Exp Bot ; 67(4): 1191-200, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26552884

RESUMEN

The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and <1 in LD 24, in comparison with >100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus.


Asunto(s)
Resistencia a la Enfermedad , Oryza/genética , Oryza/parasitología , Enfermedades de las Plantas/genética , Tylenchoidea/fisiología , Animales , Estudio de Asociación del Genoma Completo , Genotipo , Enfermedades de las Plantas/parasitología , Raíces de Plantas/parasitología , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN
20.
J Exp Bot ; 67(15): 4559-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27312670

RESUMEN

Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter-reporter line and protein localization analyses evoke a model in which auxin is being imported at the basipetal side of the feeding site by the concerted action of the influx proteins AUX1 and LAX3, and the efflux protein PIN3. Mutants in auxin influx proteins AUX1 and LAX3 bear significantly fewer and smaller galls, revealing that auxin import into the feeding sites is needed for their development and expansion. The feeding site development in auxin export (PIN) mutants was only slightly hampered. Expression of some PINs appears to be suppressed in galls, probably to prevent auxin drainage. Nevertheless, a functional PIN4 gene seems to be a prerequisite for proper nematode development and gall expansion, most likely by removing excessive auxin to stabilize the hormone level in the feeding site. Our data also indicate a role of local auxin peaks in nematode attraction towards the root.


Asunto(s)
Arabidopsis/parasitología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/parasitología , Tylenchoidea/fisiología , Animales , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Proteínas de Transporte de Membrana/fisiología , Microscopía Confocal , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA