Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cytogenet Genome Res ; 163(3-4): 187-196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37348469

RESUMEN

There is an increased threat of exposure to ionizing radiation; in the event of such exposure, the availability of medical countermeasures will be vital to ensure the protection of the population. Effective countermeasures should be efficacious across a varied population and most importantly amongst both males and females. Radiation research must be conducted in animal models which act as a surrogate for the human response. Here, we identify differences in survival in male and female C57BL/6 in both a total body irradiation (TBI) model using the Armed Forces Radiobiology Research Institute (AFRRI) 60Co source and a partial body irradiation (PBI) model using the AFRRI Linear Accelerator (LINAC) with 4 MV photons and 2.5% bone marrow shielding. In both models, we observed a higher degree of radioresistance in female animals and a corresponding radiosensitivity in males. One striking difference in male and female rodents is body size/weight and we investigated the role of pre-irradiation body weight on survivability for animals irradiated at the same dose of irradiation (8 Gy TBI, 14 Gy PBI). We found that weight does not influence survival in the TBI model and that heavier males but lighter females have increased survival in the PBI model. This incongruence in survival amongst the sexes should be taken into consideration in the course of developing radiation countermeasures for response to a mass casualty incident.


Asunto(s)
Radiación Ionizante , Humanos , Femenino , Masculino , Animales , Ratones , Modelos Animales
2.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32708958

RESUMEN

Acute exposure to ionizing radiation leads to Hematopoietic Acute Radiation Syndrome (H-ARS). To understand the inter-strain cellular and molecular mechanisms of radiation sensitivity, adult males of two strains of minipig, one with higher radiosensitivity, the Gottingen minipig (GMP), and another strain with comparatively lower radiosensitivity, the Sinclair minipig (SMP), were exposed to total body irradiation (TBI). Since Insulin-like Growth Factor-1 (IGF-1) signaling is associated with radiation sensitivity and regulation of cardiovascular homeostasis, we investigated the link between dysregulation of cardiac IGF-1 signaling and radiosensitivity. The adult male GMP; n = 48, and SMP; n = 24, were irradiated using gamma photons at 1.7-2.3 Gy doses. The animals that survived to day 45 after irradiation were euthanized and termed the survivors. Those animals that were euthanized prior to day 45 post-irradiation due to severe illness or health deterioration were termed the decedents. Cardiac tissue analysis of unirradiated and irradiated animals showed that inter-strain radiosensitivity and survival outcomes in H-ARS are associated with activation status of the cardiac IGF-1 signaling and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated induction of antioxidant gene expression. Our data link H-ARS with dysregulation of cardiac IGF-1 signaling, and highlight the role of oxidative stress and cardiac antioxidant response in radiation sensitivity.


Asunto(s)
Síndrome de Radiación Aguda/metabolismo , Corazón/efectos de la radiación , Sistema Hematopoyético/efectos de la radiación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Transducción de Señal/efectos de la radiación , Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/patología , Animales , Rayos gamma/efectos adversos , Sistema Hematopoyético/metabolismo , Sistema Hematopoyético/patología , Masculino , Miocardio/metabolismo , Miocardio/patología , Estrés Oxidativo/efectos de la radiación , Tolerancia a Radiación/efectos de la radiación , Porcinos , Porcinos Enanos
3.
Pharm Res ; 33(9): 2117-25, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27216753

RESUMEN

PURPOSE: Ionizing radiation (IR) generates reactive oxygen species (ROS), which cause DNA double-strand breaks (DSBs) that are responsible for cytogenetic alterations. Because antioxidants are potent ROS scavengers, we determined whether the vitamin E isoform γ-tocotrienol (GT3), a radio-protective multifunctional dietary antioxidant, can suppress IR-induced cytogenetic damage. METHODS: We measured DSB formation in irradiated primary human umbilical vein endothelial cells (HUVECs) by quantifying the formation of γ-H2AX foci. Chromosomal aberrations (CAs) were analyzed in irradiated HUVECs and in the bone marrow cells of irradiated mice by conventional and fluorescence-based chromosome painting techniques. Gene expression was measured in HUVECs with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). RESULTS: GT3 pretreatment reduced DSB formation in HUVECS, and also decreased CAs in HUVECs and mouse bone marrow cells after irradiation. Moreover, GT3 increased expression of the DNA-repair gene RAD50 and attenuated radiation-induced RAD50 suppression. CONCLUSIONS: GT3 attenuates radiation-induced cytogenetic damage, possibly by affecting RAD50 expression. GT3 should be explored as a therapeutic to reduce the risk of developing genetic diseases after radiation exposure.


Asunto(s)
Aberraciones Cromosómicas/efectos de los fármacos , Traumatismos por Radiación/tratamiento farmacológico , Tocotrienoles/administración & dosificación , Vitamina E/administración & dosificación , Animales , Antioxidantes/administración & dosificación , Células de la Médula Ósea/efectos de los fármacos , Células Cultivadas , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/genética , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Radiación Ionizante
4.
Int J Mol Sci ; 17(11)2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27869747

RESUMEN

Statins; a class of routinely prescribed cholesterol-lowering drugs; inhibit 3-hydroxy-3-methylglutaryl-coenzymeA reductase (HMGCR) and strongly induce endothelial thrombomodulin (TM); which is known to have anti-inflammatory; anti-coagulation; anti-oxidant; and radioprotective properties. However; high-dose toxicity limits the clinical use of statins. The vitamin E family member gamma-tocotrienol (GT3) also suppresses HMGCR activity and induces TM expression without causing significant adverse side effects; even at high concentrations. To investigate the synergistic effect of statins and GT3 on TM; a low dose of atorvastatin and GT3 was used to treat human primary endothelial cells. Protein-level TM expression was measured by flow cytometry. TM functional activity was determined by activated protein C (APC) generation assay. Expression of Kruppel-like factor 2 (KLF2), one of the key transcription factors of TM, was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). TM expression increased in a dose-dependent manner after both atorvastatin and GT3 treatment. A combined treatment of a low-dose of atorvastatin and GT3 synergistically up-regulated TM expression and functional activity. Finally; atorvastatin and GT3 synergistically increased KLF2 expression. These findings suggest that combined treatment of statins with GT3 may provide significant health benefits in treating a number of pathophysiological conditions; including inflammatory and cardiovascular diseases.


Asunto(s)
Cromanos/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Trombomodulina/genética , Vitamina E/análogos & derivados , Antioxidantes/farmacología , Atorvastatina/farmacología , Línea Celular , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trombomodulina/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Vitamina E/farmacología
5.
Int J Mol Sci ; 18(1)2016 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-28029115

RESUMEN

The purpose of this study was two-fold: (1) to formulate γ-tocotrienol (GT3) in a nanoemulsion formulation as a prophylactic orally administered radioprotective agent; and (2) to optimize the storage conditions to preserve the structural integrity of both the formulation and the compound. γ-tocotrienol was incorporated into a nanoemulsion and lyophilized with lactose. Ultra performance liquid chromatography-mass spectroscopy (UPLC-MS) was used to monitor the chemical stability of GT3 over time, the particle size and ζ potential, and scanning electron microscopy (SEM) were used to study the physical stability of the nanoemulsion. Radioprotective and toxicity studies were performed in mice. The liquid formulation exhibited GT3 degradation at all storage temperatures. Lyophilization, in the presence of lactose, significantly reduced GT3 degradation. Both the liquid and lyophilized nanoemulsions had stable particle size and ζ potential when stored at 4 °C. Toxicity studies of the nanoemulsion resulted in no observable toxicity in mice at an oral dose of 600 mg/kg GT3. The nano-formulated GT3 (300 mg/kg) demonstrated enhanced survival efficacy compared to GT3 alone (200 and 400 mg/kg) in CD2F1 mice exposed to total body gamma radiation. The optimal long-term storage of formulated GT3 is as a powder at -20 °C to preserve drug and formulation integrity. Formulation of GT3 as a nanoemulsion for oral delivery as a prophylactic radioprotectant shows promise and warrants further investigation.


Asunto(s)
Cromanos/química , Protectores contra Radiación/química , Vitamina E/análogos & derivados , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/prevención & control , Administración Oral , Animales , Cromanos/administración & dosificación , Cromanos/efectos adversos , Cromanos/uso terapéutico , Estabilidad de Medicamentos , Emulsiones/química , Lactosa/química , Masculino , Ratones , Protectores contra Radiación/administración & dosificación , Protectores contra Radiación/efectos adversos , Protectores contra Radiación/uso terapéutico , Vitamina E/administración & dosificación , Vitamina E/efectos adversos , Vitamina E/química , Vitamina E/uso terapéutico
6.
Int J Toxicol ; 33(6): 450-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25355734

RESUMEN

The toxicity of parenterally administered vitamin E isomers, delta-tocotrienol (DT3) and gamma-tocotrienol (GT3), was evaluated in male and female CD2F1 mice. In an acute toxicity study, a single dose of DT3 or GT3 was administered subcutaneously in a dose range of 200 to 800 mg/kg. A mild to moderately severe dermatitis was observed clinically and microscopically in animals at the injection site at doses above 200 mg/kg. The severity of the reaction was reduced when the drug concentration was lowered. Neither drug produced detectable toxic effects in any other tissue at the doses tested. Based on histopathological analysis for both DT3 and GT3, and macroscopic observations of inflammation at the injection site, a dose of 300 mg/kg was selected as the lowest toxic dose in a 30-day toxicity study performed in male mice. At this dose, a mild skin irritation occurred at the injection site that recovered completely by the end of the experimental period. At a dose of 300 mg/kg of DT3 or GT3, no adverse effects were observed in any tissues or organs.


Asunto(s)
Cromanos/toxicidad , Dermatitis por Contacto/etiología , Irritantes/toxicidad , Vitamina E/análogos & derivados , Administración Cutánea , Animales , Dermatitis por Contacto/patología , Femenino , Masculino , Ratones , Piel/efectos de los fármacos , Piel/patología , Pruebas de Toxicidad Aguda , Vitamina E/toxicidad
7.
Radiat Res ; 201(5): 449-459, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373011

RESUMEN

In the current geopolitical climate there is an unmet need to identify and develop prophylactic radiation countermeasures, particularly to ensure the well-being of warfighters and first responders that may be required to perform on radiation-contaminated fields for operational or rescue missions. Currently, no countermeasures have been approved by the U.S. FDA for prophylactic administration. Here we report on the efficacious nature of FSL-1 (toll-like receptor 2/6 agonist) and the protection from acute radiation syndrome (ARS) in a murine total-body irradiation (TBI) model. A single dose of FSL-1 was administered subcutaneously in mice. The safety of the compound was assessed in non-irradiated animals, the efficacy of the compound was assessed in animals exposed to TBI in the AFRRI Co-60 facility, the dose of FSL-1 was optimized, and common hematological parameters [complete blood cell (CBC), cytokines, and bone marrow progenitor cells] were assessed. Animals were monitored up to 60 days after exposure and radiation-induced damage was evaluated. FSL-1 was shown to be non-toxic when administered to non-irradiated mice at doses up to 3 mg/kg. The window of efficacy was determined to be 24 h prior to 24 h after TBI. FSL-1 administration resulted in significantly increased survival when administered either 24 h prior to or 24 h after exposure to supralethal doses of TBI. The optimal dose of FSL-1 administration was determined to be 1.5 mg/kg when administered prior to irradiation. Finally, FSL-1 protected the hematopoietic system (recovery of CBC and bone marrow CFU). Taken together, the effects of increased survival and accelerated recovery of hematological parameters suggests that FSL-1 should be developed as a novel radiation countermeasure for soldiers and civilians, which can be used either before or after irradiation in the aftermath of a radiological or nuclear event.


Asunto(s)
Síndrome de Radiación Aguda , Modelos Animales de Enfermedad , Oligopéptidos , Irradiación Corporal Total , Animales , Ratones , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Ratones Endogámicos C57BL , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico , Irradiación Corporal Total/efectos adversos
8.
Radiat Res ; 201(1): 19-34, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38014611

RESUMEN

The goal of this study was to establish a model of partial-body irradiation (PBI) sparing 2.5% of the bone marrow (BM2.5-PBI) that accurately recapitulates radiological/nuclear exposure scenarios. Here we have reported a model which produces gastrointestinal (GI) damage utilizing a clinical linear accelerator (LINAC) with precise dosimetry, which can be used to develop medical countermeasures (MCM) for GI acute radiation syndrome (ARS) under the FDA animal rule. The PBI model (1 hind leg spared) was developed in male and female C57BL/6 mice that received radiation doses ranging from 12-17 Gy with no supportive care. GI pathophysiology was assessed by crypt cell loss and correlated with peak lethality between days 4 and 10 after PBI. The radiation dose resulting in 50% mortality in 30 days (LD50/30) was determined by probit analysis. Differential blood cell counts in peripheral blood, colony forming units (CFU) in bone marrow, and sternal megakaryocytes were analyzed between days 1-30, to assess the extent of hematopoietic ARS (H-ARS) injury. Radiation-induced GI damage was also assessed by measuring: 1. bacterial load (16S rRNA) by RT-PCR on days 4 and 7 after PBI in liver, spleen and jejunum, 2. liposaccharide binding protein (LBP) levels in liver, and 3. fluorescein isothiocyanate (FITC)-dextran, E-selectin, sP-selectin, VEGF, FGF-2, MMP-9, citrulline, and serum amyloid A (SAA) levels in serum. The LD50/30 of male mice was 14.3 Gy (95% confidence interval 14.1-14.7 Gy) and of female mice was 14.5 Gy (95% confidence interval 14.3-14.7 Gy). Secondary endpoints included loss of viable crypts, higher bacterial loads in spleen and liver, higher LBP in liver, increased FITC-dextran and SAA levels, and decreased levels of citrulline and endothelial biomarkers in serum. The BM2.5-PBI model, developed for the first time with precise dosimetry, showed acute radiation-induced GI damage that is correlated with lethality, as well as a response to various markers of inflammation and vascular damage. Sex-specific differences were observed with respect to radiation dose response. Currently, no MCM is available as a mitigator for GI-ARS. This BM2.5-PBI mouse model can be regarded as the first high-throughput PBI model with precise dosimetry for developing MCMs for GI-ARS under the FDA animal rule.


Asunto(s)
Síndrome de Radiación Aguda , Masculino , Femenino , Ratones , Animales , Citrulina , ARN Ribosómico 16S , Ratones Endogámicos C57BL , Radiometría
9.
Radiat Res ; 201(5): 460-470, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376474

RESUMEN

With the current volatile geopolitical climate, the threat of nuclear assault is high. Exposure to ionizing radiation from either nuclear incidents or radiological accidents often lead to major harmful consequences to human health. Depending on the absorbed dose, the symptoms of the acute radiation syndrome and delayed effects of acute radiation exposure (DEARE) can appear within hours, weeks to months. The lung is a relatively radiosensitive organ with manifestation of radiation pneumonitis as an acute effect, followed by apparent fibrosis in weeks or even months. A recently developed, first-of-its-kind murine model for partial-body irradiation (PBI) injury, which can be used to test potential countermeasures against multi-organ damage such as gastrointestinal (GI) tract and lungs was used for irradiation, with 2.5% bone marrow spared (BM2.5-PBI) from radiation exposure. Long-term damage to lungs from radiation was evaluated using µ-CT scans, pulmonary function testing, histopathological parameters and molecular biomarkers. Pulmonary fibrosis was detected by ground glass opacity observed in µ-CT scans of male and female C57BL/6J mice 6-7 months after BM2.5-PBI. Lung mechanics assessments pertaining to peripheral airways suggested fibrotic lungs with stiffer parenchymal lung tissue and reduced inspiratory capacity in irradiated animals 6-7 months after BM2.5-PBI. Histopathological evaluation of the irradiated lungs revealed presence of focal and diffuse pleural, and parenchymal inflammatory and fibrotic lesions. Fibrosis was confirmed by elevated levels of collagen when compared to lungs of age-matched naïve mice. These findings were validated by findings of elevated levels of pro-fibrotic biomarkers and reduction in anti-inflammatory proteins. In conclusion, a long-term model for radiation-induced pulmonary fibrosis was established, and countermeasures could be screened in this model for survival and protection/mitigation or recovery from radiation-induced pulmonary damage.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Fibrosis Pulmonar , Animales , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , Ratones , Masculino , Femenino , Pulmón/efectos de la radiación , Pulmón/patología , Neumonitis por Radiación/patología , Neumonitis por Radiación/etiología , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/etiología
10.
iScience ; 27(2): 108867, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318389

RESUMEN

The detrimental effects of high-dose ionizing radiation on human health are well-known, but the influence of sex differences on the delayed effects of acute radiation exposure (DEARE) remains unclear. Here, we conducted six-month animal experiments using escalating radiation doses (7-9 Gy) on male and female C57BL/6 mice. The results show that female mice exhibited greater resistance to radiation, showing increased survival at six months post-total body irradiation. LD50/30 (lethal dose expected to cause 50% lethality in 30 days) for female mice is 8.08 Gy, while for male mice it is 7.76 Gy. DEARE causes time- and sex-dependent dysregulation of microRNA expression, processing enzymes, and the HOTAIR regulatory pathway. Differential regulation of molecular patterns associated with growth, development, apoptosis, and cancer is also observed in male and female mice. These findings shed light on the molecular basis of age and sex differences in DEARE response and emphasize the importance of personalized medicine for mitigating radiation-induced injuries and diseases.

11.
Stem Cell Res Ther ; 15(1): 123, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679747

RESUMEN

BACKGROUND: Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has yet to be elucidated. METHODS: C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 h post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. RESULTS: At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. CONCLUSIONS: TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.


Asunto(s)
Síndrome de Radiación Aguda , Médula Ósea , Ratones Endogámicos C57BL , Trombopoyetina , Animales , Masculino , Ratones , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Médula Ósea/efectos de los fármacos , Médula Ósea/efectos de la radiación , Médula Ósea/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de la radiación , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/efectos de la radiación , Trombopoyetina/farmacología , Irradiación Corporal Total , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/uso terapéutico
12.
Res Sq ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38463959

RESUMEN

Background: Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating the regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is a key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has not yet been elucidated. Methods: C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 hours post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. Results: At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. Conclusions: TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.

13.
Cytokine ; 62(2): 278-85, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23561424

RESUMEN

This study aimed to determine the role of granulocyte colony-stimulating factor (G-CSF), induced by a promising radiation countermeasure, gamma tocotrienol (GT3), in protecting mice from lethal doses of ionizing radiation. CD2F1 mice were injected with an optimal dose of GT3 and a G-CSF antibody, and their 30-d survival was monitored. An appropriate antibody isotype was used as a control. Multiplex Luminex was used to analyze GT3-induced cytokines. G-CSF neutralization by exogenous administration of a G-CSF antibody was confirmed by analyzing serum cytokine levels. Our results demonstrate that GT3 significantly protected mice against ionizing radiation, and induced high levels of G-CSF in peripheral blood 24h after administration. Injection of a G-CSF neutralizing antibody to the GT3-treated mice resulted in complete neutralization of G-CSF and abrogation of its protective efficacy. Administration of a G-CSF antibody did not affect levels of other cytokines induced by GT3. Histopathology of bone marrow from GT3-treated and -irradiated mice demonstrated protection of the hematopoietic tissue, and also that such protection was abrogated by administering a G-CSF antibody. Our results suggest that induction of high levels of G-CSF by GT3 administration is responsible for its protective efficacy against radiation injury.


Asunto(s)
Anticuerpos/inmunología , Cromanos/farmacología , Factor Estimulante de Colonias de Granulocitos/inmunología , Protectores contra Radiación/farmacología , Vitamina E/análogos & derivados , Animales , Anticuerpos Neutralizantes , Factor Estimulante de Colonias de Granulocitos/sangre , Masculino , Ratones , Traumatismos por Radiación/prevención & control , Vitamina E/farmacología , Irradiación Corporal Total/efectos adversos
14.
Antioxidants (Basel) ; 12(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37507957

RESUMEN

The development of safe, orally available, and effective prophylactic countermeasures to protect our warfighters is an unmet need because there is no such FDA-approved countermeasure available for use. Th 1-Propanethiol, 3-(methylamino)-2-((methylamino)methyl) (PrC-210), a synthetic small molecule, is a member of a new family of aminothiols designed to reduce toxicity while scavenging reactive oxygen species (ROS). Our study investigated the protective role of a single oral administration of PrC-210 against radiation-induced hematopoietic and intestinal injury in mice. Pre-treatment with PrC-210 significantly improved the survival of mice exposed to a lethal dose of radiation. Our findings indicated that the radioprotective properties of PrC-210 are achieved by accelerating the recovery of the hematopoietic system, stimulating bone marrow progenitor cells, and ameliorating additional biomarkers of hematopoietic injury. PrC-210 pre-treatment reduced intestinal injury in mice exposed to a lethal dose of radiation by restoring jejunal crypts and villi, reducing translocation of bacteria to the spleen, maintaining citrulline levels, and reducing the sepsis marker serum amyloid A (SAA) in serum. Finally, PrC-210 pre-treatment led to a significant reduction (~10 fold) of Nos2 expression (inducible nitric oxide) in the spleen and decreased oxidative stress by enhancing the antioxidant defense system. These data support the further development of PrC-210 to receive approval from the FDA to protect warfighters and first responders from exposure to the harmful effects of ionizing radiation.

15.
Sci Rep ; 13(1): 18496, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898651

RESUMEN

Early diagnosis of lethal radiation is imperative since its intervention time windows are considerably short. Hence, ideal diagnostic candidates of radiation should be easily accessible, enable to inform about the stress history and objectively triage subjects in a time-efficient manner. Therefore, the small molecules such as metabolites and microRNAs (miRNAs) from plasma are legitimate biomarker candidate for lethal radiation. Our objectives were to comprehend the radiation-driven molecular pathogenesis and thereby determine biomarkers of translational potential. We investigated an established minipig model of LD70/45 total body irradiation (TBI). In this pilot study, plasma was collected pre-TBI and at multiple time points post-TBI. The majority of differentially expressed miRNAs and metabolites were perturbed immediately after TBI that potentially underlined the severity of its acute impact. The integrative network analysis of miRNA and metabolites showed a cohesive response; the early and consistent perturbations of networks were linked to cancer and the shift in musculoskeletal atrophy synchronized with the comorbidity-networks associated with inflammation and bioenergy synthesis. Subsequent comparative pipeline delivered 92 miRNAs, which demonstrated sequential homology between human and minipig, and potentially similar responses to lethal radiation across these two species. This panel promised to retrospectively inform the time since the radiation occurred; thereby could facilitate knowledge-driven interventions.


Asunto(s)
MicroARN Circulante , MicroARNs , Humanos , Animales , Porcinos , Porcinos Enanos/genética , Proyectos Piloto , Estudios Retrospectivos , MicroARNs/metabolismo , Biomarcadores
16.
Sci Rep ; 13(1): 15211, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709916

RESUMEN

Thrombopoietin (TPO) is the primary regulator of platelet generation and a stimulator of multilineage hematopoietic recovery following exposure to total body irradiation (TBI). JNJ­26366821, a novel PEGylated TPO mimetic peptide, stimulates platelet production without developing neutralizing antibodies or causing any adverse effects. Administration of a single dose of JNJ­26366821 demonstrated its efficacy as a prophylactic countermeasure in various mouse strains (males CD2F1, C3H/HeN, and male and female C57BL/6J) exposed to Co-60 gamma TBI. A dose dependent survival efficacy of JNJ­26366821 (- 24 h) was identified in male CD2F1 mice exposed to a supralethal dose of radiation. A single dose of JNJ­26366821 administered 24, 12, or 2 h pre-radiation resulted in 100% survival from a lethal dose of TBI with a dose reduction factor of 1.36. There was significantly accelerated recovery from radiation-induced peripheral blood neutropenia and thrombocytopenia in animals pre-treated with JNJ­26366821. The drug also increased bone marrow cellularity and megakaryocytes, accelerated multi-lineage hematopoietic recovery, and alleviated radiation-induced soluble markers of bone marrow aplasia and endothelial damage. These results indicate that JNJ­26366821 is a promising prophylactic radiation countermeasure for hematopoietic acute radiation syndrome with a broad window for medical management in a radiological or nuclear event.


Asunto(s)
Síndrome de Radiación Aguda , Neutropenia , Femenino , Masculino , Animales , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Trombopoyetina/farmacología , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/prevención & control , Polietilenglicoles/farmacología
17.
Radiother Oncol ; 167: 143-148, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34971661

RESUMEN

BACKGROUND AND PURPOSE: Platelet membrane glycoprotein Ibα (GPIbα), the major ligand-binding subunit of the GPIb-IX-V complex, binds to a number of ligands contributing to hemostasis, thrombosis, and inflammation. Binding to von Willebrand factor (VWF) initiates the process of hemostasis/thrombosis, while binding to the leukocyte receptor Macrophage-1 antigen (Mac-1) has been implicated in modulating the inflammatory response. Thus as GPIbα resides at the nexus of thrombosis and inflammation, we investigated the impact of GPIbα on radiation injury outcomes as this injury triggers both the thrombotic and inflammatory pathways. MATERIALS AND METHODS: We used wild-type (WT) C57BL/6J mice and a dysfunctional GPIbα mouse model, in which endogenous GPIbα is replaced with a non-functional α-subunit (hIL-4R/Ibα), to determine whether the impairment of platelet GPIbα alters radiation response. Following exposure to 8.5 Gy total body irradiation (TBI), a series of parameters including radiation lethality, platelet-neutrophil/monocyte interactions, neutrophil/monocyte activation, serum cytokine levels and intestinal injury, were compared between the strains. RESULTS: The lack of functional GPIbα resulted in higher radiation lethality, greater monocyte activation, increased levels of serum pro-inflammatory cytokines, heightened intestinal damage, and a reduction of intestinal neutrophil recovery. CONCLUSION: These data suggest that loss of platelet GPIbα enhances radiation toxicity and that GPIbα-mediated interactions may play a crucial role in limiting radiation damage. Thus, a mechanistic understanding of the biological impact of GPIbα following TBI could provide crucial insights for improving the safety of radiotherapy and minimizing the deleterious effects of accidental or occupational exposure to high-dose radiation.


Asunto(s)
Protección Radiológica , Trombosis , Animales , Humanos , Inflamación , Ratones , Ratones Endogámicos C57BL , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Unión Proteica , Trombosis/metabolismo
18.
Genes (Basel) ; 13(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36292639

RESUMEN

Acute Radiation Syndrome (ARS) is a syndrome involving damage to multiple organs caused by exposure to a high dose of ionizing radiation over a short period of time; even low doses of radiation damage the radiosensitive hematopoietic system and causes H-ARS. PLacenta eXpanded (PLX)-R18 is a 3D-expanded placenta-derived stromal cell product designated for the treatment of hematological disorders. These cells have been shown in vitro to secrete hematopoietic proteins, to stimulate colony formation, and to induce bone marrow migration. Previous studies in mice showed that PLX-R18 cells responded to radiation-induced hematopoietic failure by transiently secreting hematopoiesis related proteins to enhance reconstitution of the hematopoietic system. We assessed the potential effect of prophylactic PLX-R18 treatment on H-ARS. PLX-R18 cells were administered intramuscularly to C57BL/6 mice, −1 and 3 days after (LD70/30) total body irradiation. PLX R18 treatment significantly increased survival after irradiation (p < 0.0005). In addition, peripheral blood and bone marrow (BM) cellularity were monitored at several time points up to 30 days. PLX-R18 treatment significantly increased the number of colony-forming hematopoietic progenitors in the femoral BM and significantly raised peripheral blood cellularity. PLX-R18 administration attenuated biomarkers of bone marrow aplasia (EPO, FLT3L), sepsis (SAA), and systemic inflammation (sP-selectin and E-selectin) and attenuated radiation-induced inflammatory cytokines/chemokines and growth factors, including G-CSF, MIP-1a, MIP-1b, IL-2, IL-6 and MCP-1, In addition, PLX-R18 also ameliorated radiation-induced upregulation of pAKT. Taken together, prophylactic PLX-R18 administration may serve as a protection measure, mitigating bone marrow failure symptoms and systemic inflammation in the H-ARS model.


Asunto(s)
Síndrome de Radiación Aguda , Sistema Hematopoyético , Ratones , Animales , Selectina E/uso terapéutico , Interleucina-2/uso terapéutico , Interleucina-6 , Ratones Endogámicos C57BL , Síndrome de Radiación Aguda/tratamiento farmacológico , Sistema Hematopoyético/metabolismo , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Citocinas , Biomarcadores , Inflamación
19.
Mol Ther Nucleic Acids ; 30: 569-584, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36457703

RESUMEN

Risks of radiation exposure necessitate the development of radioprophylactic drugs. We have reported the efficacy of CDX-301, a recombinantly developed human protein form of Fms-related tyrosine kinase 3 ligand (Flt3L), as a radioprophylactic and radiomitigatory agent. Here, we performed global microRNA profiling to further understand the mechanism of action of CDX-301. We find that CDX-301 administration 24 h prior to total body irradiation prevents radiation-induced dysregulation of microRNA biogenesis and expression in murine serum and spleen samples in a time- and tissue-dependent manner. Further analysis shows that activation of the HOTAIR regulatory pathway has a prominent function in radiation-induced injury responses, which is inhibited by pre-treatment with CDX-301. Moreover, CDX-301 attenuates radiation-induced dysregulation of several cellular functions such as inflammatory and immune responses. In corroboration, we also find that pre-treatment with CDX-301 restores the expression of bone marrow aplasia markers and inflammatory cytokines and growth factors, as well as the expression of genes associated with MAP kinase and TGF-ß pathways that are altered by radiation. Our findings provide new insights into CDX-301-mediated molecular and cellular mechanisms and point to a possible novel radioprotective drug for the prevention of irradiation-induced injury and hematopoietic acute radiation syndrome.

20.
Sci Rep ; 12(1): 3485, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241733

RESUMEN

The threat of a nuclear attack has increased in recent years highlighting the benefit of developing additional therapies for the treatment of victims suffering from Acute Radiation Syndrome (ARS). In this work, we evaluated the impact of a PEGylated thrombopoietin mimetic peptide, JNJ-26366821, on the mortality and hematopoietic effects associated with ARS in mice exposed to lethal doses of total body irradiation (TBI). JNJ-26366821 was efficacious as a mitigator of mortality and thrombocytopenia associated with ARS in both CD2F1 and C57BL/6 mice exposed to TBI from a cobalt-60 gamma-ray source. Single administration of doses ranging from 0.3 to 1 mg/kg, given 4, 8, 12 or 24 h post-TBI (LD70 dose) increased survival by 30-90% as compared to saline control treatment. At the conclusion of the 30-day study, significant increases in bone marrow colony forming units and megakaryocytes were observed in animals administered JNJ-26366821 compared to those administered saline. In addition, enhanced recovery of FLT3-L levels was observed in JNJ-26366821-treated animals. Probit analysis of survival in the JNJ-26366821- and saline-treated cohorts revealed a dose reduction factor of 1.113 and significant increases in survival for up to 6 months following irradiation. These results support the potential use of JNJ-26366821 as a medical countermeasure for treatment of acute TBI exposure in case of a radiological/nuclear event when administered from 4 to 24 h post-TBI.


Asunto(s)
Síndrome de Radiación Aguda , Materiales Biomiméticos , Sistema Hematopoyético , Trombopoyetina , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Animales , Materiales Biomiméticos/farmacología , Sistema Hematopoyético/patología , Sistema Hematopoyético/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Traumatismos Experimentales por Radiación/patología , Trombopoyetina/farmacología , Irradiación Corporal Total
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA