Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(7): e1012370, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976748

RESUMEN

Prions can exist as different strains that consist of conformational variants of the misfolded, pathogenic prion protein isoform PrPSc. Defined by stably transmissible biological and biochemical properties, strains have been identified in a spectrum of prion diseases, including chronic wasting disease (CWD) of wild and farmed cervids. CWD is highly contagious and spreads via direct and indirect transmission involving extraneural sites of infection, peripheral replication and neuroinvasion of prions. Here, we investigated the impact of infection route on CWD prion conformational selection and propagation. We used gene-targeted mouse models expressing deer PrP for intracerebral or intraperitoneal inoculation with fractionated or unfractionated brain homogenates from white-tailed deer, harboring CWD strains Wisc-1 or 116AG. Upon intracerebral inoculation, Wisc-1 and 116AG-inoculated mice differed in conformational stability of PrPSc. In brains of mice infected intraperitoneally with either inoculum, PrPSc propagated with identical conformational stability and fewer PrPSc deposits in most brain regions than intracerebrally inoculated animals. For either inoculum, PrPSc conformational stability in brain and spinal cord was similar upon intracerebral infection but significantly higher in spinal cords of intraperitoneally infected animals. Inoculation with fractionated brain homogenates resulted in lower variance of survival times upon intraperitoneal compared to intracerebral infection. In summary, we demonstrate that extraneural infection mitigates the impact of PrPSc quaternary structure on infection and reduces conformational variability of PrPSc propagated in the brain. These findings provide new insights into the evolution of stable CWD strains in natural, extraneural transmissions.


Asunto(s)
Encéfalo , Ciervos , Proteínas PrPSc , Enfermedad Debilitante Crónica , Animales , Ratones , Enfermedad Debilitante Crónica/transmisión , Encéfalo/metabolismo , Encéfalo/patología , Proteínas PrPSc/metabolismo , Conformación Proteica , Priones/metabolismo , Priones/patogenicidad , Enfermedades por Prión/transmisión , Enfermedades por Prión/patología , Enfermedades por Prión/metabolismo , Ratones Transgénicos
2.
PLoS Pathog ; 20(7): e1012350, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950080

RESUMEN

Chronic wasting disease (CWD) is a prion disease affecting deer, elk and moose in North America and reindeer, moose and red deer in Northern Europe. Pathogenesis is driven by the accumulation of PrPSc, a pathological form of the host's cellular prion protein (PrPC), in the brain. CWD is contagious among North American cervids and Norwegian reindeer, with prions commonly found in lymphatic tissue. In Nordic moose and red deer CWD appears exclusively in older animals, and prions are confined to the CNS and undetectable in lymphatic tissues, indicating a sporadic origin. We aimed to determine transmissibility, neuroinvasion and lymphotropism of Nordic CWD isolates using gene-targeted mice expressing either wild-type (138SS/226QQ) or S138N (138NN/226QQ) deer PrP. When challenged with North American CWD strains, mice expressing S138N PrP did not develop clinical disease but harbored prion seeding activity in brain and spleen. Here, we infected these models intracerebrally or intraperitoneally with Norwegian moose, red deer and reindeer CWD isolates. The moose isolate was the first CWD type to cause full-blown disease in the 138NN/226QQ model in the first passage, with 100% attack rate and shortened survival times upon second passage. Furthermore, we detected prion seeding activity or PrPSc in brains and spinal cords, but not spleens, of 138NN/226QQ mice inoculated intraperitoneally with the moose isolate, providing evidence of prion neuroinvasion. We also demonstrate, for the first time, that transmissibility of the red deer CWD isolate was restricted to transgenic mice overexpressing elk PrPC (138SS/226EE), identical to the PrP primary structure of the inoculum. Our findings highlight that susceptibility to clinical disease is determined by the conformational compatibility between prion inoculum and host PrP primary structure. Our study indicates that neuroinvasion of Norwegian moose prions can occur without, or only very limited, replication in the spleen, an unprecedented finding for CWD.


Asunto(s)
Ciervos , Enfermedad Debilitante Crónica , Animales , Enfermedad Debilitante Crónica/transmisión , Enfermedad Debilitante Crónica/metabolismo , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Priónicas/metabolismo , Proteínas Priónicas/genética , Ratones Transgénicos , Noruega , Marcación de Gen , Priones/metabolismo , Priones/genética , Priones/patogenicidad
3.
Proc Natl Acad Sci U S A ; 120(15): e2221060120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37014866

RESUMEN

Prions are proteinaceous infectious particles that replicate by structural conversion of the host-encoded cellular prion protein (PrPC), causing fatal neurodegenerative diseases in mammals. Species-specific amino acid substitutions (AAS) arising from single nucleotide polymorphisms within the prion protein gene (Prnp) modulate prion disease pathogenesis, and, in several instances, reduce susceptibility of homo- or heterozygous AAS carriers to prion infection. However, a mechanistic understanding of their protective effects against clinical disease is missing. We generated gene-targeted mouse infection models of chronic wasting disease (CWD), a highly contagious prion disease of cervids. These mice express wild-type deer or PrPC harboring the S138N substitution homo- or heterozygously, a polymorphism found exclusively in reindeer (Rangifer tarandus spp.) and fallow deer (Dama dama). The wild-type deer PrP-expressing model recapitulated CWD pathogenesis including fecal shedding. Encoding at least one 138N allele prevented clinical CWD, accumulation of protease-resistant PrP (PrPres) and abnormal PrP deposits in the brain tissue. However, prion seeding activity was detected in spleens, brains, and feces of these mice, suggesting subclinical infection accompanied by prion shedding. 138N-PrPC was less efficiently converted to PrPres in vitro than wild-type deer (138SS) PrPC. Heterozygous coexpression of wild-type deer and 138N-PrPC resulted in dominant-negative inhibition and progressively diminished prion conversion over serial rounds of protein misfolding cyclic amplification. Our study indicates that heterozygosity at a polymorphic Prnp codon can confer the highest protection against clinical CWD and highlights the potential role of subclinical carriers in CWD transmission.


Asunto(s)
Ciervos , Enfermedades por Prión , Priones , Reno , Enfermedad Debilitante Crónica , Ratones , Animales , Priones/metabolismo , Proteínas Priónicas/genética , Ciervos/genética , Enfermedad Debilitante Crónica/genética , Ratones Transgénicos , Enfermedades por Prión/genética
4.
Proc Natl Acad Sci U S A ; 120(45): e2310057120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37906643

RESUMEN

During aging, the cellular response to unfolded proteins is believed to decline, resulting in diminished proteostasis. In model organisms, such as Caenorhabditis elegans, proteostatic decline with age has been linked to proteome solubility shifts and the onset of protein aggregation. However, this correlation has not been extensively characterized in aging mammals. To uncover age-dependent changes in the insoluble portion of a mammalian proteome, we analyzed the detergent-insoluble fraction of mouse brain tissue by mass spectrometry. We identified a group of 171 proteins, including the small heat shock protein α-crystallin, that become enriched in the detergent-insoluble fraction obtained from old mice. To enhance our ability to detect features associated with proteins in that fraction, we complemented our data with a meta-analysis of studies reporting the detergent-insoluble proteins in various mouse models of aging and neurodegeneration. Strikingly, insoluble proteins from young and old mice are distinct in several features in our study and across the collected literature data. In younger mice, proteins are more likely to be disordered, part of membraneless organelles, and involved in RNA binding. These traits become less prominent with age, as an increased number of structured proteins enter the pellet fraction. This analysis suggests that age-related changes to proteome organization lead a group of proteins with specific features to become detergent-insoluble. Importantly, these features are not consistent with those associated with proteins driving membraneless organelle formation. We see no evidence in our system of a general increase of condensate proteins in the detergent-insoluble fraction with age.


Asunto(s)
Detergentes , Proteoma , Ratones , Animales , Proteoma/metabolismo , Detergentes/metabolismo , Envejecimiento , Caenorhabditis elegans/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo
5.
J Biol Chem ; 299(2): 102883, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623732

RESUMEN

Prion diseases are fatal and infectious neurodegenerative diseases that occur in humans and animals. They are caused by the misfolding of the cellular prion protein PrPc into the infectious isoform PrPSc. PrPSc accumulates mostly in endolysosomal vesicles of prion-infected cells, eventually causing neurodegeneration. In response to prion infection, elevated cholesterol levels and a reduction in membrane-attached small GTPase Rab7 have been observed in neuronal cells. Here, we investigated the molecular events causing an impaired Rab7 membrane attachment and the potential mechanistic link with elevated cholesterol levels in prion infection. We demonstrate that prion infection is associated with reduced levels of active Rab7 (Rab7.GTP) in persistently prion-infected neuronal cell lines, primary cerebellar granular neurons, and neurons in the brain of mice with terminal prion disease. In primary cerebellar granular neurons, levels of active Rab7 were increased during the very early stages of the prion infection prior to a significant decrease concomitant with PrPSc accumulation. The reduced activation of Rab7 in prion-infected neuronal cell lines is also associated with its reduced ubiquitination status, decreased interaction with its effector RILP, and altered lysosomal positioning. Consequently, the Rab7-mediated trafficking of low-density lipoprotein to lysosomes is delayed. This results in an impaired feedback regulation of cholesterol synthesis leading to an increase in cholesterol levels. Notably, transient overexpression of the constitutively active mutant of Rab7 rescues the delay in the low-density lipoprotein trafficking, hence reducing cholesterol levels and attenuating PrPSc propagation, demonstrating a mechanistic link between the loss of Rab7.GTP and elevated cholesterol levels.


Asunto(s)
Hipercolesterolemia , Proteínas de Unión al GTP Monoméricas , Enfermedades por Prión , Animales , Ratones , Colesterol/metabolismo , Activación Enzimática , Retroalimentación , Hipercolesterolemia/etiología , Hipercolesterolemia/fisiopatología , Lipoproteínas LDL/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Neuronas/metabolismo , Enfermedades por Prión/metabolismo , Priones/metabolismo , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo
6.
Mol Cell Biochem ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970706

RESUMEN

Alzheimer's disease (AD) progression is closely linked to the propagation of pathological Amyloid ß (Aß), a process increasingly understood to involve extracellular vesicles (EVs), namely exosomes. The specifics of Aß packaging into exosomes remain elusive, although evidence suggests an ESCRT (Endosomal Sorting Complex Required for Transport)-independent origin to be responsible in spreading of AD pathogenesis. Intriguingly, PrPC, known to influence exosome abundance and bind oligomeric Aß (oAß), can be released in exosomes via both ESCRT-dependent and ESCRT-independent pathways, raising questions about its role in oAß trafficking. Thus, we quantified Aß levels within EVs, cell medium, and intracellularly, alongside exosome biogenesis-related proteins, following deletion or overexpression of PrPC. The same parameters were also evaluated in the presence of specific exosome inhibitors, namely Manumycin A and GW4869. Our results revealed that deletion of PrPC increases intracellular Aß accumulation and amplifies EV abundance, alongside significant changes in cellular levels of exosome biogenesis-related proteins Vps25, Chmp2a, and Rab31. In contrast, cellular expression of PrPC did not alter exosomal Aß levels. This highlights PrPC's influence on exosome biogenesis, albeit not in direct Aß packaging. Additionally, our data confirm the ESCRT-independent exosome release of Aß and we show a direct reduction in Chmp2a levels upon oAß challenge. Furthermore, inhibition of opposite exosome biogenesis pathway resulted in opposite cellular PrPC levels. In conclusion, our findings highlight the intricate relationship between PrPC, exosome biogenesis, and Aß release. Specifically, they underscore PrPC's critical role in modulating exosome-associated proteins, EV abundance, and cellular Aß levels, thereby reinforcing its involvement in AD pathogenesis.

7.
Cell Mol Life Sci ; 80(6): 139, 2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37149826

RESUMEN

Currently, no effective therapeutics exist for the treatment of incurable neurodegenerative diseases such as Alzheimer's disease (AD). The cellular prion protein (PrPC) acts as a high-affinity receptor for amyloid beta oligomers (AßO), a main neurotoxic species mediating AD pathology. The interaction of AßO with PrPC subsequently activates Fyn tyrosine kinase and neuroinflammation. Herein, we used our previously developed peptide aptamer 8 (PA8) binding to PrPC as a therapeutic to target the AßO-PrP-Fyn axis and prevent its associated pathologies. Our in vitro results indicated that PA8 prevents the binding of AßO with PrPC and reduces AßO-induced neurotoxicity in mouse neuroblastoma N2a cells and primary hippocampal neurons. Next, we performed in vivo experiments using the transgenic 5XFAD mouse model of AD. The 5XFAD mice were treated with PA8 and its scaffold protein thioredoxin A (Trx) at a 14.4 µg/day dosage for 12 weeks by intraventricular infusion through Alzet® osmotic pumps. We observed that treatment with PA8 improves learning and memory functions of 5XFAD mice as compared to Trx-treated 5XFAD mice. We found that PA8 treatment significantly reduces AßO levels and Aß plaques in the brain tissue of 5XFAD mice. Interestingly, PA8 significantly reduces AßO-PrP interaction and its downstream signaling such as phosphorylation of Fyn kinase, reactive gliosis as well as apoptotic neurodegeneration in the 5XFAD mice compared to Trx-treated 5XFAD mice. Collectively, our results demonstrate that treatment with PA8 targeting the AßO-PrP-Fyn axis is a promising and novel approach to prevent and treat AD.


Asunto(s)
Enfermedad de Alzheimer , Aptámeros de Péptidos , Proteínas PrPC , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Proteínas PrPC/metabolismo , Modelos Animales de Enfermedad
8.
Biochem J ; 480(19): 1485-1501, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37747806

RESUMEN

Chronic wasting disease is a fatal prion condition of cervids such as deer, elk, moose and reindeer. Secretion and excretion of prion infectivity from North American cervids with this condition causes environmental contamination and subsequent efficient lateral transmission in free-ranging and farmed cervids. Variants of cervid PrP exist that affect host susceptibility to chronic wasting disease. Cervid breeding programmes aimed at increasing the frequency of PrP variants associated with resistance to chronic wasting disease may reduce the burden of this condition in animals and lower the risk of zoonotic disease. This strategy requires a relatively rapid and economically viable model system to characterise and support selection of prion disease-modifying cervid PrP variants. Here, we generated cervid PrP transgenic Drosophila to fulfil this purpose. We have generated Drosophila transgenic for S138 wild type cervid PrP, or the N138 variant associated with resistance to chronic wasting disease. We show that cervid PrP Drosophila accumulate bona fide prion infectivity after exposure to cervid prions. Furthermore, S138 and N138 PrP fly lines are susceptible to cervid prion isolates from either North America or Europe when assessed phenotypically by accelerated loss of locomotor ability or survival, or biochemically by accumulation of prion seeding activity. However, after exposure to European reindeer prions, N138 PrP Drosophila accumulated prion seeding activity with slower kinetics than the S138 fly line. These novel data show that prion susceptibility characteristics of cervid PrP variants are maintained when expressed in Drosophila, which highlights this novel invertebrate host in modelling chronic wasting disease.


Asunto(s)
Priones , Enfermedad Debilitante Crónica , Animales , Animales Modificados Genéticamente , Ciervos/genética , Drosophila , Priones/genética , Reno , Enfermedad Debilitante Crónica/genética
9.
J Neuroinflammation ; 20(1): 177, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507761

RESUMEN

Alzheimer's disease (AD) is an incurable, progressive and devastating neurodegenerative disease. Pathogenesis of AD is associated with the aggregation and accumulation of amyloid beta (Aß), a major neurotoxic mediator that triggers neuroinflammation and memory impairment. Recently, we found that cellulose ether compounds (CEs) have beneficial effects against prion diseases by inhibiting protein misfolding and replication of prions, which share their replication mechanism with Aß. CEs are FDA-approved safe additives in foods and pharmaceuticals. Herein, for the first time we determined the therapeutic effects of the representative CE (TC-5RW) in AD using in vitro and in vivo models. Our in vitro studies showed that TC-5RW inhibits Aß aggregation, as well as neurotoxicity and immunoreactivity in Aß-exposed human and murine neuroblastoma cells. In in vivo studies, for the first time we observed that single and weekly TC-5RW administration, respectively, improved memory functions of transgenic 5XFAD mouse model of AD. We further demonstrate that TC-5RW treatment of 5XFAD mice significantly inhibited Aß oligomer and plaque burden and its associated neuroinflammation via regulating astrogliosis, microgliosis and proinflammatory mediator glial maturation factor beta (GMFß). Additionally, we determined that TC-5RW reduced lipopolysaccharide-induced activated gliosis and GMFß in vitro. In conclusion, our results demonstrate that CEs have therapeutic effects against Aß pathologies and cognitive impairments, and direct, potent anti-inflammatory activity to rescue neuroinflammation. Therefore, these FDA-approved compounds are effective candidates for developing therapeutics for AD and related neurodegenerative diseases associated with protein misfolding.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Ratones , Animales , Humanos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Éter , Factor de Maduración de la Glia , Disfunción Cognitiva/tratamiento farmacológico , Éteres de Etila/uso terapéutico , Éteres/uso terapéutico , Gliosis/complicaciones , Cognición , Modelos Animales de Enfermedad
10.
PLoS Pathog ; 17(7): e1009795, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34310662

RESUMEN

Chronic wasting disease (CWD) is a prion disease affecting cervids. Polymorphisms in the prion protein gene can result in extended survival of CWD-infected animals. However, the impact of polymorphisms on cellular prion protein (PrPC) and prion properties is less understood. Previously, we characterized the effects of a polymorphism at codon 116 (A>G) of the white-tailed deer (WTD) prion protein and determined that it destabilizes PrPC structure. Comparing CWD isolates from WTD expressing homozygous wild-type (116AA) or heterozygous (116AG) PrP, we found that 116AG-prions were conformationally less stable, more sensitive to proteases, with lower seeding activity in cell-free conversion and reduced infectivity. Here, we aimed to understand CWD strain emergence and adaptation. We show that the WTD-116AG isolate contains two different prion strains, distinguished by their host range, biochemical properties, and pathogenesis from WTD-116AA prions (Wisc-1). Serial passages of WTD-116AG prions in tg(CerPrP)1536+/+ mice overexpressing wild-type deer-PrPC revealed two populations of mice with short and long incubation periods, respectively, and remarkably prolonged clinical phase upon inoculation with WTD-116AG prions. Inoculation of serially diluted brain homogenates confirmed the presence of two strains in the 116AG isolate with distinct pathology in the brain. Interestingly, deglycosylation revealed proteinase K-resistant fragments with different electrophoretic mobility in both tg(CerPrP)1536+/+ mice and Syrian golden hamsters infected with WTD-116AG. Infection of tg60 mice expressing deer S96-PrP with 116AG, but not Wisc-1 prions induced clinical disease. On the contrary, bank voles resisted 116AG prions, but not Wisc-1 infection. Our data indicate that two strains co-existed in the WTD-116AG isolate, expanding the variety of CWD prion strains. We argue that the 116AG isolate does not contain Wisc-1 prions, indicating that the presence of 116G-PrPC diverted 116A-PrPC from adopting a Wisc-1 structure. This can have important implications for their possible distinct capacities to cross species barriers into both cervids and non-cervids.


Asunto(s)
Proteínas Priónicas/genética , Enfermedad Debilitante Crónica/genética , Animales , Arvicolinae , Cricetinae , Ciervos , Mesocricetus , Ratones , Polimorfismo de Nucleótido Simple , Enfermedad Debilitante Crónica/transmisión
11.
Cell Tissue Res ; 392(1): 235-246, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35821439

RESUMEN

Prion diseases are incurable, infectious and fatal neurodegenerative diseases that affect both humans and animals. The pathogenesis of prion disease involves the misfolding of the cellular prion protein, PrPC, to a disease-causing conformation, PrPSc, in the brain. The exact mechanism of conversion of PrPC to PrPSc is not clear; however, there are numerous studies supporting that this process of misfolding requires the association of PrPC with lipid raft domains of the plasma membrane. An increase in the cellular cholesterol content with prion infection has been observed in both in vivo and in vitro studies. As cholesterol is critical for the formation of lipid rafts, on the one hand, this increase may be related to, or aiding in, the process of prion conversion. On the other hand, increased cholesterol levels may affect neuronal viability. Here, we discuss current literature on the underlying mechanisms and potential consequences of elevated neuronal cholesterol in prion infection and advancements in prion disease therapeutics targeting brain cholesterol homeostasis.


Asunto(s)
Enfermedades por Prión , Priones , Animales , Humanos , Priones/metabolismo , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Proteínas Priónicas , Colesterol/metabolismo
12.
Acta Neuropathol ; 144(4): 767-784, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35996016

RESUMEN

Prions cause infectious and fatal neurodegenerative diseases in mammals. Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we provide evidence for a zoonotic potential of CWD prions, and its probable signature using mice expressing human prion protein (PrP) as an infection model. Inoculation of these mice with deer CWD isolates resulted in atypical clinical manifestation with prion seeding activity and efficient transmissible infectivity in the brain and, remarkably, in feces, but without classical neuropathological or Western blot appearances of prion diseases. Intriguingly, the protease-resistant PrP in the brain resembled that found in a familial human prion disease and was transmissible upon second passage. Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Western Blotting , Bovinos , Ciervos/metabolismo , Humanos , Ratones , Proteínas Priónicas/metabolismo , Priones/metabolismo , Enfermedad Debilitante Crónica/metabolismo , Enfermedad Debilitante Crónica/patología
13.
Biochem Biophys Res Commun ; 560: 105-111, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-33984767

RESUMEN

Anti-prion effects of cellulose ether (CE) are reported in rodents, but the molecular mechanism is fully unknown. Here, we investigated the genetic background of CE effectiveness by proteomic and genetic analysis in mice. Proteomic analysis in the two mouse lines showing a dramatic difference in CE effectiveness revealed a distinct polymorphism in the glia maturation factor ß gene. This polymorphism was significantly associated with the CE effectiveness in various prion-infected mouse lines. Sequencing of this gene and its vicinity genes also revealed several other polymorphisms that were significantly related to the CE effectiveness. These polymorphisms are useful as genetic markers for finding more suitable mouse lines and exploring the genetic factors of CE effectiveness.


Asunto(s)
Factor de Maduración de la Glia/genética , Derivados de la Hipromelosa/uso terapéutico , Enfermedades por Prión/tratamiento farmacológico , Animales , Encéfalo/metabolismo , Marcadores Genéticos , Genómica , Masculino , Ratones , Polimorfismo Genético , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Proteómica
14.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668798

RESUMEN

Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.


Asunto(s)
Ciervos/genética , Polimorfismo Genético , Proteínas Priónicas/genética , Enfermedad Debilitante Crónica/patología , Secuencia de Aminoácidos , Animales , Proteínas Priónicas/química , Zoonosis/patología , Zoonosis/transmisión
15.
J Biol Chem ; 294(8): 2642-2650, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30578300

RESUMEN

The cellular prion protein (PrPC) is a glycoprotein that is processed through several proteolytic pathways. Modulators of PrPC proteolysis are of interest because full-length PrPC and its cleavage fragments differ in their propensity to misfold, a process that plays a key role in the pathogenesis of prion diseases. PrPC may also act as a receptor for neurotoxic, oligomeric species of other proteins that are linked to neurodegeneration. Importantly, the PrPC C-terminal fragment C1 does not contain the reported binding sites for these oligomers. Western blotting would be a simple end point detection method for cell-based screening of compound libraries for effects on PrPC proteolysis or overall expression level. However, traditional Western blotting methods provide unreliable quantification and have only low throughput. Consequently, we explored capillary-based Western technology as a potential alternative; we believe that this study is the first to report analysis of PrPC using such an approach. We successfully optimized the detection and quantification of the deglycosylated forms of full-length PrPC and its C-terminal cleavage fragments C1 and C2, including simultaneous quantification of ß-tubulin levels to control for loading error. We also developed and tested a method for performing all cell culture, lysis, and deglycosylation steps in 96-well microplates prior to capillary Western analysis. These advances represent steps along the way to the development of an automated, high-throughput screening pipeline to identify modulators of PrPC expression levels or proteolysis.


Asunto(s)
Western Blotting/métodos , Encéfalo/metabolismo , Células Epiteliales/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Riñón/metabolismo , Proteínas PrPC/metabolismo , Animales , Células Epiteliales/citología , Riñón/citología , Ratones , Ratones Transgénicos , Proteolisis , Conejos
16.
J Neurochem ; 152(6): 727-740, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31553058

RESUMEN

Chronic wasting disease (CWD) is a prion disease of free-ranging and farmed cervids that is highly contagious because of extensive prion shedding and prion persistence in the environment. Previously, cellulose ether compounds (CEs) have been shown to significantly extend the survival of mice inoculated with mouse-adapted prion strains. In this study, we used CEs, TC-5RW, and 60SH-50, in vitro and in vivo to assess their efficacy to interfere with CWD prion propagation. In vitro, CEs inhibited CWD prion amplification in a dose-dependent manner. Transgenic mice over-expressing elk PrPC (tgElk) were injected subcutaneously with a single dose of either of the CEs, followed by intracerebral inoculation with different CWD isolates from white tailed deer, mule deer, or elk. All treated groups showed a prolonged survival of up to more than 30 % when compared to the control group regardless of the CWD isolate used for infection. The extended survival in the treated groups correlated with reduced proteinase K resistance of prions. Remarkably, passage of brain homogenates from treated or untreated animals in tgElk mice resulted in a prolonged life span of mice inoculated with homogenates from CE-treated mice (of + 17%) even in the absence of further treatment. Besides the delayed disease onset upon passage in TgElk mice, the reduced proteinase K resistance was maintained but less pronounced. Therefore, these compounds can be very useful in limiting the spread of CWD in captive and wild-ranging cervids.


Asunto(s)
Celulosa/administración & dosificación , Éter/administración & dosificación , Péptido Hidrolasas/metabolismo , Priones/metabolismo , Enfermedad Debilitante Crónica/metabolismo , Enfermedad Debilitante Crónica/prevención & control , Animales , Química Encefálica , Ciervos , Expresión Génica , Ratones , Ratones Transgénicos , Proteínas PrPSc/química , Proteínas Priónicas/química , Proteínas Priónicas/genética , Priones/administración & dosificación , Priones/efectos de los fármacos , Conformación Proteica , Proteínas Recombinantes
17.
Mol Ecol ; 29(20): 3830-3840, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32810895

RESUMEN

Polymorphisms within the prion protein gene (Prnp) are an intrinsic factor that can modulate chronic wasting disease (CWD) pathogenesis in cervids. Although wild European reindeer (Rangifer tarandus tarandus) were infected with CWD, as yet there have been no reports of the disease in North American caribou (R. tarandus spp.). Previous Prnp genotyping studies on approximately 200 caribou revealed single nucleotide polymorphisms (SNPs) at codons 2 (V/M), 129 (G/S), 138 (S/N), 146 (N/n) and 169 (V/M). The impact of these polymorphisms on CWD transmission is mostly unknown, except for codon 138. Reindeer carrying at least one allele encoding for asparagine (138NN or 138SN) are less susceptible to clinical CWD upon infection by natural routes, with the majority of prions limited to extraneural tissues. We sequenced the Prnp coding region of two caribou subspecies (n = 986) from British Columbia, Saskatchewan, Yukon, Nunavut and the Northwest Territories, to identify SNPs and their frequencies. Genotype frequencies at codon 138 differed significantly between barren-ground (R. t. groenlandicus) and woodland (R. t. caribou) caribou when we excluded the Chinchaga herd (p < .05). We also found new variants at codons 153 (Y/F) and 242 (P/L). Our findings show that the 138N allele is rare among caribou in areas with higher risk of contact with CWD-infected species. As both subspecies are classified as Threatened and play significant roles in North American Indigenous culture, history, food security and the economy, determining frequencies of Prnp genotypes associated with susceptibility to CWD is important for future wildlife management measures.


Asunto(s)
Ciervos , Priones , Reno , Enfermedad Debilitante Crónica , Animales , Colombia Británica , Ciervos/genética , Genotipo , Territorios del Noroeste , Nunavut , Proteínas Priónicas/genética , Priones/genética , Reno/genética , Saskatchewan , Enfermedad Debilitante Crónica/genética
18.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977678

RESUMEN

Prion diseases are fatal and transmissible neurodegenerative diseases in which the cellular form of the prion protein 'PrPc', misfolds into an infectious and aggregation prone isoform termed PrPSc, which is the primary component of prions. Many neurodegenerative diseases, like Alzheimer's disease, Parkinson's disease, and polyglutamine diseases, such as Huntington's disease, are considered prion-like disorders because of the common characteristics in the propagation and spreading of misfolded proteins that they share with the prion diseases. Unlike prion diseases, these are non-infectious outside experimental settings. Many vesicular trafficking impairments, which are observed in prion and prion-like disorders, favor the accumulation of the pathogenic amyloid aggregates. In addition, many of the vesicular trafficking impairments that arise in these diseases, turn out to be further aggravating factors. This review offers an insight into the currently known vesicular trafficking defects in these neurodegenerative diseases and their implications on disease progression. These findings suggest that these impaired trafficking pathways may represent similar therapeutic targets in these classes of neurodegenerative disorders.


Asunto(s)
Vesículas Extracelulares/metabolismo , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Deficiencias en la Proteostasis/metabolismo , Animales , Transporte Biológico Activo , Vesículas Extracelulares/patología , Humanos , Enfermedades por Prión/patología , Deficiencias en la Proteostasis/patología
19.
PLoS Pathog ; 13(8): e1006553, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28800624

RESUMEN

Prion diseases are infectious neurodegenerative disorders of humans and animals caused by misfolded forms of the cellular prion protein PrPC. Prions cause disease by converting PrPC into aggregation-prone PrPSc. Chronic wasting disease (CWD) is the most contagious prion disease with substantial lateral transmission, affecting free-ranging and farmed cervids. Although the PrP primary structure is highly conserved among cervids, the disease phenotype can be modulated by species-specific polymorphisms in the prion protein gene. How the resulting amino-acid substitutions impact PrPC and PrPSc structure and propagation is poorly understood. We investigated the effects of the cervid 116A>G substitution, located in the most conserved PrP domain, on PrPC structure and conversion and on 116AG-prion conformation and infectivity. Molecular dynamics simulations revealed structural de-stabilization of 116G-PrP, which enhanced its in vitro conversion efficiency when used as recombinant PrP substrate in real-time quaking-induced conversion (RT-QuIC). We demonstrate that 116AG-prions are conformationally less stable, show lower activity as a seed in RT-QuIC and exhibit reduced infectivity in vitro and in vivo. Infectivity of 116AG-prions was significantly enhanced upon secondary passage in mice, yet conformational features were retained. These findings indicate that structurally de-stabilized PrPC is readily convertible by cervid prions of different genetic background and results in a prion conformation adaptable to cervid wild-type PrP. Conformation is an important criterion when assessing transmission barrier, and conformational variants can target a different host range. Therefore, a thorough analysis of CWD isolates and re-assessment of species-barriers is important in order to fully exclude a zoonotic potential of CWD.


Asunto(s)
Polimorfismo de Nucleótido Simple , Proteínas Priónicas/genética , Enfermedad Debilitante Crónica/genética , Animales , Western Blotting , Ciervos , Modelos Animales de Enfermedad , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Reacción en Cadena de la Polimerasa , Conformación Proteica
20.
Cell Tissue Res ; 392(1): 1-5, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36918429
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA