Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(46): e2304585, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37469201

RESUMEN

High-entropy oxides (HEOs) have emerged as promising anode materials for next-generation lithium-ion batteries (LIBs). Among them, spinel HEOs with vacant lattice sites allowing for lithium insertion and diffusion seem particularly attractive. In this work, electrospun oxygen-deficient (Mn,Fe,Co,Ni,Zn) HEO nanofibers are produced under environmentally friendly calcination conditions and evaluated as anode active material in LIBs. A thorough investigation of the material properties and Li+ storage mechanism is carried out by several analytical techniques, including ex situ synchrotron X-ray absorption spectroscopy. The lithiation process is elucidated in terms of lithium insertion, cation migration, and metal-forming conversion reaction. The process is not fully reversible and the reduction of cations to the metallic form is not complete. In particular, iron, cobalt, and nickel, initially present mainly as Fe3+ , Co3+ /Co2+ , and Ni2+ , undergo reduction to Fe0 , Co0 , and Ni0 to different extent (Fe < Co < Ni). Manganese undergoes partial reduction to Mn3+ /Mn2+ and, upon re-oxidation, does not revert to the pristine oxidation state (+4). Zn2+ cations do not electrochemically participate in the conversion reaction, but migrating from tetrahedral to octahedral positions, they facilitate Li-ion transport within lattice channels opened by their migration. Partially reversible crystal phase transitions are observed.

2.
Neurobiol Dis ; 161: 105543, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34737044

RESUMEN

A growing body of evidence suggests that aggregated α-synuclein, the major constituent of Lewy bodies, plays a key role in the pathogenesis of Parkinson's disease and related α-synucleinopathies. Immunotherapies, both active and passive, against α-synuclein have been developed and are promising novel treatment strategies for such disorders. Here, we report on the humanization and pharmacological characteristics of ABBV-0805, a monoclonal antibody that exhibits a high selectivity for human aggregated α-synuclein and very low affinity for monomers. ABBV-0805 binds to a broad spectrum of soluble aggregated α-synuclein, including small and large aggregates of different conformations. Binding of ABBV-0805 to pathological α-synuclein was demonstrated in Lewy body-positive post mortem brains of Parkinson's disease patients. The functional potency of ABBV-0805 was demonstrated in several cellular assays, including Fcγ-receptor mediated uptake of soluble aggregated α-synuclein in microglia and inhibition of neurotoxicity in primary neurons. In vivo, the murine version of ABBV-0805 (mAb47) displayed significant dose-dependent decrease of α-synuclein aggregates in brain in several mouse models, both in prophylactic and therapeutic settings. In addition, mAb47 treatment of α-synuclein transgenic mice resulted in a significantly prolonged survival. ABBV-0805 selectively targets soluble toxic α-synuclein aggregates with a picomolar affinity and demonstrates excellent in vivo efficacy. Based on the strong preclinical findings described herein, ABBV-0805 has been progressed into clinical development as a potential disease-modifying treatment for Parkinson's disease.


Asunto(s)
Anticuerpos Monoclonales , Enfermedad de Parkinson , Sinucleinopatías , Animales , Anticuerpos Monoclonales/uso terapéutico , Humanos , Longevidad , Ratones , Ratones Transgénicos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Sinucleinopatías/terapia , alfa-Sinucleína/metabolismo
3.
Anal Chem ; 88(13): 6873-80, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27281469

RESUMEN

A combined X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) methodology is here presented on a series of partially and fully reduced Au(III) samples. This allows monitoring the relative fraction of Au(III) and Au(0) in the studied samples, displaying a consistent and independent outcome. The strategy followed is based, for the first time, on two structural models that can be fitted simultaneously, and it evaluates the correlation among strongly correlated parameters such as coordination number and the Debye-Waller factor. The results of the present EXAFS and XANES approach can be extended to studies based on X-ray absorption spectroscopy experiments for the in situ monitoring of the formation of gold nanoclusters.

4.
Phys Chem Chem Phys ; 17(35): 22519-22, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26252833

RESUMEN

A charge transfer between Fe and Co in cobalt hexacyanoferrate has been observed for the first time by anatase doping. The charge transfer, which involves a spin transition at the Co site, is supported by high-resolution XANES spectra. EXAFS evidenced a consistent change (10%) of the Co-N first shell.

5.
Anal Bioanal Chem ; 405(2-3): 603-14, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23224573

RESUMEN

Two-dimensional inorganic solids, such as layered double hydroxides (LDHs), also defined as anionic clays, have open structures and unique anion-exchange properties which make them very appropriate materials for the immobilization of anions and biomolecules that often bear an overall negative charge. This review aims to describe the important aspects and new developments of electrochemical sensors and biosensors based on LDHs, evidencing the research from our own laboratory and other groups. It is intended to provide an overview of the various types of chemically modified electrodes that have been developed with these 2D layered materials, along with the significant advances made over the last several years. In particular, we report the main methods used for the deposition of LDH films on different substrates, the conductive properties of these materials, the possibility to use them in the development of membranes for potentiometric anion analysis, the early analytical applications of chemically modified electrodes based on the ability of LDHs to preconcentrate redox-active anions and finally the most recent applications exploiting their electrocatalytic properties. Another promising application field of LDHs, when they are employed as host structures for enzymes, is biosensing, which is described considering glucose as an example.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Hidróxidos/química , Proteínas/química , Técnicas Biosensibles/instrumentación , Catálisis , Técnicas Electroquímicas/instrumentación , Electrodos
6.
Small Methods ; 7(11): e2300718, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37608445

RESUMEN

Manganese hexacyanoferrate is a promising cathode material for lithium and sodium ion batteries, however, it suffers of capacity fading during the cycling process. To access the structural and functional characteristics at the nanometer scale, fresh and cycled electrodes are extracted and investigated by transmission soft X-ray microscopy, which allows chemical characterization with spatial resolution from position-dependent x-ray spectra at the Mn L-, Fe L- and N K-edges. Furthermore, soft X-rays prove to show superior sensitivity toward Fe, compare to hard X-rays. Inhomogeneities within the samples are identified, increasing in the aged electrodes, more dramatically in the Li-ion system, which explains the poorer cycle life as Li-ion cathode material. Local spectra, revealing different oxidation states over the sample with strong correlation between the Fe L-edge, Mn L-edge, and N K-edge, imply a coupling between redox centers and an electron delocalization over the host framework.

7.
ChemSusChem ; 16(12): e202300201, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-36852937

RESUMEN

Manganese hexacyanoferrates (MnHCF) are promising positive electrode materials for non-aqueous batteries, including Na-ion batteries, due to their large specific capacity (>130 mAh g-1 ), high discharge potential and sustainability. Typically, the electrochemical reaction of MnHCF associates with phase and structural changes, due to the Jahn-Teller (JT) distortion of Mn sites upon the charge process. To understand the effect of the MnHCF structure on its electrochemical performance, two MnHCF materials with different vacancies content are investigated herein. The electrochemical results show that the sample with lower vacancy content (4 %) exhibits relatively higher capacity retention of 99.1 % and 92.6 % at 2nd and 10th cycles, respectively, with respect to 97.4 % and 79.3 % in sample with higher vacancy content (11 %). Ex-situ X-ray absorption spectroscopy (XAS) and ex situ X-ray diffraction (XRD) characterization results show that a weaker cooperative JT-distortion effect and relatively smaller crystal structure modification occurred for the material with lower vacancies, which explains the better electrochemical performance in cycled electrodes.


Asunto(s)
Ferrocianuros , Manganeso , Electrodos , Iones
8.
Langmuir ; 28(42): 15065-74, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23025480

RESUMEN

This work describes a new one-step method for the preparation of AuNP/LDH nanocomposites via the polyol route. The novelty of this facile, simple synthesis is the absence of additional reactants such as reductive agents or stabilizer, which gives the possibility to obtain phase-pure systems free of undesiderable effect. The AuNP formation is confirmed by SEM, TEM, PXRD, and XAS; moreover, the electrochemical characterization is also reported. The electrocatalytic behavior of AuNP/LDH nanocomposites has been investigated with respect to the oxidation of methanol in basic media and compared with that of pristine NiAl-Ac. The 4-fold highest catalytic efficiency observed with AuNP/LDH nanocomposites suggests the presence of a synergic effect between Ni and AuNP sites. The combination of these experimental findings with the low-cost synthesis procedure paves the way for the exploitation of the presented nanocomposites materials as catalysts for methanol fuel cells.


Asunto(s)
Técnicas Electroquímicas , Oro/química , Hidróxidos/química , Nanopartículas del Metal/química , Metanol/química , Catálisis , Oxidación-Reducción
9.
Phys Chem Chem Phys ; 14(16): 5527-37, 2012 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-22422097

RESUMEN

A deep structural investigation predominantly by X-ray spectroscopic techniques is conducted on films of copper hexacyanoferrate (CuHCF) deposited under different conditions, aimed at establishing structure-properties relationships. We show that the potentiodynamic electrosynthesis of CuHCF on carbon-based surfaces produces a highly disordered material, with a variable amount of Prussian Blue (PB). The subsequent Cu(2+) intercalation induces the partial conversion of PB into CuHCF, which explains the improved electrocatalytic properties after the intercalation process. Both Cu and Fe K-edge data have been recorded. For the sample with the lower amount of PB, we could perform a multiple edge data analysis to determine the local atomic environment around both metal centres using the same set of structural parameters. The presence of high multiplicity Cu-N-C-Fe linear chains has allowed us to determine accurately the local environment of Fe while fitting the Cu K-edge data only. Using this approach we have retrieved structural information around Fe for those samples in which the concomitant presence of PB would have made impossible the analysis of the Fe K-edge. The Fe-C, C-N and Cu-N bond distances have been found in agreement with those of the bulk structures, but higher values of [Fe(CN)(6)] vacancies for the building blocks have been evidenced, reaching a value of ~45% in one sample. XANES, Raman and SEM data agree with the model proposed for each studied electrode.


Asunto(s)
Cobre/química , Técnicas Electroquímicas , Ferrocianuros/química , Membranas Artificiales , Electrodos , Microscopía Electrónica de Rastreo , Estructura Molecular , Espectrometría Raman , Espectroscopía de Absorción de Rayos X
10.
Small Methods ; 6(12): e2200913, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36333102

RESUMEN

Copper sulfide has attracted increasing attention as conversion-type cathode material for, especially, solid-state lithium-based batteries. However, the reaction mechanism behind its extraordinary electroactivity is not well understood, and the various explanations given by the scientific community are diverging. Herein, the CuS reaction dynamics are highlighted by examining the occurring redox processes via a cutting-edge methodology combining X-ray absorption fine structure spectroscopy, and chemometrics to overcome X-ray diffraction limitations posed by the poor material's crystallinity. The mathematical approach rules out the formation of intermediates and clarifies the direct conversion of CuS to Cu in a two-electron process during discharge and reversible oxidation upon delithiation. Two distinct voltage regions are identified corresponding to Cu- as well as the S-redox mechanisms occurring in the material.

11.
J Neurosci ; 29(25): 8156-65, 2009 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-19553455

RESUMEN

The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT(2C)R) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT(2C)Rs produces marked alterations in the activity and functional output of this pathway. 5-HT(2C)R mutant mice displayed increased activity of substantia nigra pars compacta (SNc) dopaminergic neurons, elevated baseline extracellular dopamine concentrations in the dorsal striatum (DSt), alterations in grooming behavior, and enhanced sensitivity to the stereotypic behavioral effects of d-amphetamine and GBR 12909. These psychostimulant responses occurred in the absence of phenotypic differences in drug-induced extracellular dopamine concentration, suggesting a phenotypic alteration in behavioral responses to released dopamine. This was further suggested by enhanced behavioral responses of mutant mice to the D(1) receptor agonist SKF 81297. Differences in DSt D(1) or D(2) receptor expression were not found, nor were differences in medium spiny neuron firing patterns or intrinsic membrane properties following dopamine stimulation. We conclude that 5-HT(2C)Rs regulate nigrostriatal dopaminergic activity and function both at SNc dopaminergic neurons and at a locus downstream of the DSt.


Asunto(s)
Conducta Animal/fisiología , Cuerpo Estriado/fisiología , Dopamina/metabolismo , Vías Nerviosas/fisiología , Neuronas/fisiología , Receptor de Serotonina 5-HT2C/fisiología , Sustancia Negra/fisiología , Anfetamina/administración & dosificación , Anfetamina/farmacología , Animales , Autorradiografía , Conducta Animal/efectos de los fármacos , Benzazepinas/administración & dosificación , Benzazepinas/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopaminérgicos/administración & dosificación , Dopaminérgicos/farmacología , Agonistas de Dopamina/administración & dosificación , Agonistas de Dopamina/farmacología , Inhibidores de Captación de Dopamina/administración & dosificación , Inhibidores de Captación de Dopamina/farmacología , Electrofisiología , Aseo Animal/fisiología , Locomoción/fisiología , Ratones , Ratones Endogámicos C57BL , Mutación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Piperazinas/administración & dosificación , Piperazinas/farmacología , Receptor de Serotonina 5-HT2C/deficiencia , Receptor de Serotonina 5-HT2C/genética , Conducta Estereotipada/fisiología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
12.
Anal Chem ; 82(9): 3629-35, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20353162

RESUMEN

Vanadium pentoxide materials prepared through sol-gel processes act as excellent intercalation hosts for lithium as well as polyvalent cations. A chemometric approach has been applied to study the X-ray absorption near-edge structure (XANES) evolution during in situ scanning of the Cu(0.1)V(2)O(5) xerogel/Li ions battery. Among the more common techniques, the fixed size windows evolving factor analysis (FSWEFA) permits the number of species involved in the experiment to be determined and the range of existence of each of them. This result, combined with the constraints of the invariance of the total concentration and non-negativity of both concentrations and spectra, enabled us to obtain the spectra of the pure components using a multivariate curve resolution refined by an alternate least squares fitting procedure. This allowed the normalized concentration profile to be understood. This data treatment evidenced the occurrence, for the first time, of three species during the battery charging. This fact finds confirmation by comparison of the pure spectra with the experimental ones. Extended X-ray absorption fine structure (EXAFS) analysis confirms the occurrence of three different chemical environments of Cu during battery charging.

13.
J Pharmacol Exp Ther ; 333(3): 748-57, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20194526

RESUMEN

Dimebon (dimebolin) treatment enhances cognition in patients with Alzheimer's disease (AD) or Huntington's disease. Although Dimebon was originally thought to improve cognition and memory through inhibition of acetylcholinesterase (AChE) and the N-methyl-d-aspartate (NMDA) receptor, the low in vitro affinity for these targets suggests that these mechanisms may not contribute to its clinical effects. To test this hypothesis, we assessed whether Dimebon enhances cognition in rats and if such an action is related to either mechanism or additional candidate mechanisms. Acute oral administration of Dimebon to rats (0.05, 0.5, and 5 mg/kg) enhanced cognition in a novel object recognition task and produced Dimebon brain concentrations of 1.7 +/- 0.43, 14 +/- 5.1, and 172 +/- 94 nM, respectively. At these concentrations, Dimebon did not alter the activity of recombinant human or rat brain AChE. Unlike the AChE inhibitors donepezil and galantamine, Dimebon did not change acetylcholine levels in the hippocampus or prefrontal cortex of freely moving rats. Dimebon displays affinity for the NMDA receptor (K(i) = 105 +/- 18 microM) that is considerably higher than brain concentrations associated with cognition enhancement in the novel object recognition task and 200-fold weaker than that of memantine (K(i) = 0.54 +/- 0.05 microM). Dimebon did not block NMDA-induced calcium influx in primary neuronal cells (IC(50) > 50 microM), consistent with a lack of significant effect on this pathway. The cognition-enhancing effects of Dimebon are unlikely to be mediated by AChE inhibition or NMDA receptor antagonism, and its mechanism of action appears to be distinct from currently approved medications for AD.


Asunto(s)
Inhibidores de la Colinesterasa , Cognición/efectos de los fármacos , Indoles/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Reconocimiento en Psicología/efectos de los fármacos , Acetilcolina/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Donepezilo , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Indanos/farmacología , Indoles/sangre , Masculino , Memantina/farmacología , Microdiálisis , Piperidinas/farmacología , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Histamínicos H1/efectos de los fármacos , Receptores Histamínicos H1/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas
14.
ChemSusChem ; 13(3): 608-615, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31756022

RESUMEN

Manganese hexacyanoferrate (MnHCF) is made of earth-abundant elements by a safe and easy synthesis. The material features a higher specific capacity at a higher potential than other Prussian blue analogs. However, the effect of hydration is critical to determine the electrochemical performance as both the electrochemical behavior and the reaction dynamics are affected by interstitial/structural water and adsorbed water. In this study, the electrochemical activity of MnHCF is investigated by varying the interstitial ion content through a joint operando X-ray absorption spectroscopy and chemometric approach, with the intent to assess the structural and electronic modifications that occur during Na release and Li insertion, as well as the overall dynamic evolution of the system. In MnHCF, both the Fe and Mn centers are electrochemically active and undergo reversible oxidation during the interstitial ion extraction (Fe2+ /Fe3+ and Mn2+ /Mn3+ ). The adsorption of water results in irreversible capacity during charge but only on the Fe site, which is suggested by our chemometric analysis. The local environment of Mn experiences a substantial yet reversible Jahn-Teller effect upon interstitial ion removal because of the formation of trivalent Mn, which is associated with a decrease of the equatorial Mn-N bond lengths by 10 %.

15.
Drug Discov Today ; 25(6): 965-968, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32173523

RESUMEN

Scientists increasingly find themselves working in bilateral drug development alliances. Alliances are conceptually simple, but operationally challenging, resulting in the value-eroding misalignment and delays that alliances often experience. This case study of an exemplary collaboration between a small biotech and a global biopharmaceutical company is based on 15 interviews and a lessons-learned workshop conducted with the principal alliance team members. We outline five repeatable practices identified as contributing to their success that other alliance teams can follow.


Asunto(s)
Desarrollo de Medicamentos/métodos , Industria Farmacéutica/métodos , Humanos , Colaboración Intersectorial , Práctica Asociada
16.
J Parkinsons Dis ; 10(4): 1429-1442, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33016895

RESUMEN

BACKGROUND: Currently, there is no established biomarker for Parkinson's disease (PD) and easily accessible biomarkers are crucial for developing disease-modifying treatments. OBJECTIVE: To develop a novel method to quantify cerebrospinal fluid (CSF) levels of α-synuclein protofibrils (α-syn PF) and apply it to clinical cohorts of patients with PD and atypical parkinsonian disorders. METHODS: A cohort composed of 49 patients with PD, 12 with corticobasal degeneration (CBD), 22 with progressive supranuclear palsy, and 33 controls, that visited the memory clinic but had no biomarker signs of Alzheimer's disease (AD, tau<350 pg/mL, amyloid-beta 42 (Aß42)>530 pg/mL, and phosphorylated tau (p-tau)<60 pg/mL) was used in this study. The CSF samples were analyzed with the Single molecule array (Simoa) technology. Total α-synuclein (α-syn) levels were analyzed with a commercial ELISA-kit. RESULTS: The assay is specific to α-syn PF, with no cross-reactivity to monomeric α-syn, or the ß- and γ-synuclein variants. CSF α-syn PF levels were increased in PD compared with controls (62.1 and 40.4 pg/mL, respectively, p = 0.03), and CBD (62.1 and 34.2 pg/mL, respectively, p = 0.02). The accuracy of predicting PD using α-syn PF is significantly different from controls (area under the curve 0.68, p = 0.0097) with a sensitivity of 62.8% and specificity of 67.7%. Levels of total α-syn were significantly different between the PD and CBD groups (p = 0.04). CONCLUSION: The developed method specifically quantifies α-syn PF in human CSF with increased concentrations in PD, but with an overlap with asymptomatic elderly controls.


Asunto(s)
Enfermedad de Parkinson/líquido cefalorraquídeo , Trastornos Parkinsonianos/líquido cefalorraquídeo , alfa-Sinucleína/líquido cefalorraquídeo , Anciano , Biomarcadores/líquido cefalorraquídeo , Femenino , Humanos , Inmunoensayo , Masculino , Persona de Mediana Edad , Parálisis Supranuclear Progresiva/líquido cefalorraquídeo
17.
J Phys Chem Lett ; 10(12): 3359-3368, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31141374

RESUMEN

Lithium-rich transition-metal-oxide cathodes are among the most promising materials for next generation lithium-ion-batteries because they operate at high voltages and deliver high capacities. However, their cycle-life remains limited, and individual roles of the transition-metals are still not fully understood. Using bulk-sensitive X-ray absorption and emission spectroscopy on Li[Li0.2Ni0.16Mn0.56Co0.08]O2, we inspect the behavior of Mn, generally considered inert upon the electrochemical process. During the first charge Mn appears to be redox-active showing a partial transformation from high-spin Mn4+ to Mn3+ in both high and low spin configurations, where the latter is expected to favor reversible cycling. The Mn redox-state with cycling continues changing in opposition to the expected charge compensation and is correlated with Ni oxidation/reduction, also spatially. The findings suggest that strain induced on the Mn-O sublattice by Ni oxidation triggers Mn reduction. These results unravel the Mn role in controlling the electrochemistry of Li-rich cathodes.

18.
Inorg Chem ; 47(13): 6001-8, 2008 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-18543907

RESUMEN

The structural parameters in selected cobalt and mixed cobalt/nickel hexacyanoferrates have been determined by X-ray absorption spectroscopy. The presence of two or three metals in the sample requires the use of a highly efficient multiple edge analysis. The typical structure of mixed hexacyanoferrates coupled with a suitable data analysis program, GNXAS, allow us to determine structural parameters considering a very high number of experimental points. The first data analysis of three contiguous edges (Fe, Co, and Ni K-edges), the structural parameters of which are entirely correlated, is presented. The advantages and limitations of the multiple edge approach are underlined and placed in the context of the previous studies. The CN bond length has been determined with a statistical error of few thousandths of an angstrom.

19.
J Inorg Biochem ; 188: 50-61, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30121398

RESUMEN

The chemistry of copper(I) with water-soluble phosphines is an emergent area of study which has the objective of finding ligands that stabilize copper in its lower oxidation state. Cu(I) has been found relevant in the mechanism of copper transports into cells, and the accessibility of this oxidation state has implications in oxidative stress processes. For these reasons the possibility to deal with stable, water soluble copper(I) is an attractive approach for devising new biologically relevant metal-based drugs and chelating agents. Here we present the X-ray absorption spectroscopy (XAS) and UV-visible spectrophotometric study of the [Cu(PTA)4]BF4 complex (PTA = aminophosphine­1,3,5­triaza­7­phosphaadamantane). In particular, we have studied the stability of the [Cu(PTA)n]+ species (n = 2-4) in aqueous medium, and their speciation as a function of the total [Cu(PTA)4]BF4 concentration by means of competitive UV-visible spectrophotometric titrations using metallochromic indicators. Also, the structure in solution of the Cu(I)/PTA species and the nature of the first coordination sphere of the metal were studied by transformed XAS. Both techniques allowed to study samples with total [Cu(PTA)4]BF4 concentration down to 68-74 µM, possibly relevant for biological applications. Overall, our data suggest that the [Cu(PTA)n]+ species are stable in solution, among which [Cu(PTA)2]+ has a remarkable thermodynamic stability. The tendency of this last complex to form adducts with N-donor ligands is demonstrated by the spectrophotometric data. The biological relevance of PTA towards Cu(I), especially in terms of chemotreatments and chelation therapy, is discussed on the basis of the speciation model the Cu(I)/PTA system.


Asunto(s)
Adamantano/análogos & derivados , Complejos de Coordinación/química , Cobre/química , Modelos Moleculares , Compuestos Organofosforados/química , Termodinámica , Adamantano/química , Oxidación-Reducción
20.
Biol Psychiatry ; 61(2): 174-80, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16934771

RESUMEN

BACKGROUND: Most antidepressant medications target central monoamine systems and are often characterized by limited efficacies and unwanted side effects. Thus, significant efforts are ongoing to identify novel targets for the treatment of depression. Growing evidence suggests that neuropeptides play a role in the pathophysiology of depression. The melanin-concentrating hormone (MCH) is one such neuropeptide, implicated in the modulation of many physiological responses. METHODS: We utilized an array of techniques including chronic mild stress (CMS) as a depression paradigm, neurobehavior, gene expression analysis, and knockout genetics to investigate the role of MCH receptor subtype 1 (MCHR1) in murine models of depression. RESULTS: We report here that following a 5-week exposure to repeated chronic mild stress (an ethologically relevant animal model of depression), C57Bl/6J mice have increased hippocampal gene expression of MCH receptor subtype 1 (MCHR1), the cognate melanin concentrating hormone receptor in mice. This increased gene expression is reversed by chronic fluoxetine hydrochloride (Prozac) treatment. Additionally, while female and male mice carrying a null mutation of the MCHR1 gene show comparable anxiolytic-like behavior on the open field, only female knockout mice exhibit antidepressant-like behavior, when tested on the forced swim and tail suspension tests. CONCLUSION: Taken together, we suggest that antagonism of the MCHR1 receptor may provide a novel approach for the treatment of affective disorders, including depression, with a potentially increased efficacy in women.


Asunto(s)
Trastorno Depresivo/genética , Modelos Animales de Enfermedad , Receptores de Somatostatina/genética , Animales , Antidepresivos de Segunda Generación/farmacología , Femenino , Fluoxetina/farmacología , Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Masculino , Melaninas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Psicológico/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA